1932

Abstract

To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-060621-043448
2021-10-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-060621-043448.html?itemId=/content/journals/10.1146/annurev-micro-060621-043448&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adriaenssens EM, Mattheus W, Cornelissen A, Shaburova O, Krylov VN et al. 2012. Complete genome sequence of the giant Pseudomonas phage Lu11. J. Virol. 86:116369–70
    [Google Scholar]
  2. 2. 
    Ahlgren NA, Fuchsman CA, Rocap G, Fuhrman JA. 2019. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J 13:618–31
    [Google Scholar]
  3. 3. 
    Allen JR, Lasser GW, Goldman DA, Booth JW, Mathews CK. 1983. T4 phage deoxyribonucleotide-synthesizing enzyme complex. J. Biol. Chem. 258:95746–53
    [Google Scholar]
  4. 4. 
    Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. 2014. Sulfur oxidation genes in diverse deep-sea viruses. Science 344:6185757–60
    [Google Scholar]
  5. 5. 
    Anderson CL, Sullivan MB, Fernando SC. 2017. Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome 5:1155
    [Google Scholar]
  6. 6. 
    Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA et al. 2006. The marine viromes of four oceanic regions. PLOS Biol 4:112121–31
    [Google Scholar]
  7. 7. 
    Ankrah NYD, May AL, Middleton JL, Jones DR, Hadden MK et al. 2014. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J 8:51089–100
    [Google Scholar]
  8. 8. 
    Arcondéguy T, Jack R, Merrick M 2001. PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol. Mol. Biol. Rev. 65:180–105
    [Google Scholar]
  9. 9. 
    Askora A, Kawasaki T, Fujie M, Yamada T. 2017. Lysogenic conversion of the phytopathogen Ralstonia solanacearum by the P2virus ΦRSY1. Front. Microbiol. 8:2212
    [Google Scholar]
  10. 10. 
    Bai M, Cheng YH, Sun XQ, Wang ZY, Wang YX et al. 2019. Nine novel phages from a plateau lake in southwest China: insights into Aeromonas phage diversity. Viruses 11:7615
    [Google Scholar]
  11. 11. 
    Bailey S, Clokie MRJ, Millard A, Mann NH 2004. Cyanophage infection and photoinhibition in marine cyanobacteria. Res. Microbiol. 155:720–25
    [Google Scholar]
  12. 12. 
    Bailey S, Melis A, Mackey KRM, Cardol P, Finazzi G et al. 2008. Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim. Biophys. Acta Bioenerg. 1777:269–76
    [Google Scholar]
  13. 13. 
    Berg BL, Baron C, Stewart V. 1991. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12: I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. J. Biol. Chem. 266:3322380–85
    [Google Scholar]
  14. 14. 
    Birch EW, Ruggero NA, Covert MW. 2012. Determining host metabolic limitations on viral replication via integrated modeling and experimental perturbation. PLOS Comput. Biol. 8:10e1002746
    [Google Scholar]
  15. 15. 
    Bragg JG, Chisholm SW. 2008. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLOS ONE 3:10e3550
    [Google Scholar]
  16. 16. 
    Breitbart M. 2012. Marine viruses: truth or dare. Annu. Rev. Mar. Sci. 4:425–48
    [Google Scholar]
  17. 17. 
    Breitbart M, Bonnain C, Malki K, Sawaya NA. 2018. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3:7754–66
    [Google Scholar]
  18. 18. 
    Brüssow H, Canchaya C, Hardt W-D. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:3560–602
    [Google Scholar]
  19. 19. 
    Busch AWU, Reijerse EJ, Lubitz W, Hofmann E, Frankenberg-Dinkel N. 2011. Radical mechanism of cyanophage phycoerythrobilin synthase (PebS). Biochem. J. 433:3469–76
    [Google Scholar]
  20. 20. 
    Campbell IJ, Olmos JL Jr., Xu W, Kahanda D, Atkinson JT et al. 2020. Prochlorococcus phage ferredoxin: structural characterization and electron transfer to cyanobacterial sulfite reductases. J. Biol. Chem. 295:10610–23
    [Google Scholar]
  21. 21. 
    Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. 2003. Phage as agents of lateral gene transfer. Curr. Opin. Microbiol. 6:4417–24
    [Google Scholar]
  22. 22. 
    Carey JN, Mettert EL, Fishman-Engel DR, Roggiani M, Kiley PJ, Goulian M 2019. Phage integration alters the respiratory strategy of its host. eLife 8:e49081
    [Google Scholar]
  23. 23. 
    Casjens S. 2003. Prophages and bacterial genomics: What have we learned so far?. Mol. Microbiol. 49:2277–300
    [Google Scholar]
  24. 24. 
    Chen F, Lu J. 2002. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl. Environ. Microbiol. 68:52589–94
    [Google Scholar]
  25. 25. 
    Chen Y, Golding I, Sawai S, Guo L, Cox EC. 2005. Population fitness and the regulation of Escherichia coli genes by bacterial viruses. PLOS Biol 3:71276–82
    [Google Scholar]
  26. 26. 
    Chénard C, Chan AM, Vincent WF, Suttle CA. 2015. Polar freshwater cyanophage S-EIV1 represents a new widespread evolutionary lineage of phages. ISME J 9:2046–58
    [Google Scholar]
  27. 27. 
    Cheng M, Luo M, Xi H, Zhao Y, Le S et al. 2020. The characteristics and genome analysis of vB_ApiP_XC38, a novel phage infecting Acinetobacter pittii. Virus Genes 56:4498–507
    [Google Scholar]
  28. 28. 
    Chevallereau A, Blasdel BG, De Smet J, Monot M, Zimmermann M et al. 2016. Next-generation “-omics” approaches reveal a massive alteration of host RNA metabolism during bacteriophage infection of Pseudomonas aeruginosa. PLOS Genet 12:7e1006134
    [Google Scholar]
  29. 29. 
    Christodoulou D, Link H, Fuhrer T, Kochanowski K, Gerosa L, Sauer U. 2018. Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli’s rapid response to oxidative stress. Cell Syst 6:5569–78.e7
    [Google Scholar]
  30. 30. 
    Clokie MRJ, Shan J, Bailey S, Jia Y, Krisch HM et al. 2006. Transcription of a “photosynthetic” T4-type phage during infection of a marine cyanobacterium. Environ. Microbiol. 8:5827–35
    [Google Scholar]
  31. 31. 
    Cohen SS. 1948. The synthesis of bacterial viruses: II. The origin of the phosphorus found in the desoxyribonucleic acids of the T2 and T4 bacteriophages. J. Biol. Chem. 174:295–304
    [Google Scholar]
  32. 32. 
    Collier JL, Grossman AR. 1992. Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: Not all bleaching is the same. J. Bacteriol. 174:144718–26
    [Google Scholar]
  33. 33. 
    Collier JL, Grossman AR. 1994. A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13:51039–47
    [Google Scholar]
  34. 34. 
    Dammeyer T, Bagby SC, Sullivan MB, Chisholm SW, Frankenberg-Dinkel N. 2008. Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Curr. Biol. 18:6442–48
    [Google Scholar]
  35. 35. 
    De Smet J, Zimmermann M, Kogadeeva M, Ceyssens P-J, Vermaelen W et al. 2016. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. ISME J 10:1823–35
    [Google Scholar]
  36. 36. 
    Dinh HV, Suthers PF, Chan SHJ, Shen Y, Xiao T et al. 2019. A comprehensive genome-scale model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data. Metab. Eng. Commun. 9:e00101
    [Google Scholar]
  37. 37. 
    Doello S, Klotz A, Makowka A, Gutekunst K, Forchhammer K. 2018. A specific glycogen mobilization strategy enables rapid awakening of dormant cyanobacteria from chlorosis. Plant Physiol 177:2594–603
    [Google Scholar]
  38. 38. 
    Doron S, Fedida A, Hernández-Prieto MA, Sabehi G, Karunker I et al. 2016. Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME J 10:61437–55
    [Google Scholar]
  39. 39. 
    Du B, Zielinski DC, Monk JM, Palsson BO 2018. Thermodynamic favorability and pathway yield as evolutionary tradeoffs in biosynthetic pathway choice. PNAS 115:4411339–44
    [Google Scholar]
  40. 40. 
    Edlin G, Lin L, Bitner R. 1977. Reproductive fitness of P1, P2, and Mu lysogens of Escherichia coli. J. Virol. 21:2560–64
    [Google Scholar]
  41. 41. 
    Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ et al. 2018. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3:8870–80
    [Google Scholar]
  42. 42. 
    Enav H, Mandel-Gutfreund Y, Béjà O. 2014. Comparative metagenomic analyses reveal viral-induced shifts of host metabolism towards nucleotide biosynthesis. Microbiome 2:19
    [Google Scholar]
  43. 43. 
    Ermakova M, Huokko T, Richaud P, Bersanini L, Howe CJ et al. 2016. Distinguishing the roles of thylakoid respiratory terminal oxidases in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 171:21307–19
    [Google Scholar]
  44. 44. 
    Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M et al. 2016. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. PNAS 113:24E3365–74
    [Google Scholar]
  45. 45. 
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40
    [Google Scholar]
  46. 46. 
    Figueroa-Bossi N, Bossi L. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33:1167–76
    [Google Scholar]
  47. 47. 
    Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R 2013. Glycolytic strategy as a tradeoff between energy yield and protein cost. PNAS 110:2410039–44
    [Google Scholar]
  48. 48. 
    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL et al. 2013. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. PNAS 110:249824–29
    [Google Scholar]
  49. 49. 
    Forchhammer K. 2004. Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol. Rev. 28:3319–33
    [Google Scholar]
  50. 50. 
    Forchhammer K, de Marsac NT. 1995. Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942. J. Bacteriol. 177:82033–40
    [Google Scholar]
  51. 51. 
    Forterre P. 2013. The virocell concept and environmental microbiology. ISME J 7:233–36
    [Google Scholar]
  52. 52. 
    Fridman S, Flores-Uribe J, Larom S, Alalouf O, Liran O et al. 2017. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nat. Microbiol. 2:101350–57
    [Google Scholar]
  53. 53. 
    Fuhrer T, Fischer E, Sauer U. 2005. Experimental identification and quantification of glucose metabolism in seven bacterial species. J. Bacteriol. 187:51581–90
    [Google Scholar]
  54. 54. 
    Gao E-B, Gui J-F, Zhang Q-Y 2012. A novel cyanophage with a cyanobacterial nonbleaching protein A gene in the genome. J. Virol. 86:1236–45
    [Google Scholar]
  55. 55. 
    Gasper R, Schwach J, Hartmann J, Holtkamp A, Wiethaus J et al. 2017. Distinct features of cyanophage-encoded T-type phycobiliprotein lyase ΦCpeT: the role of auxiliary metabolic genes. J. Biol. Chem. 292:83089–98
    [Google Scholar]
  56. 56. 
    Grossman AR, Schaefer MR, Chiang GG, Collier JL. 1993. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 57:3725–49
    [Google Scholar]
  57. 57. 
    Haverkorn van Rijsewijk BRB, Nanchen A, Nallet S, Kleijn RJ, Sauer U. 2011. Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol. Syst. Biol. 7:477
    [Google Scholar]
  58. 58. 
    Hellweger FL. 2009. Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ. Microbiol. 11:61386–94
    [Google Scholar]
  59. 59. 
    Hendry JI, Prasannan C, Ma F, Möllers KB, Jaiswal D et al. 2017. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13C metabolic flux analysis. Biotechnol. Bioeng. 114:102298–308
    [Google Scholar]
  60. 60. 
    Hertveldt K, Lavigne R, Pleteneva E, Sernova N, Kurochkina L et al. 2005. Genome comparison of Pseudomonas aeruginosa large phages. J. Mol. Biol. 354:3536–45
    [Google Scholar]
  61. 61. 
    Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S et al. 2001. The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth. Res. 70:153–71
    [Google Scholar]
  62. 62. 
    Holmfeldt K, Solonenko N, Shah M, Corrier K, Riemann L et al. 2013. Twelve previously unknown phage genera are ubiquitous in global oceans. PNAS 110:3112798–803
    [Google Scholar]
  63. 63. 
    Howard-Varona C, Hargreaves KR, Solonenko NE, Markillie LM, White RA et al. 2018. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J 12:61605–18
    [Google Scholar]
  64. 64. 
    Howard-Varona C, Lindback MM, Bastien GE, Solonenko N, Zayed AA et al. 2020. Phage-specific metabolic reprogramming of virocells. ISME J 14:4881–95
    [Google Scholar]
  65. 65. 
    Howard-Varona C, Roux S, Dore H, Solonenko NE, Holmfeldt K et al. 2017. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. ISME J 11:1284–95
    [Google Scholar]
  66. 66. 
    Hurwitz BL, Hallam SJ, Sullivan MB. 2013. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol 14:11R123
    [Google Scholar]
  67. 67. 
    Islam MM, Fernando SC, Saha R. 2019. Metabolic modeling elucidates the transactions in the rumen microbiome and the shifts upon virome interactions. Front. Microbiol. 10:2412
    [Google Scholar]
  68. 68. 
    Jacobson TB, Adamczyk PA, Stevenson DM, Regner M, Ralph J et al. 2019. 2H and 13C metabolic flux analysis elucidates in vivo thermodynamics of the ED pathway in Zymomonas mobilis. Metab. Eng. 54:301–16
    [Google Scholar]
  69. 69. 
    Jacobson TB, Korosh TK, Stevenson DM, Foster C, Maranas C et al. 2020. In vivo thermodynamic analysis of glycolysis in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum using 13C and 2H tracers. mSystems 5:2e00736-19
    [Google Scholar]
  70. 70. 
    Jain R, Srivastava R. 2009. Metabolic investigation of host/pathogen interaction using MS2-infected Escherichia coli. BMC Syst. Biol. 3:121
    [Google Scholar]
  71. 71. 
    Jian H, Xiao X, Wang F 2013. Role of filamentous phage SW1 in regulating the lateral flagella of Shewanella piezotolerans strain WP3 at low temperatures. Appl. Environ. Microbiol. 79:227101–9
    [Google Scholar]
  72. 72. 
    Kang I, Oh HM, Kang D, Cho JC 2013. Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans. PNAS 110:3012343–48
    [Google Scholar]
  73. 73. 
    Kaplan A. 2016. Cyanophages: starving the host to recruit resources. Curr. Biol. 26:12R511–13
    [Google Scholar]
  74. 74. 
    Kazakov AE, Vassieva O, Gelfand MS, Osterman A, Overbeek R. 2003. Bioinformatics classification and functional analysis of PhoH homologs. In Silico Biol 3:1–23–15
    [Google Scholar]
  75. 75. 
    Kelly L, Ding H, Huang KH, Osburne MS, Chisholm SW. 2013. Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent. ISME J 7:1827–41
    [Google Scholar]
  76. 76. 
    Kim EE, Wyckoff HW. 1991. Reaction mechanism of alkaline phosphatase based on crystal structures: two-metal ion catalysis. J. Mol. Biol. 218:449–64
    [Google Scholar]
  77. 77. 
    Kim J-G, Kim S-J, Cvirkaite-Krupovic V, Yu W-J, Gwak J-H et al. 2019. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. PNAS 116:3115645–50
    [Google Scholar]
  78. 78. 
    Kim SK, Makino K, Amemura M, Shinagawa H, Nakata A. 1993. Molecular analysis of the phoH gene, belonging to the phosphate regulon in Escherichia coli. J. Bacteriol. 175:51316–24
    [Google Scholar]
  79. 79. 
    Klughammer B, Sültemeyer D, Badger MR, Price GD. 1999. The involvement of NAD(P)H dehydrogenase subunits, NdhD3 and NdhF3, in high-affinity CO2 uptake in Synechococcus sp. PCC7002 gives evidence for multiple NDH-1 complexes with specific roles in cyanobacteria. Mol. Microbiol. 32:61305–15
    [Google Scholar]
  80. 80. 
    Komenda J, Sobotka R. 2016. Cyanobacterial high-light-inducible proteins—protectors of chlorophyll-protein synthesis and assembly. Biochim. Biophys. Acta Bioenerg. 1857:3288–95
    [Google Scholar]
  81. 81. 
    Kowalchuk GA, Stephen JR. 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 55:485–529
    [Google Scholar]
  82. 82. 
    Kozloff LM, Knowlton K, Putnam FW, Evans EA Jr. 1950. Biochemical studies of virus reproduction: V. The origin of bacteriophage nitrogen. J. Biol. Chem. 188:1101–16
    [Google Scholar]
  83. 83. 
    Kutter E, Bryan D, Ray G, Brewster E, Blasdel B, Guttman B. 2018. From host to phage metabolism: hot tales of phage T4’s takeover of E. coli. Viruses 10:7387
    [Google Scholar]
  84. 84. 
    Lavigne R, Lecoutere E, Wagemans J, Cenens W, Aertsen A et al. 2013. A multifaceted study of Pseudomonas aeruginosa shutdown by virulent podovirus LUZ19. mBio 4:2e00061-13
    [Google Scholar]
  85. 85. 
    Lawson CE, Nuijten GHL, de Graaf RM, Jacobson TB, Pabst M et al. 2021. Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping. ISME J 15:673–87
    [Google Scholar]
  86. 86. 
    Ledermann B, Béjà O, Frankenberg-Dinkel N. 2016. New biosynthetic pathway for pink pigments from uncultured oceanic viruses. Environ. Microbiol. 18:124337–47
    [Google Scholar]
  87. 87. 
    Ledermann B, Schwan M, Sommerkamp JA, Hofmann E, Béjà O, Frankenberg-Dinkel N. 2018. Evolution and molecular mechanism of four-electron reducing ferredoxin-dependent bilin reductases from oceanic phages. FEBS J 285:339–56
    [Google Scholar]
  88. 88. 
    Lee JY, Li Z, Miller ES. 2017. Vibrio phage KVP40 encodes a functional NAD+ salvage pathway. J. Bacteriol. 199:9e00855-16
    [Google Scholar]
  89. 89. 
    Leskinen K, Blasdel BG, Lavigne R, Skurnik M. 2016. RNA-sequencing reveals the progression of phage-host interactions between φR1–37 and Yersinia enterocolitica. Viruses 8:4111
    [Google Scholar]
  90. 90. 
    Lin L, Bitner R, Edlin G. 1977. Increased reproductive fitness of Escherichia coli lambda lysogens. J. Virol. 21:2554–59
    [Google Scholar]
  91. 91. 
    Lin X, Ding H, Zeng Q. 2016. Transcriptomic response during phage infection of a marine cyanobacterium under phosphorus-limited conditions. Environ. Microbiol. 18:2450–60
    [Google Scholar]
  92. 92. 
    Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM et al. 2007. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449:83–86
    [Google Scholar]
  93. 93. 
    Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. 2005. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438:706486–89
    [Google Scholar]
  94. 94. 
    Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW 2004. Transfer of photosynthesis genes to and from Prochlorococcus viruses. PNAS 101:3011013–18
    [Google Scholar]
  95. 95. 
    Liu L-N. 2016. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes. Biochim. Biophys. Acta Bioenerg. 1857:256–65
    [Google Scholar]
  96. 96. 
    Liu R, Liu Y, Chen Y, Zhan Y, Zeng Q 2019. Cyanobacterial viruses exhibit diurnal rhythms during infection. PNAS 116:2814077–82
    [Google Scholar]
  97. 97. 
    Liu Y, Zhao L, Wang M, Wang Q, Zhang X et al. 2019. Complete genomic sequence of bacteriophage P23: a novel Vibrio phage isolated from the Yellow Sea, China. Virus Genes 55:6834–42
    [Google Scholar]
  98. 98. 
    Lopez CA, Winter SE, Rivera-Chávez F, Xavier MN, Poon V et al. 2012. Phage-mediated acquisition of a Type III secreted effector protein boosts growth of Salmonella by nitrate respiration. mBio 3:3e00143-12
    [Google Scholar]
  99. 99. 
    Ma X, Coleman ML, Waldbauer JR. 2018. Distinct molecular signatures in dissolved organic matter produced by viral lysis of marine cyanobacteria. Environ. Microbiol. 20:83001–11
    [Google Scholar]
  100. 100. 
    Maderbocus R, Fields BL, Hamilton K, Luo S, Tran TH et al. 2017. Crystal structure of a Pseudomonas malonate decarboxylase holoenzyme hetero-tetramer. Nat. Commun. 8:1160
    [Google Scholar]
  101. 101. 
    Mahmoudabadi G, Milo R, Phillips R 2017. Energetic cost of building a virus. PNAS 114:22E4324–33
    [Google Scholar]
  102. 102. 
    Mai-Prochnow A, Hui JGK, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 2015.. ‘ Big things in small packages: the genetics of filamentous phage and effects on fitness of their host. ’. FEMS Microbiol. Rev. 39:4465–87
    [Google Scholar]
  103. 103. 
    Mallory JB, Alfano C, McMacken R. 1990. Host virus interactions in the initiation of bacteriophage λ DNA replication: recruitment of Escherichia coli DnaB helicase by λ P replication protein. J. Biol. Chem. 265:2213297–307
    [Google Scholar]
  104. 104. 
    Mann NH, Clokie MRJ, Millard A, Cook A, Wilson WH et al. 2005. The genome of S-PM2, a “photosynthetic” T4-type bacteriophage that infects marine Synechococcus strains. J. Bacteriol. 187:93188–200
    [Google Scholar]
  105. 105. 
    Mann NH, Cook A, Millard A, Bailey S, Clokie M. 2003. Bacterial photosynthesis genes in a virus. Nature 424:6950741
    [Google Scholar]
  106. 106. 
    Mathews CK. 1993. Enzyme organization in DNA precursor biosynthesis. Prog. Nucleic Acid Res. Mol. Biol. 44:167–203
    [Google Scholar]
  107. 107. 
    Millard A, Clokie MRJ, Shub DA, Mann NH 2004. Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. PNAS 101:3011007–12
    [Google Scholar]
  108. 108. 
    Millard AD, Zwirglmaier K, Downey MJ, Mann NH, Scanlan DJ. 2009. Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: implications for mechanisms of cyanophage evolution. Environ. Microbiol. 11:92370–87
    [Google Scholar]
  109. 109. 
    Miller ES, Heidelberg JF, Eisen JA, Nelson WC, Durkin AS et al. 2003. Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J. Bacteriol. 185:175220–33
    [Google Scholar]
  110. 110. 
    Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. 2003. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67:186–156
    [Google Scholar]
  111. 111. 
    Mojardín L, Salas M. 2016. Global transcriptional analysis of virus-host interactions between phage ϕ29 and Bacillus subtilis. J. Virol. 90:209293–304
    [Google Scholar]
  112. 112. 
    Moreno Switt AI, Orsi RH, den Bakker HC, Vongkamjan K, Altier C, Wiedmann M 2013. Genomic characterization provides new insight into Salmonella phage diversity. BMC Genom 14:481
    [Google Scholar]
  113. 113. 
    Morimoto D, Kimura S, Sako Y, Yoshida T. 2018. Transcriptome analysis of a bloom-forming cyanobacterium Microcystis aeruginosa during Ma-LMM01 phage infection. Front. Microbiol. 9:2
    [Google Scholar]
  114. 114. 
    Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A. 2015. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J 9:51152–65
    [Google Scholar]
  115. 115. 
    Murima P, Zimmermann M, Chopra T, Pojer F, Fonti G et al. 2016. A rheostat mechanism governs the bifurcation of carbon flux in mycobacteria. Nat. Commun. 7:12527
    [Google Scholar]
  116. 116. 
    Nadel O, Rozenberg A, Flores-Uribe J, Larom S, Schwarz R, Béjà O. 2019. An uncultured marine cyanophage encodes an active phycobilisome proteolysis adaptor protein NblA. Environ. Microbiol. Rep. 11:6848–54
    [Google Scholar]
  117. 117. 
    Nechaev S, Severinov K. 1999. Inhibition of Escherichia coli RNA polymerase by bacteriophage T7 gene 2 protein. J. Mol. Biol. 289:815–26
    [Google Scholar]
  118. 118. 
    Nguyen AY, Bricker WP, Zhang H, Weisz DA, Gross ML, Pakrasi HB. 2017. The proteolysis adaptor, NblA, binds to the N-terminus of β-phycocyanin: implications for the mechanism of phycobilisome degradation. Photosynth. Res. 132:195–106
    [Google Scholar]
  119. 119. 
    Ni T, Zeng Q. 2016. Diel infection of cyanobacteria by cyanophages. Front. Mar. Sci. 2:123
    [Google Scholar]
  120. 120. 
    Nikel P, Fuhrer T, Chavarría M, Sánchez-Pascuala A, Sauer U, de Lorenzo V. 2020. Redox stress reshapes carbon fluxes of Pseudomonas putida for cytosolic glucose oxidation and NADPH generation. bioRxiv 2020.06.13.149542. https://doi.org/10.1101/2020.06.13.149542
    [Crossref]
  121. 121. 
    Nilsson E, Li K, Fridlund J, Sulcius S, Bunse C et al. 2019. Genomic and seasonal variations among aquatic phages infecting the Baltic Sea gammaproteobacterium Rheinheimera sp. strain BAL341. Appl. Environ. Microbiol. 85:18e01003-19
    [Google Scholar]
  122. 122. 
    Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R 2014. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLOS Comput. Biol. 10:2e1003483
    [Google Scholar]
  123. 123. 
    Noor E, Cherkaoui S, Sauer U. 2019. Biological insights through omics data integration. Curr. Opin. Syst. Biol. 15:39–47
    [Google Scholar]
  124. 124. 
    Noor E, Flamholz A, Bar-Even A, Davidi D, Milo R, Liebermeister W 2016. The protein cost of metabolic fluxes: prediction from enzymatic rate laws and cost minimization. PLOS Comput. Biol. 12:11e1005167
    [Google Scholar]
  125. 125. 
    Noor E, Flamholz A, Liebermeister W, Bar-Even A, Milo R 2013. A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects. FEBS Lett 587:2772–77
    [Google Scholar]
  126. 126. 
    Obeng N, Pratama AA, van Elsas JD. 2016. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol 24:6440–49
    [Google Scholar]
  127. 127. 
    Olson DG, Hörl M, Fuhrer T, Cui J, Zhou J et al. 2017. Glycolysis without pyruvate kinase in Clostridium thermocellum. Metab. Eng. 39:169–80
    [Google Scholar]
  128. 128. 
    Park JO, Rubin SA, Xu YF, Amador-Noguez D, Fan J et al. 2016. Metabolite concentrations, fluxes, and free energies imply efficient enzyme usage. Nat. Chem. Biol. 12:7482–89
    [Google Scholar]
  129. 129. 
    Park JO, Tanner LB, Wei MH, Khana DB, Jacobson TB et al. 2019. Near-equilibrium glycolysis supports metabolic homeostasis and energy yield. Nat. Chem. Biol. 15:1001–8
    [Google Scholar]
  130. 130. 
    Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C et al. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113:2171–82
    [Google Scholar]
  131. 131. 
    Peters DL, McCutcheon JG, Stothard P, Dennis JJ. 2019. Novel Stenotrophomonas maltophilia temperate phage DLP4 is capable of lysogenic conversion. BMC Genom 20:1300
    [Google Scholar]
  132. 132. 
    Pisithkul T, Schroeder JW, Trujillo EA, Yeesin P, Stevenson DM et al. 2019. Metabolic remodeling during biofilm development of Bacillus subtilis. mBio 10:3e00623-19
    [Google Scholar]
  133. 133. 
    Plunkett G III, Rose DJ, Durfee TJ, Blattner FR. 1999. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product?. J. Bacteriol. 181:61767–78
    [Google Scholar]
  134. 134. 
    Pommier J, Mandrand MA, Holt SE, Boxer DH, Giordano G. 1992. A second phenazine methosulphate-linked formate dehydrogenase isoenzyme in Escherichia coli. Biochem. Biophys. Acta Biomembr. 1107:2305–13
    [Google Scholar]
  135. 135. 
    Puxty RJ, Evans DJ, Millard AD, Scanlan DJ. 2018. Energy limitation of cyanophage development: implications for marine carbon cycling. ISME J 12:1273–86
    [Google Scholar]
  136. 136. 
    Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. 2015. Shedding new light on viral photosynthesis. Photosynth. Res. 126:171–97
    [Google Scholar]
  137. 137. 
    Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. 2016. Viruses inhibit CO2 fixation in the most abundant phototrophs on Earth. Curr. Biol. 26:121585–89
    [Google Scholar]
  138. 138. 
    Reyes A, Haynes M, Hanson N, Angly FE, Heath AC et al. 2010. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:7304334–38
    [Google Scholar]
  139. 139. 
    Rihtman B, Bowman-Grahl S, Millard A, Corrigan RM, Clokie MRJ, Scanlan DJ. 2019. Cyanophage MazG is a pyrophosphohydrolase but unable to hydrolyse magic spot nucleotides. Environ. Microbiol. Rep. 11:3448–55
    [Google Scholar]
  140. 140. 
    Rohwer F, Segall A, Steward G, Seguritan V, Breitbart M et al. 2000. The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol. Oceanogr. 45:2408–18
    [Google Scholar]
  141. 141. 
    Rokka A, Suorsa M, Saleem A, Battchikova N, Aro EM. 2005. Synthesis and assembly of thylakoid protein complexes: multiple assembly steps of photosystem II. Biochem. J. 388:159–68
    [Google Scholar]
  142. 142. 
    Rosenwasser S, Ziv C, van Creveld SG, Vardi A. 2016. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol 24:10821–32
    [Google Scholar]
  143. 143. 
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB et al. 2016. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537:689–93
    [Google Scholar]
  144. 144. 
    Roux S, Enault F, Ravet V, Pereira O, Sullivan MB. 2015. Genomic characteristics and environmental distributions of the uncultivated Far-T4 phages. Front. Microbiol. 6:199
    [Google Scholar]
  145. 145. 
    Santos-Beneit F. 2015. The Pho regulon: a huge regulatory network in bacteria. Front. Microbiol. 6:404
    [Google Scholar]
  146. 146. 
    Sawa N, Tatsuke T, Ogawa A, Hirokawa Y, Osanai T, Hanai T. 2019. Modification of carbon metabolism in Synechococcus elongatus PCC 7942 by cyanophage-derived sigma factors for bioproduction improvement. J. Biosci. Bioeng. 127:2256–64
    [Google Scholar]
  147. 147. 
    Schuch R, Fischetti VA. 2009. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLOS ONE 4:8e6532
    [Google Scholar]
  148. 148. 
    Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F et al. 2009. Photosystem I gene cassettes are present in marine virus genomes. Nature 461:7261258–62
    [Google Scholar]
  149. 149. 
    Sharon I, Battchikova N, Aro E-M, Giglione C, Meinnel T et al. 2011. Comparative metagenomics of microbial traits within oceanic viral communities. ISME J 5:71178–90
    [Google Scholar]
  150. 150. 
    Sharon I, Tzahor S, Williamson S, Shmoish M, Man-Aharonovich D et al. 2007. Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J 1:6492–501
    [Google Scholar]
  151. 151. 
    Shimakawa G, Hasunuma T, Kondo A, Matsuda M, Makino A, Miyake C. 2014. Respiration accumulates Calvin cycle intermediates for the rapid start of photosynthesis in Synechocystis sp. PCC 6803. Biosci. Biotechnol. Biochem. 78:121997–2007
    [Google Scholar]
  152. 152. 
    Shinde S, Zhang X, Singapuri SP, Kalra I, Liu X et al. 2020. Glycogen metabolism supports photosynthesis start through the oxidative pentose phosphate pathway in cyanobacteria. Plant Physiol 182:1507–17
    [Google Scholar]
  153. 153. 
    Smith MCM, Burns RN, Wilson SE, Gregory MA. 1999. The complete genome sequence of the Streptomyces temperate phage ΦC31: evolutionary relationships to other viruses. Nucleic Acids Res 27:102145–55
    [Google Scholar]
  154. 154. 
    Stahl DA, de la Torre JR. 2012. Physiology and diversity of ammonia-oxidizing archaea. Annu. Rev. Microbiol. 66:83–101
    [Google Scholar]
  155. 155. 
    Stent GS, Maaløe O. 1953. Radioactive phosphorus tracer studies on the reproduction of T4 bacteriophage. Biochim. Biophys. Acta 10:55–69
    [Google Scholar]
  156. 156. 
    Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. 2005. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLOS Biol 3:5e144
    [Google Scholar]
  157. 157. 
    Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L et al. 2010. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12:113035–56
    [Google Scholar]
  158. 158. 
    Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. 2006. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLOS Biol 4:81344–57
    [Google Scholar]
  159. 159. 
    Summer EJ, Gill JJ, Upton C, Gonzalez CF, Young R 2007. Role of phages in the pathogenesis of Burkholderia or “Where are the toxin genes in Burkholderia phages?. Curr. Opin. Microbiol. 10:4410–17
    [Google Scholar]
  160. 160. 
    Tetu SG, Brahamsha B, Johnson DA, Tai V, Phillippy K et al. 2009. Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J 3:7835–49
    [Google Scholar]
  161. 161. 
    Theis J, Schroda M. 2016. Revisiting the photosystem II repair cycle. Plant Signal. Behav. 11:9e1218587
    [Google Scholar]
  162. 162. 
    Thompson LR, Zeng Q, Chisholm SW. 2016. Gene expression patterns during light and dark infection of Prochlorococcus by cyanophage. PLOS ONE 11:10e0165375
    [Google Scholar]
  163. 163. 
    Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU et al. 2011. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. PNAS 108:39E757–64
    [Google Scholar]
  164. 164. 
    Tian C, Zhao J, Zhang Z, Chen X, Wei X et al. 2019. Identification and molecular characterization of Serratia marcescens phages vB_SmaA_2050H1 and vB_SmaM_2050HW. Arch. Virol. 164:41085–94
    [Google Scholar]
  165. 165. 
    Ting CS, Rocap G, King J, Chisholm SW. 2001. Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity. Microbiology 147:113171–82
    [Google Scholar]
  166. 166. 
    Ting CS, Rocap G, King J, Chisholm SW. 2002. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10:3134–42
    [Google Scholar]
  167. 167. 
    Tolar BB, Herrmann J, Bargar JR, van den Bedem H, Wakatsuki S, Francis CA. 2017. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea. Environ. Microbiol. Rep. 9:5484–91
    [Google Scholar]
  168. 168. 
    Waldbauer JR, Coleman ML, Rizzo AI, Campbell KL, Lotus J, Zhang L 2019. Nitrogen sourcing during viral infection of marine cyanobacteria. PNAS 116:3115590–95
    [Google Scholar]
  169. 169. 
    Waldor MK, Mekalanos JJ. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:52701910–14
    [Google Scholar]
  170. 170. 
    Wang J, Jiang Y, Vincent M, Sun Y, Yu H et al. 2005. Complete genome sequence of bacteriophage T5. Virology 332:145–65
    [Google Scholar]
  171. 171. 
    Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL et al. 2007. Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ. Microbiol. 9:71675–95
    [Google Scholar]
  172. 172. 
    Welkie DG, Rubin BE, Diamond S, Hood RD, Savage DF, Golden SS. 2019. A hard day's night: cyanobacteria in diel cycles. Trends Microbiol 27:3231–42
    [Google Scholar]
  173. 173. 
    Wikner J, Vallino JJ, Steward GF, Smith DC, Azam F. 1993. Nucleic acids from the host bacterium as a major source of nucleotides for three marine bacteriophages. FEMS Microbiol. Ecol. 12:4237–48
    [Google Scholar]
  174. 174. 
    Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M. 2017. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4:20119
    [Google Scholar]
  175. 175. 
    Williamson SJ, Rusch DB, Yooseph S, Halpern AL, Heidelberg KB et al. 2008. The Sorcerer II Global Ocean Sampling Expedition: metagenomic characterization of viruses within aquatic microbial samples. PLOS ONE 3:1e1456
    [Google Scholar]
  176. 176. 
    Wilson WH, Carr NG, Mann NH. 1996. The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803. J. Phycol. 32:506–16
    [Google Scholar]
  177. 177. 
    Xiong W, Lo J, Chou KJ, Wu C, Magnusson L et al. 2018. Isotope-assisted metabolite analysis sheds light on central carbon metabolism of a model cellulolytic bacterium Clostridium thermocellum. Front. Microbiol. 9:1947
    [Google Scholar]
  178. 178. 
    Xu J, Martien J, Gilbertson C, Ma J, Amador-Noguez D, Park JO. 2020. Metabolic flux analysis and fluxomics-driven determination of reaction free energy using multiple isotopes. Curr. Opin. Biotechnol. 64:151–60
    [Google Scholar]
  179. 179. 
    Yamada T, Satoh S, Ishikawa H, Fujiwara A, Kawasaki T et al. 2010. A jumbo phage infecting the phytopathogen Ralstonia solanacearum defines a new lineage of the Myoviridae family. Virology 398:1135–47
    [Google Scholar]
  180. 180. 
    Yoshida T, Nagasaki K, Takashima Y, Shirai Y, Tomaru Y et al. 2008. Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J. Bacteriol. 190:51762–72
    [Google Scholar]
  181. 181. 
    Yoshida-Takashima Y, Yoshida M, Ogata H, Nagasaki K, Hiroishi S, Yoshida T. 2012. Cyanophage infection in the bloom-forming cyanobacteria Microcystis aeruginosa in surface freshwater. Microbes Environ 27:4350–55
    [Google Scholar]
  182. 182. 
    You L, Suthers PF, Yin J. 2002. Effects of Escherichia coli physiology on growth of phage T7 in vivo and in silico. J. Bacteriol. 184:71888–94
    [Google Scholar]
  183. 183. 
    Yuan Y, Xi H, Dai J, Zhong Y, Lu S et al. 2020. The characteristics and genome analysis of the novel Y. pestis phage JC221. Virus Res 283:197982
    [Google Scholar]
  184. 184. 
    Zeng Q, Chisholm SW. 2012. Marine viruses exploit their host's two-component regulatory system in response to resource limitation. Curr. Biol. 22:2124–28
    [Google Scholar]
  185. 185. 
    Zhang Y, Maley F, Maley GF, Duncan G, Dunigan DD, Van Etten JL. 2007. Chloroviruses encode a bifunctional dCMP-dCTP deaminase that produces two key intermediates in dTTP formation. J. Virol. 81:147662–71
    [Google Scholar]
  186. 186. 
    Zhao X, Shen M, Jiang X, Shen W, Zhong Q et al. 2017. Transcriptomic and metabolomics profiling of phage-host interactions between phage PaP1 and Pseudomonas aeruginosa. Front. Microbiol. 8:548
    [Google Scholar]
  187. 187. 
    Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ et al. 2020. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18:21–34
    [Google Scholar]
  188. 188. 
    Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C et al. 2009. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLOS ONE 4:4e5135
    [Google Scholar]
/content/journals/10.1146/annurev-micro-060621-043448
Loading
/content/journals/10.1146/annurev-micro-060621-043448
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error