1932

Abstract

The stringent response to nutrient deprivation is a stress response found throughout the bacterial domain of life. Although first described in proteobacteria for matching ribosome synthesis to the cell's translation status and for preventing formation of defective ribosomal particles, the response is actually much broader, regulating many hundreds of genes—some positively, some negatively. Utilization of the signaling molecules ppGpp and pppGpp for this purpose is ubiquitous in bacterial evolution, although the mechanisms employed vary. In proteobacteria, the signaling molecules typically bind to two sites on RNA polymerase, one at the interface of the β′ and ω subunits and one at the interface of the β′ secondary channel and the transcription factor DksA. The β′ secondary channel is targeted by other transcription regulators as well. Although studies on the transcriptional outputs of the stringent response date back at least 50 years, the mechanisms responsible are only now coming into focus.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062444
2018-09-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062444.html?itemId=/content/journals/10.1146/annurev-micro-090817-062444&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Aberg A, Fernández-Vázquez J, Cabrer-Panes JD, Sánchez A, Balsalobre C 2009. Similar and divergent effects of ppGpp and DksA deficiencies on transcription in Escherichia coli. J. . Bacteriol 191:3226–36
    [Google Scholar]
  2. 2.  Aberg A, Shingler V, Balsalobre C 2008. Regulation of the fimB promoter: a case of differential regulation by ppGpp and DksA in vivo. Mol. Microbiol. 67:1223–41
    [Google Scholar]
  3. 3.  Arenz S, Abdelshahid M, Sohmen D, Payoe R, Starosta AL et al. 2016. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis. Nucleic Acids Res 44:6471–81
    [Google Scholar]
  4. 4.  Artsimovitch I, Patlan V, Sekine S, Vassylyeva MN, Hosaka T et al. 2004. Structural basis for transcription regulation by alarmone ppGpp. Cell 117:299–310
    [Google Scholar]
  5. 5.  Atkinson GC, Tenson T, Hauryliuk V 2011. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLOS ONE 6:e23479
    [Google Scholar]
  6. 6.  Barker MM, Gaal T, Gourse RL 2001. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. J. Mol. Biol. 305:689–702
    [Google Scholar]
  7. 7.  Barker MM, Gaal T, Josaitis CA, Gourse RL 2001. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J. Mol. Biol. 305:673–88
    [Google Scholar]
  8. 8.  Barker MM, Gourse RL 2001. Regulation of rRNA transcription correlates with nucleoside triphosphate sensing. J. Bacteriol. 183:6315–23
    [Google Scholar]
  9. 9.  Bartlett MS, Gaal T, Ross W, Gourse RL 1998. RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn P1 promoters. J. Mol. Biol. 279:331–45
    [Google Scholar]
  10. 10.  Battesti A, Bouveret E 2006. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol. Microbiol. 62:1048–63
    [Google Scholar]
  11. 11.  Battesti A, Bouveret E 2009. Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction. J. Bacteriol. 191:616–24
    [Google Scholar]
  12. 12.  Bittner AN, Kriel A, Wang JD 2014. Lowering GTP level increases survival of amino acid starvation but slows growth rate for Bacillus subtilis cells lacking (p)ppGpp. J Bacteriol 196:2067–76
    [Google Scholar]
  13. 13.  Blaby-Haas CE, Furman R, Rodionov DA, Artsimovitch I, de Crécy-Lagard V 2011. Role of a Zn-independent DksA in Zn homeostasis and stringent response. Mol. Microbiol. 79:700–15
    [Google Scholar]
  14. 14.  Blankschien MD, Lee JH, Grace ED, Lennon CW, Halliday JA et al. 2009. Super DksAs: substitutions in DksA enhancing its effects on transcription initiation. EMBO J 28:1720–31
    [Google Scholar]
  15. 15.  Blankschien MD, Potrykus K, Grace E, Choudhary A, Vinella D et al. 2009. TraR, a homolog of a RNAP secondary channel interactor, modulates transcription. PLOS Genet 5:1e1000345
    [Google Scholar]
  16. 16.  Borek EK, Rockenbach J, Ryan A 1956. Studies on a mutant of Escherichia coli with unbalanced ribonucleic acid synthesis. J. Bacteriol. 71:318–23
    [Google Scholar]
  17. 17.  Borukhov S, Sagitov V, Goldfarb A 1993. Transcript cleavage factors from E. coli. . Cell 72:459–66
    [Google Scholar]
  18. 18.  Bougdour A, Wickner S, Gottesman S 2006. Modulating RssB activity: IraP, a novel regulator of σS stability in Escherichia coli. . Genes Dev 20:884–97
    [Google Scholar]
  19. 19.  Bremer H, Dennis P 2008. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus https://doi.org/10.1128/ecosal.5.2.3
    [Crossref] [Google Scholar]
  20. 20.  Brown A, Fernandez IS, Gordiyenko Y, Ramakrishnan V 2016. Ribosome dependent activation of stringent control. Nature 534:277–80
    [Google Scholar]
  21. 21.  Brown L, Gentry D, Elliott T, Cashel M 2002. DksA affects ppGpp induction of RpoS at a translational level. J. Bacteriol. 184:4455–65
    [Google Scholar]
  22. 22.  Burgos HL, O'Connor K, Sanchez-Vazquez P, Gourse RL 2017. Roles of transcriptional and translational control mechanisms in regulation of ribosomal protein synthesis in Escherichia coli. J. . Bacteriol 199:e00407–17
    [Google Scholar]
  23. 23.  Cashel M, Gallant J 1969. Two compounds implicated in the function of the RC gene of Escherichia coli. . Nature 221:838–41
    [Google Scholar]
  24. 24.  Cashel M, Gentry D, Hernandez VJ, Vinella D 1996. The stringent response. In Escherichia coli and Salmonella: Cellular and Molecular Biology, Vol. 1 FC Neidhardt 1458–96 Washington, DC: ASM Press
    [Google Scholar]
  25. 25.  Chandrangsu P, Lemke JJ, Gourse RL 2011. The dksA promoter is negatively feedback regulated by DksA and ppGpp. Mol. Microbiol. 80:1337–48
    [Google Scholar]
  26. 26.  Chandrangsu P, Wang L, Choi S-H, Gourse RL 2012. Suppression of a dnaKJ deletion by multicopy dksA results from non-feedback regulated transcripts that originate upstream of the major dksA promoter. J. Bacteriol. 194:1437–46
    [Google Scholar]
  27. 27.  Charity JC, Blalock LT, Costante-Hamm MM, Kasper DL, Dove SL 2009. Small molecule control of virulence gene expression in Francisella tularensis. . PLOS Pathog 5:10e1000641
    [Google Scholar]
  28. 28.  Chatterji D, Fujita N, Ishihama A 1998. The mediator for stringent control, ppGpp, binds to the beta-subunit of Escherichia coli RNA polymerase. Genes Cells 3:279–87
    [Google Scholar]
  29. 29.  Costanzo A, Nicoloff H, Barchinger S, Banta A, Gourse RL, Ades SE 2008. Mechanism of regulation of the extracytoplasmic stress factor σE in Escherichia coli by DksA and the alarmone ppGpp. Mol. Microbiol. 67:619–32
    [Google Scholar]
  30. 30.  Cuthbert BJ, Ross W, Rohlfing AE, Dove SL, Gourse RL et al. 2017. Dissection of the molecular circuitry controlling virulence in Francisella tularensis. . Genes Dev 31:1549–60
    [Google Scholar]
  31. 31.  Dalebroux ZD, Swanson MS 2012. ppGpp: magic beyond RNA polymerase. Nat. Rev. Microbiol. 10:203–12
    [Google Scholar]
  32. 32.  Darst SA, Stebbins CE, Borukhov S, Orlova M, Feng G et al. 1994. Crystallization of GreA, a transcript cleavage factor from Escherichia coli.J. Mol. . Biol 242:4582–85
    [Google Scholar]
  33. 33.  Durfee T, Hansen AM, Zhi H, Blattner FR, Jin DJ 2008. Transcription profiling of the stringent response in Escherichia coli. J. . Bacteriol 190:1084–96
    [Google Scholar]
  34. 34.  English BP, Hauryliuk V, Sanamrad A, Tankov S, Dekker NH, Elf J 2011. Single-molecule investigations of the stringent response machinery in living bacterial cells. PNAS 108:E365–73
    [Google Scholar]
  35. 35.  Feklistov A, Barinova N, Sevostyanova A, Heyduk E, Bass I et al. 2006. A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme. Mol. Cell 23:97–107
    [Google Scholar]
  36. 36.  Feng GH, Lee DN, Wang D, Chan CL, Landick R 1994. GreA-induced transcript cleavage in transcription complexes containing Escherichia coli RNA polymerase is controlled by multiple factors, including nascent transcript location and structure. J. Biol. Chem. 269:22282–94
    [Google Scholar]
  37. 37.  Fiil N, Friesen JD 1968. Isolation of “relaxed” mutants of Escherichia coli. . J. Bacteriol 95:729–31
    [Google Scholar]
  38. 38.  Fung DK, Anderson BW, Tse JL, Wang JD 2017. Nucleotide second messengers: (p)ppGpp and cyclic dinucleotides. Bacillus: Cellular and Molecular Biology PL Graumann, pp. 439–66. Poole, UK: Caister Acad. Press. 3rd ed.
    [Google Scholar]
  39. 39.  Furman R, Biswas T, Danhart EM, Foster MP, Tsodikov OV, Artsimovitch I 2013. DksA2, a zinc-independent structural analog of the transcription factor DksA. FEBS Lett 587:614–19
    [Google Scholar]
  40. 40.  Furman R, Sevostyanova A, Artsimovitch I 2012. Transcription initiation factor DksA has diverse effects on RNA chain elongation. Nucleic Acids Res 40:83392–402
    [Google Scholar]
  41. 41.  Furman R, Tsodikov OV, Wolf YI, Artsimovitch I 2013. An insertion in the catalytic trigger loop gates the secondary channel of RNA polymerase. J. Mol. Biol. 425:82–93
    [Google Scholar]
  42. 42.  Gaal T, Gourse RL 1990. Guanosine 3′-diphosphate 5′-diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli. . PNAS 87:5533–37
    [Google Scholar]
  43. 43.  Gaca AO, Kajfasz JK, Miller JH, Liu K, Wang JD et al. 2013. Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response. mBio 4:5e00646–13
    [Google Scholar]
  44. 44.  Gallant JA 1979. Stringent control in E. coli.Annu.Rev. . Genet 13:393–415
    [Google Scholar]
  45. 45.  Gentry D, Xiao H, Burgess R, Cashel M 1991. The ω subunit of Escherichia coli K-12 RNA polymerase is not required for stringent RNA control in vivo. J. Bacteriol. 173:3901–3
    [Google Scholar]
  46. 46.  Girard ME, Gopalkrishnan S, Grace ED, Halliday JA, Gourse RL, Herman C 2018. DksA and ppGpp regulate the σS stress response by activating promoters for the small RNA DsrA and the anti-adapter protein IraP. J. Bacteriol. 200:e00463–17
    [Google Scholar]
  47. 47.  Gopalkrishnan S, Nicoloff H, Ades SE 2014. Co-ordinated regulation of the extracytoplasmic stress factor, sigmaE, with other Escherichia coli sigma factors by (p)ppGpp and DksA may be achieved by specific regulation of individual holoenzymes. Mol. Microbiol. 93:479–93
    [Google Scholar]
  48. 48.  Gopalkrishnan S, Ross W, Chen AY, Gourse RL 2017. TraR directly regulates transcription initiation by mimicking the combined effects of the global regulators DksA and ppGpp. PNAS 114:E5539–48
    [Google Scholar]
  49. 49.  Grace ED, Gopalkrishnan S, Girard ME, Blankschien MS, Ross W et al. 2015. Activation of the σE-dependent stress pathway by conjugative TraR may anticipate conjugational stress. J. Bacteriol. 197:924–31
    [Google Scholar]
  50. 50.  Gummesson B, Lovmar M, Nyström T 2013. A proximal promoter element required for positive transcriptional control by guanosine tetraphosphate and DksA protein during the stringent response. J. Biol. Chem. 288:21055–64
    [Google Scholar]
  51. 51.  Harms A, Fino C, Sørensen MA, Semsey S, Gerdes K 2017. Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. mBio 8:e01964–17
    [Google Scholar]
  52. 52.  Haseltine WA, Block R 1973. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. PNAS 70:51564–68
    [Google Scholar]
  53. 53.  Haugen SP, Berkmen MB, Ross W, Gaal T, Ward C, Gourse RL 2006. rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell 125:1069–82
    [Google Scholar]
  54. 54.  Haugen SP, Ross W, Gourse RL 2008. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat. Rev. Microbiol. 6:507–19
    [Google Scholar]
  55. 55.  Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K 2015. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13:298–309
    [Google Scholar]
  56. 56.  Hesketh A, Vergnano M, Wan C, Oliver SG 2017. Bacterial signaling nucleotides inhibit yeast cell growth by impacting mitochondrial and other specifically eukaryotic functions. mBio 8:e01047–17
    [Google Scholar]
  57. 57.  Hirvonen CA, Ross W, Wozniak CE, Marasco E, Anthony JR et al. 2001. Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli. J. . Bacteriol 183:6305–14
    [Google Scholar]
  58. 58.  Hogg T, Mechold U, Malke H, Cashel M, Hilgenfeld R 2004. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell 117:157–68
    [Google Scholar]
  59. 59.  Hood RD, Higgins SA, Flamholz A, Nichols RJ, Savage DF 2016. The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus. . PNAS 113:E4867–76
    [Google Scholar]
  60. 60.  Irving SE, Corrigan RM 2018. Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. Microbiology 164:268–76
    [Google Scholar]
  61. 61.  Jiang M, Datta K, Walker A, Strahler J, Bagamasbad P et al. 2006. The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly. J. Bacteriol. 188:6757–70
    [Google Scholar]
  62. 62.  Kajitani M, Ishihama A 1984. Promoter selectivity of Escherichia coli RNA polymerase: differential stringent control of the multiple promoters from ribosomal RNA and protein operons. J. Biol. Chem. 259:1951–57
    [Google Scholar]
  63. 63.  Kang PJ, Craig EA 1990. Identification and characterization of a new Escherichia coli gene that is a dosage-dependent suppressor of a dnaK deletion mutation. J. Bacteriol. 172:2055–64
    [Google Scholar]
  64. 64.  Kanjee U, Ogata K, Houry WA 2012. Direct binding targets of the stringent response alarmone (p)ppGpp. Mol. Microbiol. 85:1029–43
    [Google Scholar]
  65. 65.  Kasai K, Nishizawa T, Takahashi K, Hosaka T, Aoki H, Ochi K 2006. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium. Thermus thermophilus. J. Bacteriol 188:7111–22
    [Google Scholar]
  66. 66.  Kingston RE, Chamberlin MJ 1981. Pausing and attenuation of in vitro transcription in the rrnB operon of E. coli. . Cell 27:3 Part 2523–31
    [Google Scholar]
  67. 67.  Kingston RE, Nierman WC, Chamberlin MJ 1981. A direct effect of guanosine tetraphosphate on pausing of Escherichia coli RNA polymerase during RNA chain elongation. J. Biol. Chem. 256:2787–97
    [Google Scholar]
  68. 68.  Krasny L, Gourse RL 2004. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J 23:4473–83
    [Google Scholar]
  69. 69.  Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK et al. 2012. Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol. Cell 48:231–41
    [Google Scholar]
  70. 70.  Lamour V, Hogan BP, Erie DA, Darst SA 2006. Crystal structure of Thermus aquaticus Gfh1, a Gre-factor paralog that inhibits rather than stimulates transcript cleavage. J. Mol. Biol. 356:179–88
    [Google Scholar]
  71. 71.  Lane WJ, Darst SA 2010. Molecular evolution of multisubunit RNA polymerases: sequence analysis. J. Mol. Biol. 395:671–85
    [Google Scholar]
  72. 72.  Laptenko O, Kim SS, Lee J, Starodubtseva M, Cava F et al. 2006. pH-dependent conformational switch activates the inhibitor of transcription elongation. EMBO J 25:2131–41
    [Google Scholar]
  73. 73.  Laurie AD, Bernardo LM, Sze CC, Skarfstad E, Szalewska-Palasz A et al. 2003. The role of the alarmone (p)ppGpp in sigma N competition for core RNA polymerase. J. Biol. Chem. 278:1494–503
    [Google Scholar]
  74. 74.  Lee J-H, Lennon CW, Ross W, Gourse RL 2012. Role of the coiled-coil tip of Escherichia coli DksA in promoter control. J. Mol. Biol. 416:503–17
    [Google Scholar]
  75. 75.  Lemke JJ, Durfee T, Gourse RL 2009. DksA and ppGpp directly regulate transcription of the Escherichia coli flagellar cascade. Mol. Microbiol. 74:1368–79
    [Google Scholar]
  76. 76.  Lennon CW, Gaal T, Ross W, Gourse RL 2009. Escherichia coli DksA binds to free RNA polymerase with higher affinity than to RNA polymerase in an open complex. J. Bacteriol. 191:5854–58
    [Google Scholar]
  77. 77.  Lennon CW, Lemmer KC, Irons JL, Sellman MI, Donohue TJ et al. 2014. A protein mechanistically similar to Escherichia coli DksA regulates photosynthetic growth of Rhodobacter sphaeroides. . mBio 5:e01105–14
    [Google Scholar]
  78. 78.  Lennon CW, Ross W, Martin-Tumasz S, Toulokhonov I, Vrentas CE et al. 2012. Direct interactions between the coiled coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation. Genes Dev 26:2634–46
    [Google Scholar]
  79. 79.  Lindahl L, Post L, Nomura M 1976. DNA-dependent in vitro synthesis of rRNA, ribosomal proteins, protein elongation factors, and RNA polymerase subunit alpha: inhibition by ppGpp. Cell 9:439–48
    [Google Scholar]
  80. 80.  Liu K, Bittner AN, Wang JD 2015. Diversity in (p)ppGpp metabolism and effectors. Curr. Opin. Microbiol. 24:72–79
    [Google Scholar]
  81. 81.  Liu K, Myers AR, Pisithkul T, Claas KR, Satyshur KA et al. 2015. Molecular mechanism and evolution of guanylate kinase regulation by (p)ppGpp. Mol. Cell 57:735–49
    [Google Scholar]
  82. 82.  Loveland AB, Bah E, Madireddy R, Zhang Y, Brilot AF et al. 2016. Ribosome·RelA structures reveal the mechanism of stringent response activation. eLife 5:e17029
    [Google Scholar]
  83. 83.  Magnusson LU, Gummesson B, Joksimović P, Farewell A, Nyström T 2007. Identical, independent, and opposing roles of ppGpp and DksA in Escherichia coli. J.. Bacteriol 189:5193–202
    [Google Scholar]
  84. 84.  Mallik P, Paul BJ, Rutherford ST, Gourse RL, Osuna R 2006. DksA is required for growth phase-dependent regulation, growth rate-dependent control, and stringent control of fis expression in Escherichia coli. J. . Bacteriol 188:5775–82
    [Google Scholar]
  85. 85.  Mechold U, Murphy H, Brown L, Cashel M 2002. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J. . Bacteriol 184:2878–88
    [Google Scholar]
  86. 86.  Mechold U, Potrykus K, Murphy H, Murakami KS, Cashel M 2013. Differential regulation by ppGpp versus pppGpp in Escherichia coli. . Nucleic Acids Res 41:6175–89
    [Google Scholar]
  87. 87.  Molodtsov V, Sineva E, Zhang L, Huang X, Cashel M et al. 2018. Allosteric effector ppGpp potentiates the inhibition of transcript initiation by DksA. Mol. Cell 69:828–39.e5
    [Google Scholar]
  88. 88.  Murphy H, Cashel M 2003. Isolation of RNA polymerase suppressors of a (p)ppGpp deficiency. Methods Enzymol 371:596–601
    [Google Scholar]
  89. 89.  Murray HD, Gourse RL 2004. Unique roles of the rrn P2 rRNA promoters in Escherichia coli. Mol. . Microbiol 52:1375–87
    [Google Scholar]
  90. 90.  Murray HD, Schneider DA, Gourse RL 2003. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell 12:125–34
    [Google Scholar]
  91. 91.  Nafissi M, Chau J, Xu J, Johnson RC 2012. Robust translation of the nucleoid protein Fis requires a remote upstream AU element and is enhanced by RNA secondary structure. J. Bacteriol. 194:2458–69
    [Google Scholar]
  92. 92.  Nayak D, Voss M, Windgassen T, Mooney RA, Landick R 2013. Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Mol. Cell 50:882–93
    [Google Scholar]
  93. 93.  Ochi K, Nishizawa T, Inaoka T, Yamada A, Hashimoto K et al. 2012. Heterologous expression of a plant RelA-SpoT homologue results in increased stress tolerance in Saccharomyces cerevisiae by accumulation of the bacterial alarmone ppGpp. Microbiology 158:2213–24
    [Google Scholar]
  94. 94.  Owens JR, Woody AY, Haley BE 1987. Characterization of the guanosine-3′-diphosphate-5′-diphosphate binding site on E. coli RNA polymerase using a photoprobe, 8-azidoguanosine-3′-5′-bisphosphate. Biochem. Biophys. Res. Commun. 142:964–71
    [Google Scholar]
  95. 95.  Parshin A, Shiver AL, Lee J, Ozerova M, Schneidman-Duhovny D et al. 2015. DksA regulates RNA polymerase in Escherichia coli through a network of interactions in the secondary channel that includes Sequence Insertion 1. PNAS 112:e6862-71. Correction. 2016 PNAS 113:E103
    [Google Scholar]
  96. 96.  Paul BJ, Barker MM, Ross W, Schneider DA, Webb C et al. 2004. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118:311–22
    [Google Scholar]
  97. 97.  Paul BJ, Berkmen MB, Gourse RL 2005. DksA potentiates direct activation of amino acid promoters by ppGpp. PNAS 102:7823–28
    [Google Scholar]
  98. 98.  Perederina A, Svetlov V, Vassylyeva MN, Tahirov TH, Yokoyama S et al. 2004. Regulation through the secondary channel–structural framework for ppGpp-DksA synergism during transcription. Cell 118:297–309
    [Google Scholar]
  99. 99.  Potrykus K, Cashel M 2008. (p)ppGpp: still magical?. Annu. Rev. Microbiol. 62:35–51
    [Google Scholar]
  100. 100.  Potrykus K, Murphy H, Philippe N, Cashel M 2011. ppGpp is the major source of growth rate control in E. coli. Environ. . Microbiol 13:563–75
    [Google Scholar]
  101. 101.  Rao L, Ross W, Appleman JA, Gaal T, Leirmo S et al. 1994. Factor independent activation of rrnB P1: an “extended” promoter with an upstream element that dramatically increases promoter strength. J. Mol. Biol. 235:1421–35
    [Google Scholar]
  102. 102.  Repoila F, Majdalani N, Gottesman S 2003. Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol. Microbiol. 48:855–61
    [Google Scholar]
  103. 103.  Riggs DL, Mueller RD, Kwan HS, Artz SW 1986. Promoter domain mediates guanosine tetraphosphate activation of the histidine operon. PNAS 83:9333–37
    [Google Scholar]
  104. 104.  Roelofs KG, Wang J, Sintim HO, Lee VT 2011. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. PNAS 108:15528–33
    [Google Scholar]
  105. 105.  Roghanian M, Zenkin N, Yuzenkova Y 2015. Bacterial global regulators DksA/ppGpp increase fidelity of transcription. Nucleic Acids Res 43:1529–36
    [Google Scholar]
  106. 106.  Ross W, Sanchez-Vazquez P, Chen AY, Lee JH, Burgos HL, Gourse RL 2016. ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response. Mol. Cell 62:811–23
    [Google Scholar]
  107. 107.  Ross W, Vrentas CE, Sanchez-Vazquez P, Gaal T, Gourse RL 2013. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol. Cell 50:420–29
    [Google Scholar]
  108. 108.  Ruff EF, Record MT Jr, Artsimovitch I 2015. Initial events in bacterial transcription initiation. Biomolecules 5:1035–62
    [Google Scholar]
  109. 109.  Rutherford ST, Lemke JJ, Vrentas CE, Gaal T, Ross W, Gourse RL 2007. Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase. J. Mol. Biol. 366:1243–57
    [Google Scholar]
  110. 110.  Rutherford ST, Villers CL, Lee J-H, Ross W, Gourse RL 2009. Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev 23:236–48
    [Google Scholar]
  111. 111.  Sanchez-Vazquez P 2018. Genome-wide effects of ppGpp binding to RNA polymerase on E. coli gene expression PhD Thesis, Univ Wisconsin–Madison:
    [Google Scholar]
  112. 112.  Sands MK, Roberts RB 1952. The effects of a tryptophan-histidine deficiency in a mutant of Escherichia coli. J. . Bacteriol 63:505–11
    [Google Scholar]
  113. 113.  Steinchen W, Bange G 2016. The magic dance of the alarmones (p)ppGpp. Mol. Microbiol. 101:531–44
    [Google Scholar]
  114. 114.  Sugliani M, Abdelkefi H, Ke H, Bouveret E, Robaglia C et al. 2016. An ancient bacterial signaling pathway regulates chloroplast function to influence growth and development in Arabidopsis. . Plant Cell 28:661–79
    [Google Scholar]
  115. 115.  Sun D, Lee G, Lee JH, Kim HY, Rhee HW et al. 2010. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nat. Struct. Mol. Biol. 17:1188–94
    [Google Scholar]
  116. 116.  Syal K, Chatterji D 2015. Differential binding of ppGpp and pppGpp to E. coli RNA polymerase: photo-labeling and mass spectral studies. Genes Cells 20:1006–16
    [Google Scholar]
  117. 117.  Tagami S, Sekine S, Kumarevel T, Hino N, Murayama Y et al. 2010. Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein. Nature 468:978–82
    [Google Scholar]
  118. 118.  Tedin K, Bremer H 1992. Toxic effects of high levels of ppGpp in Escherichia coli are relieved by rpoB mutations. J. Biol. Chem. 267:2337–44
    [Google Scholar]
  119. 119.  Tetone LE, Friedman LJ, Osborne ML, Ravi H, Kyzer S et al. 2017. Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue. PNAS 114:E1081–90
    [Google Scholar]
  120. 120.  Tosa T, Pizer LI 1971. Biochemical bases for the antimetabolite action of l-serine hydroxamate. J. Bacteriol. 106:972–82
    [Google Scholar]
  121. 121.  Toulokhonov II, Shulgina I, Hernandez VJ 2001. Binding of the transcription effector ppGpp to Escherichia coli RNA polymerase is allosteric, modular, and occurs near the N terminus of the beta′-subunit. J. Biol. Chem. 276:1220–25
    [Google Scholar]
  122. 122.  Trautinger BW, Lloyd RG 2002. Modulation of DNA repair by mutations flanking the DNA channel through RNA polymerase. EMBO J 21:6944–53
    [Google Scholar]
  123. 123.  Travers AA 1980. Promoter sequence for stringent control of bacterial ribonucleic acid synthesis. J. Bacteriol. 141:973–76
    [Google Scholar]
  124. 124.  Traxler MF, Summers 1 SM, Nguyen HT, Zacharia VM, Hightower GA et al. 2008. The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli.Mol. . Microbiol 68:1128–48
    [Google Scholar]
  125. 125.  Vogel U, Jensen KF 1994. Effects of guanosine 3′,5′-bisdiphosphate (ppGpp) on rate of transcription elongation in isoleucine-starved Escherichia coli. J. Biol. . Chem 269:16236–41
    [Google Scholar]
  126. 126.  Vogel U, Jensen KF 1997. NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J. Biol. Chem. 272:12265–71
    [Google Scholar]
  127. 127.  Vrentas CE, Gaal T, Berkmen MB, Rutherford ST, Haugen SP et al. 2008. Still looking for the magic spot: The crystallographically-defined binding site for ppGpp on RNA polymerase is unlikely to be responsible for rRNA transcription regulation. J. Mol. Biol. 377:551–64
    [Google Scholar]
  128. 128.  Vrentas CE, Gaal T, Ross W, Ebright RH, Gourse RL 2005. Response of RNA polymerase to ppGpp: requirement for omega subunit and relief of this requirement by DksA. Genes Dev 19:2378–87
    [Google Scholar]
  129. 129.  Wang JD, Sanders GM, Grossman AD 2007. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128:865–75
    [Google Scholar]
  130. 130.  Winther KS, Roghanian M, Gerdes K 2018. Activation of the stringent response by loading of RelA-tRNA complexes at the ribosomal A-site. Mol. Cell 70:95–105
    [Google Scholar]
  131. 131.  Wippel K, Long SR 2016. Contributions of Sinorhizobium meliloti transcriptional regulator DksA to bacterial growth and efficient symbiosis with Medicago sativa. J.. Bacteriol 198:1374–83
    [Google Scholar]
  132. 132.  Wout P, Pu K, Sullivan SM, Reese V, Zhou S et al. 2004. The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. J. Bacteriol. 186:5249–57
    [Google Scholar]
  133. 133.  Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M 1991. Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266:5980–90
    [Google Scholar]
  134. 134.  Zenkin N, Yuzenkova Y 2015. New insights into the functions of transcription factors that bind the RNA polymerase secondary channel. Biomolecules 5:1195–209
    [Google Scholar]
  135. 135.  Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX et al. 2012. Structural basis of transcription initiation. Science 338:1076–80
    [Google Scholar]
  136. 136.  Zhang Y, Mooney RA, Grass JA, Sivaramakrishnan P, Herman C et al. 2014. DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest. Mol. Cell 53:766–78
    [Google Scholar]
  137. 137.  Zhang Y, Zbornikova E, Rejman D, Gerdes K 2018. Novel (p)ppGpp binding and metabolizing proteins of Escherichia coli.mBio. 9e02188–17
  138. 138.  Zuo Y, Wang Y, Steitz TA 2013. The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol. Cell 50:430–36
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062444
Loading
/content/journals/10.1146/annurev-micro-090817-062444
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error