1932

Abstract

The first report of -acting RNA-based regulation in bacterial cells dates back to 1984. Subsequent studies in diverse bacteria unraveled shared properties of -acting small regulatory RNAs, forming a clear definition of these molecules. These shared characteristics have been used extensively to identify new small RNAs (sRNAs) and their interactomes. Recently however, emerging technologies able to resolve RNA-RNA interactions have identified new types of regulatory RNAs. In this review, we present a broader definition of -acting sRNA regulators and discuss their newly discovered intrinsic characteristics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062607
2018-09-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062607.html?itemId=/content/journals/10.1146/annurev-micro-090817-062607&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Acuña LG, Barros MJ, Peñaloza D, Rodas PI, Paredes-Sabja D et al. 2016. A feed-forward loop between SroC and MgrR small RNAs modulates the expression of eptB and the susceptibility to polymyxin B in Salmonella Typhimurium. Microbiology 162:111996–2004
    [Google Scholar]
  2. 2.  Artsimovitch I 2018. Rebuilding the bridge between transcription and translation. Mol. Microbiol. 108:467–72
    [Google Scholar]
  3. 3.  Babitzke P, Romeo T 2007. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr. Opin. Microbiol. 10:2156–63
    [Google Scholar]
  4. 4.  Balbontín R, Fiorini F, Figueroa-Bossi N, Casadesús J, Bossi L 2010. Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA in Salmonella enterica. Mol. . Microbiol 78:2380–94
    [Google Scholar]
  5. 5.  Bandyra KJ, Said N, Pfeiffer V, Górna MW, Vogel J, Luisi BF 2012. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol. Cell 47:6943–53
    [Google Scholar]
  6. 6.  Beaume M, Hernandez D, Farinelli L, Deluen C, Linder P et al. 2010. Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLOS ONE 5:5e10725
    [Google Scholar]
  7. 7.  Bidnenko E, Bidnenko V, Grylak-Mielnicka A, Bardowski J 2016. Transcription termination factor Rho: a hub linking diverse physiological processes in bacteria. Microbiology 162:3433–47
    [Google Scholar]
  8. 8.  Bilusic I, Popitsch N, Rescheneder P, Schroeder R, Lybecker M 2014. Revisiting the coding potential of the E. coli genome through Hfq co-immunoprecipitation. RNA Biol 11:5641–54
    [Google Scholar]
  9. 9.  Bohn C, Rigoulay C, Bouloc P 2007. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. . BMC Microbiol 7:10
    [Google Scholar]
  10. 10.  Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N et al. 2007. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21:111353–66
    [Google Scholar]
  11. 11.  Bossi L, Figueroa-Bossi N 2016. Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Nat. Rev. Microbiol. 14:12775–84
    [Google Scholar]
  12. 12.  Bossi L, Schwartz A, Guillemardet B, Boudvillain M, Figueroa-Bossi N 2012. A role for Rho-dependent polarity in gene regulation by a noncoding small RNA. Genes Dev 26:161864–73
    [Google Scholar]
  13. 13.  Bouvier M, Sharma CM, Mika F, Nierhaus KH, Vogel J 2008. Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol. Cell 32:6827–37
    [Google Scholar]
  14. 14.  Brennan RG, Link TM 2007. Hfq structure, function and ligand binding. Curr. Opin. Microbiol. 10:2125–33
    [Google Scholar]
  15. 15.  Bronesky D, Wu Z, Marzi S, Walter P, Geissmann T et al. 2016. Staphylococcus aureus RNAIII and its regulon link quorum sensing, stress responses, metabolic adaptation, and regulation of virulence gene expression. Annu. Rev. Microbiol. 70:1299–316
    [Google Scholar]
  16. 16.  Buskila AA, Kannaiah S, Amster-Choder O 2014. RNA localization in bacteria. RNA Biol 11:81051–60
    [Google Scholar]
  17. 17.  Chao Y, Papenfort K, Reinhardt R, Sharma CM, Vogel J 2012. An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J 31229:4005–19
    [Google Scholar]
  18. 18.  Chao Y, Vogel J 2016. A 3′ UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol. Cell 61:352–63
    [Google Scholar]
  19. 19.  Chen J, Gottesman S 2017. Hfq links translation repression to stress-induced mutagenesis in E. coli. . Genes Dev 31:131382–95
    [Google Scholar]
  20. 20.  Cheung GYC, Villaruz AE, Joo H-S, Duong AC, Yeh AJ et al. 2014. Genome-wide analysis of the regulatory function mediated by the small regulatory psm-mec RNA of methicillin-resistant Staphylococcus aureus. Int. J. Med. . Microbiol 304:5–6637–44
    [Google Scholar]
  21. 21.  Davis BM, Waldor MK 2007. RNase E-dependent processing stabilizes MicX, a Vibrio cholerae sRNA. Mol. Microbiol. 65:2373–85
    [Google Scholar]
  22. 22.  de Smit MH, van Duin J 1990. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. PNAS 87:197668–72
    [Google Scholar]
  23. 23.  Diestra E, Cayrol B, Arluison V, Risco C, Carrascosa J 2009. Cellular electron microscopy imaging reveals the localization of the Hfq protein close to the bacterial membrane. PLOS ONE 4:12e8301
    [Google Scholar]
  24. 24.  Fei J, Singh D, Zhang Q, Park S, Balasubramanian D et al. 2015. Determination of in vivo target search kinetics of regulatory noncoding RNA. Science 347:62281371–74
    [Google Scholar]
  25. 25.  Figueroa-Bossi N, Valentini M, Malleret L, Fiorini F, Bossi L 2009. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes Dev 23:172004–15
    [Google Scholar]
  26. 26.  Friedman RC, Kalkhof S, Doppelt-Azeroual O, Mueller SA, Chovancová M et al. 2017. Common and phylogenetically widespread coding for peptides by bacterial small RNAs. BMC Genom 18:1553
    [Google Scholar]
  27. 27.  Fröhlich KS, Papenfort K, Berger AA, Vogel J 2012. A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD. Nucleic Acids Res 40:83623–40
    [Google Scholar]
  28. 28.  Fröhlich KS, Papenfort K, Fekete A, Vogel J 2013. A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO J 32:222963–79
    [Google Scholar]
  29. 29.  Gebetsberger J, Zywicki M, Künzi A, Polacek N 2012. tRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. . Archaea 2012:260909
    [Google Scholar]
  30. 30.  Geisinger E, Adhikari RP, Jin R, Ross HF, Novick RP 2006. Inhibition of rot translation by RNAIII, a key feature of agr function. Mol. Microbiol. 61:41038–48
    [Google Scholar]
  31. 31.  Ghosal A, Upadhyaya BB, Fritz JV, Heintz-Buschart A, Desai MS et al. 2015. The extracellular RNA complement of Escherichia coli. . MicrobiologyOpen 4:2252–66
    [Google Scholar]
  32. 32.  Gimpel M, Brantl S 2017. Dual-function small regulatory RNAs in bacteria. Mol. Microbiol. 103:3387–97
    [Google Scholar]
  33. 33.  Gorski SA, Vogel J, Doudna JA 2017. RNA-based recognition and targeting: sowing the seeds of specificity. Nat. Rev. Mol. Cell Biol. 18:4215–28
    [Google Scholar]
  34. 34.  Gottesman S, Storz G 2011. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb. Perspect. . Biol 3:12a003798
    [Google Scholar]
  35. 35.  Gowrishankar J, Harinarayanan R 2004. Why is transcription coupled to translation in bacteria?. Mol. Microbiol. 54:3598–603
    [Google Scholar]
  36. 36.  Han K, Tjaden B, Lory S 2016. GRIL-seq provides a method for identifying direct targets of bacterial small regulatory RNA by in vivo proximity ligation. Nat. Microbiol. 2:16239
    [Google Scholar]
  37. 37.  Hankins JS, Denroche H, Mackie GA 2010. Interactions of the RNA-binding protein Hfq with cspA mRNA, encoding the major cold shock protein. J. Bacteriol. 192:102482–90
    [Google Scholar]
  38. 38.  Heidrich N, Bauriedl S, Barquist L, Li L, Schoen C, Vogel O 2017. The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Res 45:106147–67
    [Google Scholar]
  39. 39.  Holmqvist E, Wright PR, Li L, Bischler T, Barquist L et al. 2016. Global RNA recognition patterns of post‐transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 35:9991–1011
    [Google Scholar]
  40. 40.  Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T et al. 2005. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J 24:4824–35
    [Google Scholar]
  41. 41.  Ikeda Y, Yagi M, Morita T, Aiba H 2011. Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli. Mol. . Microbiol 79:2419–32
    [Google Scholar]
  42. 42.  Jagodnik J, Chiaruttini C, Guillier M 2017. Stem-loop structures within mRNA coding sequences activate translation initiation and mediate control by small regulatory RNAs. Mol. Cell 68:158–70.e3
    [Google Scholar]
  43. 43.  Jørgensen MG, Thomason MK, Havelund J, Valentin-Hansen P, Storz G 2013. Dual function of the McaS small RNA in controlling biofilm formation. Genes Dev 27:101132–45
    [Google Scholar]
  44. 44.  Kaito C, Saito Y, Ikuo M, Omae Y, Mao H et al. 2013. Mobile genetic element SCCmec-encoded psm-mec RNA suppresses translation of agrA and attenuates MRSA virulence. PLOS Pathog 9:4e1003269
    [Google Scholar]
  45. 45.  Kang SM, Choi JW, Lee Y, Hong SH, Lee HJ 2013. Identification of microRNA-size, small RNAs in Escherichia coli. Curr. . Microbiol 67:609–13
    [Google Scholar]
  46. 46.  Kavita K, de Mets F, Gottesman S 2018. New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr. Opin. Microbiol. 42:53–61
    [Google Scholar]
  47. 47.  Khemici V, Poljak L, Luisi BF, Carpousis AJ 2008. The RNase E of Escherichia coli is a membrane-binding protein. Mol. Microbiol. 70:4799–813
    [Google Scholar]
  48. 48.  Kim S, Reyes D, Beaume M, Francois P, Cheung A 2014. Contribution of teg49 small RNA in the 5′ upstream transcriptional region of sarA to virulence in Staphylococcus aureus. Infect. . Immun 82:104369–79 Correction. 2016. Infect. Immun 84:72159
    [Google Scholar]
  49. 49.  Koeppen K, Hampton TH, Jarek M, Scharfe M, Gerber SA et al. 2016. A novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles. PLOS Pathog 12:6e1005672
    [Google Scholar]
  50. 50.  Künne T, Swarts DC, Brouns SJJ 2014. Planting the seed: target recognition of short guide RNAs. Trends Microbiol 22:274–83
    [Google Scholar]
  51. 51.  Lahiry A, Stimple SD, Wood DW, Lease RA 2017. Retargeting a dual-acting sRNA for multiple mRNA transcript regulation. ACS Synth. Biol. 6:4648–58
    [Google Scholar]
  52. 52.  Lalaouna D, Carrier M-C, Massé E 2015. Every little piece counts: the many faces of tRNA transcripts. Transcription 6:474–77
    [Google Scholar]
  53. 53.  Lalaouna D, Carrier M-C, Semsey S, Brouard J-S, Wang J et al. 2015. A 3′ external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. Mol. Cell 58:3393–405
    [Google Scholar]
  54. 54.  Lalaouna D, Morissette A, Carrier M-C, Massé E 2015. DsrA regulatory RNA represses both hns and rbsD mRNAs through distinct mechanisms in Escherichia coli. Mol. . Microbiol 98:2357–69
    [Google Scholar]
  55. 55.  Lalaouna D, Prévost K, Eyraud A, Massé E 2017. Identification of unknown RNA partners using MAPS. Methods 117:28–34
    [Google Scholar]
  56. 56.  Levine E, Zhang Z, Kuhlman T, Hwa T 2007. Quantitative characteristics of gene regulation by small RNA. PLOS Biol 5:9e229
    [Google Scholar]
  57. 57.  Liu T, Zhang K, Xu S, Wang Z, Fu H et al. 2017. Detecting RNA-RNA interactions in E. coli using a modified CLASH method. BMC Genom 18:11–11
    [Google Scholar]
  58. 58.  Lloyd CR, Park S, Fei J, Vanderpool CK 2017. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J. Bacteriol. 199:11e00869–16
    [Google Scholar]
  59. 59.  Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T et al. 2009. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. . Cell 139:770–79
    [Google Scholar]
  60. 60.  Manna AC, Kim S, Cengher L, Corvaglia A, Leo S et al. 2017. Small RNA Teg49 is derived from a sarA transcript and regulates virulence genes independent of SarA in Staphylococcus aureus. Infect. . Immun 86:e00635–17
    [Google Scholar]
  61. 61.  Martin-Farmer J, Janssen GR 1999. A downstream CA repeat sequence increases translation from leadered and unleadered mRNA in Escherichia coli. Mol. . Microbiol 31:41025–38
    [Google Scholar]
  62. 62.  McDaniel BAM, Grundy FJ, Artsimovitch I, Henkin TM 2003. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. PNAS 100:63083–88
    [Google Scholar]
  63. 63.  Melamed S, Peer A, Faigenbaum-Romm R, Gatt YE, Reiss N et al. 2016. Global mapping of small RNA-target interactions in bacteria. Mol. Cell 63:5884–97
    [Google Scholar]
  64. 64.  Miyakoshi M, Chao Y, Vogel J 2015. Regulatory small RNAs from the 3′ regions of bacterial mRNAs. Curr. Opin. Microbiol. 24:132–39
    [Google Scholar]
  65. 65.  Miyakoshi M, Chao Y, Vogel J 2015. Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J 34:1478–92
    [Google Scholar]
  66. 66.  Moffitt JR, Pandey S, Boettiger AN, Wang S, Zhuang X 2016. Spatial organization shapes the turnover of a bacterial transcriptome. eLife 5:e13065
    [Google Scholar]
  67. 67.  Mohanty BK, Kushner SR 2016. Regulation of mRNA decay in bacteria. Annu. Rev. Microbiol. 70:125–44
    [Google Scholar]
  68. 68.  Morita T, Maki K, Aiba H 2005. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19:182176–86
    [Google Scholar]
  69. 69.  Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY 2013. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31:2170–74
    [Google Scholar]
  70. 70.  Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O 2011. Translation-independent localization of mRNA in E. coli. . Science 331:60201081–84
    [Google Scholar]
  71. 71.  Olejniczak M, Storz G 2017. ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers?. Mol. Microbiol. 104:6905–15
    [Google Scholar]
  72. 72.  Overgaard M, Johansen J, Møller-Jensen J, Valentin-Hansen P 2009. Switching off small RNA regulation with trap-mRNA. Mol. Microbiol. 73:5790–800
    [Google Scholar]
  73. 73.  Papenfort K, Bouvier M, Mika F, Sharma CM, Vogel J 2010. Evidence for an autonomous 5′ target recognition domain in an Hfq-associated small RNA. PNAS 107:4720435–40
    [Google Scholar]
  74. 74.  Papenfort K, Said N, Welsink T, Lucchini S, Hinton JCD, Vogel JJ 2009. Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA. Mol. Microbiol. 74:1139–58
    [Google Scholar]
  75. 75.  Papenfort K, Vanderpool CK 2015. Target activation by regulatory RNAs in bacteria. FEMS Microbiol. Rev. 39:362–78
    [Google Scholar]
  76. 76.  Pasquinelli AE 2012. microRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13:4271
    [Google Scholar]
  77. 77.  Peters JM, Vangeloff AD, Landick R 2011. Bacterial transcription terminators: the RNA 3′-end chronicles. J. Mol. Biol. 412:5793–813
    [Google Scholar]
  78. 78.  Pfeiffer V, Papenfort K, Lucchini S, Hinton JCD, Vogel J 2009. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat. Struct. Mol. Biol. 16:840–46
    [Google Scholar]
  79. 79.  Plumbridge J, Bossi L, Oberto J, Wade JT, Figueroa-Bossi N 2014. Interplay of transcriptional and small RNA-dependent control mechanisms regulates chitosugar uptake in Escherichia coli and Salmonella. Mol. . Microbiol 92:4648–58
    [Google Scholar]
  80. 80.  Qin L, McCausland JW, Cheung GYC, Otto M 2016. PSM-Mec-A virulence determinant that connects transcriptional regulation, virulence, and antibiotic resistance in staphylococci. Front. Microbiol. 7:1293
    [Google Scholar]
  81. 81.  Qu X, Wen J-D, Lancaster L, Noller HF, Bustamante C et al. 2011. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475:7354118–21
    [Google Scholar]
  82. 82.  Ren G-X, Guo X-P, Sun Y-C 2017. Regulatory 3′ untranslated regions of bacterial mRNAs. Front. Microbiol 8:1276
    [Google Scholar]
  83. 83.  Rutherford ST, Valastyan JS, Taillefumier T, Wingreen NS, Bassler BL 2015. Comprehensive analysis reveals how single nucleotides contribute to noncoding RNA function in bacterial quorum sensing. PNAS 112:44E6038–47
    [Google Scholar]
  84. 84.  Saliba A-E, C Santos S, Vogel J 2017. New RNA-seq approaches for the study of bacterial pathogens. Curr. Opin. Microbiol. 35:78–87
    [Google Scholar]
  85. 85.  Salvail H, Caron M-P, Bélanger J, Massé E 2013. Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin. EMBO J 32:202764–78
    [Google Scholar]
  86. 86.  Samayoa J, Yildiz FH, Karplus K 2011. Identification of prokaryotic small proteins using a comparative genomic approach. Bioinformatics 27:131765–71
    [Google Scholar]
  87. 87.  Schu DJ, Zhang A, Gottesman S, Storz G 2015. Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J 34:202557–73
    [Google Scholar]
  88. 88.  Sedlyarova N, Shamovsky I, Bharati BK, Epshtein V, Chen J et al. 2016. sRNA-mediated control of transcription termination in E. coli. . Cell 167:1111–21.e13
    [Google Scholar]
  89. 89.  Sharma CM, Darfeuille F, Plantinga TH, Vogel J 2007. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 21:212804–17
    [Google Scholar]
  90. 90.  Sharma E, Sterne-Weiler T, O'Hanlon D, Blencowe BJ 2016. Global mapping of human RNA-RNA interactions. Mol. Cell 62:4618–26
    [Google Scholar]
  91. 91.  Sharma V, Yamamura A, Yokobayashi Y 2012. Engineering artificial small RNAs for conditional gene silencing in Escherichia coli. ACS Synth. . Biol 1:16–13
    [Google Scholar]
  92. 92.  Sheng H, Stauffer WT, Hussein R, Lin C, Lim HN 2017. Nucleoid and cytoplasmic localization of small RNAs in Escherichia coli. . Nucleic Acids Res 45:5gkx023
    [Google Scholar]
  93. 93.  Smirnov A, Förstner KU, Holmqvist E, Otto A, Günster R et al. 2016. Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. PNAS 113:4111591–96
    [Google Scholar]
  94. 94.  Sonnleitner E, Abdou L, Haas D 2009. Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. . PNAS 106:5121866–71
    [Google Scholar]
  95. 95.  Sonnleitner E, Gonzalez N, Sorger-Domenigg T, Heeb S, Richter AS et al. 2011. The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol. Microbiol. 80:4868–85
    [Google Scholar]
  96. 96.  Strahl H, Turlan C, Khalid S, Bond PJ, Kebalo J-M et al. 2015. Membrane recognition and dynamics of the RNA degradosome. PLOS Genet 11:2e1004961
    [Google Scholar]
  97. 97.  Teimouri H, Korkmazhan E, Stavans J, Levine E 2017. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria. Phys. Biol. 14:556001
    [Google Scholar]
  98. 98.  Thomason MK, Storz G 2010. Bacterial antisense RNAs: How many are there, and what are they doing?. Annu. Rev. Genet. 44:167–88
    [Google Scholar]
  99. 99.  Tomasini A, Moreau K, Chicher J, Geissmann T, Vandenesch F et al. 2017. The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms. Nucleic Acids Res 45:116746–60
    [Google Scholar]
  100. 100.  Tree JJ, Granneman S, McAteer SP, Tollervey D, Gally DL 2014. Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol. Cell 55:2199–213
    [Google Scholar]
  101. 101.  Updegrove TB, Zhang A, Storz G 2016. Hfq: the flexible RNA matchmaker. Curr. Opin. Microbiol. 30:133–38
    [Google Scholar]
  102. 102.  van Gijtenbeek LA, Kok J 2017. Illuminating messengers: an update and outlook on RNA visualization in bacteria. Front. Microbiol. 8:1161
    [Google Scholar]
  103. 103.  Vanderpool CK, Balasubramanian D, Lloyd CR 2011. Dual-function RNA regulators in bacteria. Biochimie 93:111943–49
    [Google Scholar]
  104. 104.  Vogel J, Luisi BF 2011. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 9:8578–89
    [Google Scholar]
  105. 105.  Vytvytska O, Jakobsen JS, Balcunaite G, Andersen JS, Baccarini M, von Gabain A 1998. Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. PNAS 95:2414118–23
    [Google Scholar]
  106. 106.  Vytvytska O, Moll I, Kaberdin VR, von Gabain A, Bläsi U 2000. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 14:91109–18
    [Google Scholar]
  107. 107.  Waters SA, McAteer SP, Kudla G, Pang I, Deshpande NP et al. 2017. Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J 36:3374–87
    [Google Scholar]
  108. 108.  Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR 2003. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat. Struct. Biol. 10:9701–7
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062607
Loading
/content/journals/10.1146/annurev-micro-090817-062607
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error