1932

Abstract

RcsB, a response regulator of the FixJ/NarL family, is at the center of a complex network of regulatory inputs and outputs. Cell surface stress is sensed by an outer membrane lipoprotein, RcsF, which regulates interactions of the inner membrane protein IgaA, lifting negative regulation of a phosphorelay. In vivo evidence supports a pathway in which histidine kinase RcsC transfers phosphate to phosphotransfer protein RcsD, resulting in phosphorylation of RcsB. RcsB acts either alone or in combination with RcsA to positively regulate capsule synthesis and synthesis of small RNA (sRNA) RprA as well as other genes, and to negatively regulate motility. RcsB in combination with other FixJ/NarL auxiliary proteins regulates yet other functions, independent of RcsB phosphorylation. Proper expression of Rcs and its targets is critical for success of commensal strains, for proper development of biofilm, and for virulence in some pathogens. New understanding of how the Rcs phosphorelay works provides insight into the flexibility of the two-component system paradigm.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062640
2018-09-08
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062640.html?itemId=/content/journals/10.1146/annurev-micro-090817-062640&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Allen MD, Christie M, Jones P, Porebski BT, Roome B et al. 2015. Solution structure of a soluble fragment derived from a membrane protein by shotgun proteolysis. Protein Eng. Des. Sel. 28:445–50
    [Google Scholar]
  2. 2.  Ancona V, Chatnaparat T, Zhao Y 2015. Conserved aspartate and lysine residues of RcsB are required for amylovoran biosynthesis, virulence, and DNA binding in Erwinia amylovora. Mol. Genet. . Genom 290:1265–76
    [Google Scholar]
  3. 3.  Anderson MT, Mitchell LA, Zhao L, Mobley HLT 2017. Capsule production and glucose metabolism dictate fitness during Serratia marcescens bacteremia. mBio 8:e00740–17
    [Google Scholar]
  4. 4.  Arslan Z, Stratmann T, Wurm R, Wagner R, Schnetz K, Pul U 2013. RcsB-BglJ-mediated activation of Cascade operon does not induce the maturation of CRISPR RNAs in E. coli K12. RNA Biol 10:708–15
    [Google Scholar]
  5. 5.  Asmar AT, Ferreira JL, Cohen EJ, Cho S-H, Beeby M et al. 2017. Communication across the bacterial cell envelope depends on the size of the periplasm. PLOS Biol 19:e2004303
    [Google Scholar]
  6. 6.  Bouchart F, Boussemart G, Prouvost A-F, Cogez V, Madec E et al. 2010. The virulence of a Dickeye dadantii 3937 mutant devoid of osmoregulated periplasmic glucans is restored by inactivation of the RcsCD-RcsB phosphorelay. J. Bacteriol. 192:3484–90
    [Google Scholar]
  7. 7.  Boulanger A, Francez-Charlot A, Conter A, Castanie-Cornet M-P, Cam K, Gutierrez C 2005. Multistress regulation in Escherichia coli: Expression of osmB involves two independent promoters responding either to σS or to the RcsCDB His-Asp phosphorelay. J. Bacteriol. 187:3282–86
    [Google Scholar]
  8. 8.  Brill JA, Quinlan-Walshe C, Gottesman S 1988. Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. J. Bacteriol. 170:2599–611
    [Google Scholar]
  9. 9.  Callewaert L, Vanoirbeek KGA, Lurquin I, Michiels CM, Aertsen A 2009. The Rcs two-component system regulates expression of lysozyme inhibitors and is induced by exposure to lysozyme. J. Bacteriol. 191:1979–81
    [Google Scholar]
  10. 10.  Cano DA, Domínguez-Bernal G, Tierrez A, García-Del Portillo F, Casadesús J 2002. Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA. . Genetics 162:1513–23
    [Google Scholar]
  11. 11.  Cano DA, Martinez-Moya M, Pucciarelli MG, Groisman EA, Casadesús J, García-Del Portillo F 2001. Salmonella enterica Serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect. Immun. 69:6463–74
    [Google Scholar]
  12. 12.  Casino P, Miguel-Romero L, Huesa J, García P, García-Del Portillo F, Marina A 2018. Conformational dynamism for DNA interaction in the Salmonella RcsB response regulator. Nucleic Acids Res 46:456–72
    [Google Scholar]
  13. 13.  Castanie-Cornet M-P, Cam K, Bastiat B, Cros A, Bordes P, Gutierrez C 2010. Acid stress response in Escherichia coli: mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res 38:3546–54
    [Google Scholar]
  14. 14.  Castanie-Cornet M-P, Cam K, Jacq A 2006. RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J. . Bacteriol 188:4264–70
    [Google Scholar]
  15. 15.  Castanie-Cornet M-P, Treffandier H, Francez-Charlot A, Gutierrez C, Cam K 2007. The glutamate-dependent acid resistance system in Escherichia coli: essential and dual role of the His-Asp phosphorelay RcsCDB/AF. Microbiology 153:238–46
    [Google Scholar]
  16. 16.  Chamnongpol S, Dodson W, Cromie MJ, Harris AL, Groisman EA 2002. Fe(III)-mediated cellular toxicity. Mol. Microbiol. 45:711–19
    [Google Scholar]
  17. 17.  Chen MH, Takeda S, Yamada H, Ishii Y, Yamashino T, Mizuno T 2001. Characterization of the RcsC→YojN→RcsB phosphorelay signaling pathway involved in capsular synthesis in Escherichia coli. Biosci. Biotechnol. . Biochem 65:2364–67
    [Google Scholar]
  18. 18.  Cheng HY, Chen YS, Wu CY, Chang HY, Lai YC, Peng HL 2010. RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J. Bacteriol. 192:3144–58
    [Google Scholar]
  19. 19.  Cho S-H, Szewczyk J, Pesavento C, Zietek M, Banzhaf M et al. 2014. Detecting envelope stress by monitoring β-barrel assembly. Cell 159:1652–64
    [Google Scholar]
  20. 20.  Clarke DJ 2010. The Rcs phosphorelay: more than just a two-component pathway. Future Microbiol 5:1173–84
    [Google Scholar]
  21. 21.  Danese PN, Pratt LA, Kolter R 2000. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J. Bacteriol. 182:3593–96
    [Google Scholar]
  22. 22.  Davalos-Garcia M, Conter A, Toesca I, Gutierrez C, Cam K 2001. Regulation of osmC gene expression by the two-component system rcsB-rcsC in Escherichia coli. J. . Bacteriol 183:5870–76
    [Google Scholar]
  23. 23.  Domínguez-Bernal G, Pucciarelli MG, Ramos-Morales F, García-Quintanilla M, Cano DA et al. 2004. Repression of the RcsC-YojN-RcsB phosphorelay by the IgaA protein is a requisite for Salmonella virulence. Mol. Microbiol. 53:1437–49
    [Google Scholar]
  24. 24.  Dufour A, Furness RB, Hughes C 1998. Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Molec. Microbiol. 29:741–51
    [Google Scholar]
  25. 25.  Ebel W, Trempy JE 1999. Escherichi coli RcsA, a positive activator of colanic acid capsular polysaccharide synthesis, functions to activate its own expression. J. Bacteriol. 181:577–84
    [Google Scholar]
  26. 26.  Erickson KD, Detweiler CS 2006. The Rcs phosphorelay system is specific to enteric pathogens/commensals and activates ydeI, a gene important for persistent Salmonella infection of mice. Molec. Microbiol. 62:833–94
    [Google Scholar]
  27. 27.  Fang N, Yang H, Fang H, Liu L, Zhang Y et al. 2015. RcsAB is a major repressor of Yersinia biofilm development through directly acting on hmsCDE, hmsT, and hmsHFRS. . Sci. Rep. 5:1–8
    [Google Scholar]
  28. 28.  Farris C, Sanowar S, Bader MW, Pfuetzner R, Miller SI 2010. Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF. J. Bacteriol. 192:4894–903
    [Google Scholar]
  29. 29.  Ferrières L, Aslam SN, Cooper RM, Clarke DJ 2007. The yjbEFGH locus in Escherichia coli K-12 is an operon encoding proteins involved in exopolysaccharide production. Microbiology 153:1070–80
    [Google Scholar]
  30. 30.  Ferrières L, Clarke DJ 2003. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Molec. Microbiol. 50:1665–82
    [Google Scholar]
  31. 31.  Ferrières L, Thompson A, Clarke DJ 2009. Elevated levels of σS inhibit biofilm formation in Escherichia coli: a role for the Rcs phosphorelay. Microbiology 155:3544–53
    [Google Scholar]
  32. 32.  Filippova EV, Wawrzak Z, Ruan J, Pshenychnyi S, Schultz RM et al. 2016. Crystal structure of nonphosphorylated receiver domain of the stress response regulator RcsB from Escherichia coli. . Protein Sci 25:2216–24
    [Google Scholar]
  33. 33.  Francez-Charlot A, Castanie-Cornet MP, Gutierrez C, Cam K 2005. Osmotic regulation of the Escherichia coli bdm (biofilm-dependent modulation) gene by the RcsCDB His-Asp phosphorelay. J. Bacteriol. 187:3873–77
    [Google Scholar]
  34. 34.  Francez-Charlot A, Laugel B, Van Gemert A Dubarry N, Wiorowski F et al. 2003. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol. . Microbiol 49:823–32
    [Google Scholar]
  35. 35.  Fredericks CE, Shibata S, Aizawa S-I, Reimann SA, Wolfe AJ 2006. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol. Microbiol. 61:734–47
    [Google Scholar]
  36. 36.  Gao R, Stock AM 2009. Biological insights from structures of two-component proteins. Annu. Rev. Microbiol. 63:133–54
    [Google Scholar]
  37. 37.  García-Calderón CB, García-Quintanilla M, Casadesús J, Ramos-Morales F 2005. Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of the Rcs system. Microbiology 151:579–88
    [Google Scholar]
  38. 38.  Genevaux P, Wawrzynow A, Zylicz M, Georgopoulos C, Kelley WL 2001. DjlA is a third DnaK co-chaperone of Escherichia coli, and DjlA-mediated induction of colanic acid capsule requires DjlA-DnaK interaction. J. Biol. Chem. 276:7906–12
    [Google Scholar]
  39. 39.  Gervais FG, Drapeau GR 1992. Identification, cloning, and characterization of rcsF, a new regulator gene for exopolysaccharide synthesis that suppresses the division mutation ftsZ84 in Escherichia coli K-12. J. Bacteriol. 174:8016–22
    [Google Scholar]
  40. 40.  Girgis HS, Liu Y, Ryu WS, Tavazoie S 2007. A comprehensive genetic characterization of bacterial motility. PLOS Genet 3:1644–60
    [Google Scholar]
  41. 41.  Gottesman S, Trisler P, Torres-Cabassa A 1985. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J. Bacteriol. 162:1111–19
    [Google Scholar]
  42. 42.  Guo X-P, Ren G-X, Zhu H, Mao X-J, Sun Y-C 2015. Differential regulation of the hmsCDE operon in Yersinia pestis and Yersinia pseudotuberculosis by the Rcs phosphorelay system. Sci. Rep. 5:1–7
    [Google Scholar]
  43. 43.  Guo X-P, Sun Y-C 2017. New insights in the non-orthodox two component Rcs phosphorelay system. Front. Microbiol. 8:2014
    [Google Scholar]
  44. 44.  Hagiwara D, Sugiura M, Oshima T, Mori H, Aiba H et al. 2003. Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J. . Bacteriol 185:5735–46
    [Google Scholar]
  45. 45.  Han B, Sivaramakrishnan P, Lin CJ, Neve IAA, He J et al. 2017. Microbial genetic composition tunes host longevity. Cell 169:1249–62
    [Google Scholar]
  46. 46.  Holtje J-V, Fiedler W, Rotering H, Walderich B, van Duin J 1988. Lysis induction of Escherichia coli by the cloned lysis protein of the phage MS2 depends on the presence of osmoregulatory membrane-derived oligosaccharides. J. Biol. Chem. 263:3539–41
    [Google Scholar]
  47. 47.  Hommais F, Krin E, Coppee JY, Lacroix C, Yeramian E et al. 2004. GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. . Microbiology 150:61–72
    [Google Scholar]
  48. 48.  Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A et al. 2001. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol. Microbiol. 40:20–36
    [Google Scholar]
  49. 49.  Howery KE, Clemmer KM, Rather PN 2016. The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence. Curr. Genet. 62:775–89
    [Google Scholar]
  50. 50.  Howery KE, Clemmer KM, Şimşek E, Kim M, Rather PN 2015. Regulation of the min cell division inhibition complex by the Rcs phosphorelay in Proteus mirabilis. J. . Bacteriol 197:2499–507
    [Google Scholar]
  51. 51.  Huang YH, Ferrières L, Clarke DJ 2009. Comparative functional analysis of the RcsC sensor kinase from different Enterobacteriaceae. FEMS Microbiol. . Lett 293:248–54
    [Google Scholar]
  52. 52.  Hussein NA, Cho S-H, Laloux G, Siam R, Collet J-F 2018. Distinct domains of Escherichia coli IgaA connect envelope stress sensing and down-regulation of the Rcs phosphorelay across subcellular compartments. PLOS Genet 14:e1007398
    [Google Scholar]
  53. 53.  Huynh TN, Noriega CE, Stewart V 2013. Missense substitutions reflecting regulatory control of transmitter phosphatase activity in two-component signalling. Mol. Microbiol. 88:459–72
    [Google Scholar]
  54. 54.  Jubete Y, Maurizi MR, Gottesman S 1996. Role of the heat shock protein DnaJ in the Lon-dependent degradation of naturally unstable proteins. J. Biol. Chem. 271:30798–803
    [Google Scholar]
  55. 55.  Kadokura H, Tian H, Zander T, Bardwell JCA, Beckwith J 2004. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science 303:534–37
    [Google Scholar]
  56. 56.  Kato A, Groisman EA 2004. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev 18:2302–13
    [Google Scholar]
  57. 57.  Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martinez C et al. 2017. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 45:D543–50
    [Google Scholar]
  58. 58.  Kim J-S, Kim YJ, Sen S, Seong M-J, Lee K 2015. Functional role of bdm during flagella biogenesis in Escherichia coli. Curr. . Microbiol 70:369–73
    [Google Scholar]
  59. 59.  Konovalova A, Mitchell AM, Silhavy TJ 2016. A lipoprotein/β-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane. eLife 5:e15276
    [Google Scholar]
  60. 60.  Konovalova A, Perlman DH, Cowles CE, Silhavy TJ 2014. Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of β-barrel proteins. PNAS 111:E4350–E58
    [Google Scholar]
  61. 61.  Konovalova A, Silhavy TJ 2015. Outer membrane lipoprotein biogenesis: Lol is not the end. Phil. Trans. R. Soc. B 370:20150030
    [Google Scholar]
  62. 62.  Kuhne C, Singer HM, Grabisch E, Codutti L, Carlomagno T et al. 2016. RflM mediates target specificity of the RcsCDB phosphorelay system for transcriptional repression of flagellar synthesis in Salmonella enterica. Mol. . Microbiol 101:841–55
    [Google Scholar]
  63. 63.  Laloux G, Collet J-F 2017. Major Tom to ground control: how lipoproteins communicate extracytoplasmic stress to the decision center of the cell. J. Bacteriol. 199:1–13
    [Google Scholar]
  64. 64.  Lasaro M, Liu Z, Bishar R, Kelly K, Chattopadhyay S et al. 2014. Escherichia coli isolate for studying colonization of the mouse intestine and its application to two-component signaling knockouts. J. Bacteriol. 196:1723–32
    [Google Scholar]
  65. 65.  Latasa C, García B, Echeverz M, Toledo-Arana A, Valle J et al. 2012. Salmonella biofilm development depends on the phosphorylation status of RcsB. J. Bacteriol. 194:3708–22
    [Google Scholar]
  66. 66.  Laubacher ME, Ades SE 2008. The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J. Bacteriol. 190:2065–74
    [Google Scholar]
  67. 67.  Lehti TA, Bauchart P, Dobrindt U, Korhonen TK, Westerlund-Wikström B 2012. The fimbriae activator MatA switches off motility in Escherichia coli by repression of the flagellar master operon flhDC. . Microbiology 158:1444–55
    [Google Scholar]
  68. 68.  Lehti TA, Bauchart P, Kukkonen M, Dobrindt U, Korhonen TK, Westerlund-Wikström B 2013. Phylogenetic group-associated differences in regulation of the common colonization factor Mat fimbria in Escherichia coli. Mol. . Microbiol 87:1200–22
    [Google Scholar]
  69. 69.  Lehti TA, Heikkinen J, Korhonen TK, Westerlund-Wikström B 2012. The response regulator RcsB activates expression of Mat fimbriae in meningitic Escherichia coli. J. . Bacteriol 194:3475–85
    [Google Scholar]
  70. 70.  Leverrier P, Declercq JP, Denoncin K, Vertommen D, Hiniker A et al. 2011. Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J. Biol. Chem. 286:16734–42
    [Google Scholar]
  71. 71.  Majdalani N, Gottesman S 2005. The Rcs phosphorelay: a complex signal transduction system. Annu. Rev. Microbiol. 59:379–405
    [Google Scholar]
  72. 72.  Majdalani N, Heck M, Stout V, Gottesman S 2005. Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. J. Bacteriol 187:6770–78
    [Google Scholar]
  73. 73.  Majdalani N, Hernandez D, Gottesman S 2002. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol. Microbiol. 46:813–26
    [Google Scholar]
  74. 74.  Marina A, Waldburger CD, Hendrickson WA 2005. Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. EMBO J 24:4247–59
    [Google Scholar]
  75. 75.  Mariscotti JF, García-Del Portillo F 2008. Instability of the Salmonella RcsCDB signalling system in the absence of the attenuator IgaA. Microbiology 154:1372–83
    [Google Scholar]
  76. 76.  Mariscotti JF, García-Del Portillo F 2009. Genome expression analyses revealing the modulation of the Salmonella Rcs regulon by the attenuator IgaA. J. Bacteriol. 191:1855–67
    [Google Scholar]
  77. 77.  Mika F, Hengge R 2013. Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella. Int. J. Mol. . Sci 14:4560–79
    [Google Scholar]
  78. 78.  Morgenstein RM, Rather PN 2012. Role of the Umo proteins and the Rcs phosphorelay in the swarming motility of the wild type and an O-antigen (waaL) mutant of Proteus mirabilis. J. . Bacteriol 194:669–76
    [Google Scholar]
  79. 79.  Mouslim C, Groisman EA 2003. Control of the Salmonella ugd gene by three two-component regulatory systems. Mol. Microbiol. 47:335–44
    [Google Scholar]
  80. 80.  Mouslim C, Latifi T, Groisman EA 2003. Signal-dependent requirement for the co-activator protein RcsA in transcription of the RcsB-regulated ugd gene. J. Biol. Chem. 278:50588–95
    [Google Scholar]
  81. 81.  Munavar H, Zhou YN, Gottesman S 2005. Analysis of the Escherichia coli Alp phenotype: Heat shock induction in ssrA mutants. J. Bacteriol. 187:4739–51
    [Google Scholar]
  82. 82.  Palace SG, Proulx MK, Lu S, Baker RE, Goguen JD 2014. Genome-wide mutant fitness profiling identifies nutritional requirements for optimal growth of Yersinia pestis in deep tissue. mBio 5:e01385–14
    [Google Scholar]
  83. 83.  Pando JM, Karlinsey JE, Lara JC, Libby SJ, Fang FC 2017. The Rcs-regulated colanic acid capsule maintains membrane potential in Salmonella enterica serovar Typhimurium. mBio 8:e00808–17
    [Google Scholar]
  84. 84.  Pannen D, Fabisch M, Gausling L, Schnetz K 2016. Interaction of the RcsB response regulator with auxiliary transcription regulators in Escherichia coli. J. Biol. . Chem 291:2357–70
    [Google Scholar]
  85. 85.  Papenfort K, Espinsosa E, Casadesús J, Vogel J 2015. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. . PNAS 112:E4772–81
    [Google Scholar]
  86. 86.  Parker A, Cureoglu S, De Lay N Majdalani N, Gottesman S 2017. Alternative pathways for Escherichia coli biofilms revealed by sRNA overproduction. Mol. Microbiol. 105:309–25
    [Google Scholar]
  87. 87.  Pautsch A, Schulz GE 1998. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Mol. Biol. 5:1013–17
    [Google Scholar]
  88. 88.  Pescaretti MM, Farizano JV, Morero R, Delgado MA 2013. A novel insight on signal transduction mechanism of RcsCDB system in Salmonella enterica Serovar Typhimurium. PLOS ONE 8:1–10
    [Google Scholar]
  89. 89.  Peterson CN, Carabetta VJ, Chowdhury T, Silhavy TJ 2006. LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli. J. . Bacteriol 188:3175–81
    [Google Scholar]
  90. 90.  Prüß BM 2017. Involvement of two-component signaling on bacterial motility and biofilm development. J. Bacteriol. 199:e00259–17
    [Google Scholar]
  91. 91.  Pucciarelli MG, Rodriguez L, García-Del Portillo F 2017. A disulfide bond in the membrane protein IgaA is essential for repression of the RcsCDB system. Front. Microbiol. 8:2605
    [Google Scholar]
  92. 92.  Rahn A, Whitfield C 2003. Transcriptional organization and regulation of the Escherichia coli K30 group 1 capsule biosynthesis (cps) gene cluster. Mol. Microbiol. 47:1045–60
    [Google Scholar]
  93. 93.  Ranjit DK, Young KD 2013. The Rcs stress response and accessory envelope proteins are required for de novo generation of cell shape in Escherichia coli. J. . Bacteriol 195:2452–62
    [Google Scholar]
  94. 94.  Ranjit DK, Young KD 2016. Colanic intermediates prevent de novo shape recovery of Escherichia coli spheroplasts, calling into question biological roles previously attributed to colanic acid. J. Bacteriol. 200:1230–40
    [Google Scholar]
  95. 95.  Rogov VV, Bernhard F, Löhr F, Dötsch V 2004. Solution structure of the Escherichia coli YojN histidine-phosphotransferase domain and its interaction with cognate phosphoryl receiver domains. J. Mol. Biol. 343:1035–48
    [Google Scholar]
  96. 96.  Rogov VV, Löhr F, Bernhard F, Dötsch V 2004. Assignment of 1H, 13C and 15N resonances of the Escherichia coli YojN histidine-phosphotransferase (HPt) domain. J. Biomol. NMR 30:103–4
    [Google Scholar]
  97. 97.  Rogov VV, Rogova NY, Bernhard F, Koglin A, Löhr F, Dötsch V 2006. A new structural domain in the Escherichia coli RcsC hybrid sensor kinase connects histidine kinase and phosphoreceiver domains. J. Mol. Biol. 364:68–79
    [Google Scholar]
  98. 98.  Rogov VV, Rogova NY, Bernhard F, Löhr F, Dötsch V 2011. A disulfide bridge network within the soluble periplasmic domain determines structure and function of the outer membrane protein RCSF. J. Biol. Chem. 286:18775–83
    [Google Scholar]
  99. 99.  Salscheider SL, Jahn A, Schnetz K 2014. Transcriptional regulation by BglJ-RcsB, a pleiotropic heteromeric activator in Escherichia coli. . Nucleic Acids Res 42:2999–3008
    [Google Scholar]
  100. 100.  Schmöe K, Rogov VV, Rogova NY, Löhr F, Güntert P et al. 2011. Structural insights into Rcs phosphotransfer: The newly identified RcsD-ABL domain enhances interaction with the response regulator RcsB. Structure 19:577–87
    [Google Scholar]
  101. 101.  Senior NJ, Sasidharan K, Saint RJ, Scott AE, Sarkar-Tyson M et al. 2017. An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions. BMC Microbiol 17:1–12
    [Google Scholar]
  102. 102.  Shiba Y, Matsumoto K, Hara H 2006. DjlA negatively regulates the Rcs signal transduction system in Escherichia coli. Genes Genet. . Syst 81:51–6
    [Google Scholar]
  103. 103.  Shiba Y, Miyagawa H, Nagahama H, Matsumoto K, Kondo D et al. 2012. Exploring the relationship between lipoprotein mislocalization and activation of the Rcs signal transduction system in Escherichia coli. . Microbiology 158:1238–48
    [Google Scholar]
  104. 104.  Shiba Y, Yokoyama Y, Aono Y, Kiuchi T, Kusaka J et al. 2004. Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin. J. Bacteriol. 186:6526–35
    [Google Scholar]
  105. 105.  Singh K, Milstein JN, Navarre WW 2016. Xenogeneic silencing and its impact on bacterial genomes. Annu. Rev. Microbiol. 70:199–213
    [Google Scholar]
  106. 106.  Sledjeski D, Gottesman S 1995. A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli. . PNAS 92:2003–7
    [Google Scholar]
  107. 107.  Stella NA, Brothers KM, Callaghan JD, Passerini AM, Sigindere C et al. 2018. An IgaA/UmoB family protein from Serratia marcescens regulates motility, capsular polysaccharide biosynthesis and secondary metabolite production. Appl. Environ. Microbiol. 84:e02575–17
    [Google Scholar]
  108. 108.  Stout V, Gottesman S 1990. RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J. . Bacteriol 172:659–69
    [Google Scholar]
  109. 109.  Stratmann T, Pul U, Wurm R, Wagner R, Schnetz K 2012. RcsB-BglJ activates the Escherichia coli leuO gene, encoding an H-NS antagonist and pleiotropic regulator of virulence determinants. Mol. Microbiol. 83:1109–23
    [Google Scholar]
  110. 110.  Sun Y-C, Hinnebusch BJ, Darby C 2008. Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. PNAS 105:8097–101
    [Google Scholar]
  111. 111.  Sun Y-C, Jarrett CO, Bosio CF, Hinnebusch BJ 2014. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. . Cell Host Microbe 15:578–86
    [Google Scholar]
  112. 112.  Szurmant H, Bu L, Brooks CL III, Hoch JA 2008. An essential sensor histidine kinase controlled by transmembrane helix interactions with its auxiliary proteins. PNAS 105:5891–96
    [Google Scholar]
  113. 113.  Takeda S, Fujisawa Y, Matsubara M, Aiba H, Mizuno T 2001. A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC→ YojN→RcsB signalling pathway implicated in capsular synthesis and swarming behavior. Mol. Microbiol. 40:440–50
    [Google Scholar]
  114. 114.  Tao K, Narita S, Tokuda H 2012. Defective lipoprotein sorting induces lolA expression through the Rcs stress response phosphorelay system. J. Bacteriol. 194:3643–50
    [Google Scholar]
  115. 115.  Thomas SA, Brewster JA, Bourret RB 2008. Two variable active site residues modulate response regulator phosphoryl group stability. Mol. Microbiol. 69:453–65
    [Google Scholar]
  116. 116.  Thomassin J-L, Leclerc J-M, Giannakopoulou N, Zhu L, Salmon K et al. 2017. Systematic analysis of two-component systems in Citrobacter rodentium reveals positive and negative roles in virulence. Infect. Immun. 85:e00654–16
    [Google Scholar]
  117. 117.  Tierrez A, García-Del Portillo F 2004. The Salmonella membrane protein IgaA modulates the activity of the RcsC-YojN-RcsB and PhoP-PhoQ regulons. J. Bacteriol. 186:7481–89
    [Google Scholar]
  118. 118.  Torres-Cabassa AS, Gottesman S 1987. Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J. Bacteriol. 169:981–89
    [Google Scholar]
  119. 119.  Trisler P, Gottesman S 1984. lon transcriptional regulation of genes necessary for capsular polysaccharide synthesis in Escherichia coli K-12. J. Bacteriol. 160:184–91
    [Google Scholar]
  120. 120.  Umekawa M, Miyagawa H, Kondo D, Matsuoka S, Matsumoto K et al. 2013. Importance of the proline-rich region for the regulatory function of RcsF, an outer membrane lipoprotein component of the Escherichia coli Rcs signal transduction system. Microbiology 159:1818–27
    [Google Scholar]
  121. 121.  Venkatesh GR, Kembou Koungni FC, Paukner A, Stratmann T, Blissenbach B, Schnetz K 2010. BglJ-RcsB heterodimers relieve repression of the Escherichia coli bgl operon by H-NS. J. Bacteriol. 192:6456–64
    [Google Scholar]
  122. 122.  Wacharotayankun R, Arakawa Y, Ohta M, Tanaka K, Akashi T et al. 1993. Enhancement of extracapsular polysaccharide synthesis in Klebsiella pneumoniae by RmpA2, which shows homology to NtrC and FixJ. Infect. Immun. 61:3164–74
    [Google Scholar]
  123. 123.  Wang D, Korban SS, Zhao Y 2009. The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora. Mol. . Plant Pathol 10:277–90
    [Google Scholar]
  124. 124.  Wang D, Qi M, Calla B, Korban SS, Clough SJ et al. 2012. Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora. Mol. . Plant-Microbe Inter 25:6–17
    [Google Scholar]
  125. 125.  Wang Q, Frye JG, McClelland M, Harshey R 2004. Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol. Microbiol. 52:169–87
    [Google Scholar]
  126. 126.  Wang Q, Zhao Y, McClelland M, Harshey RM 2007. The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J. Bacteriol. 189:8447–57
    [Google Scholar]
  127. 127.  Wayne KJ, Li S, Kazmierczak KM, Tsui H-CT, Winkler ME 2012. Involvement of WalK (VicK) phosphatase activity in setting WalR (VicR) response regulator phosphorylation level and limiting cross-talk in Streptococcus pneumoniae D39 cells. Mol. Microbiol. 86:645–60
    [Google Scholar]
  128. 128.  Wehland M, Bernhard F 2000. The RcsAB box: characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J. Biol. Chem. 275:7013–20
    [Google Scholar]
  129. 129.  Wehland M, Kiecker C, Coplin DL, Kelm O, Saenger W, Bernhard F 1999. Identification of an RcsA/RcsB recognition motif in the promoters of expolysaccharide biosynthetic operons from Erwinia amylovora and Pantoea stewartii subspecies stewartii. J. Biol. . Chem 274:3300–7
    [Google Scholar]
  130. 130.  Whitfield C 2006. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. . Biochem 75:39–68
    [Google Scholar]
  131. 131.  Willett JW, Kirby JR 2012. Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities. PLOS Genet 8:1–14
    [Google Scholar]
  132. 132.  Winter J, Jung S, Keller S, Gregory RI, Diederichs S 2009. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11:228–34
    [Google Scholar]
  133. 133.  Winter SE, Winter MG, Thiennimitr P, Gerriets VA, Nuccio SP et al. 2009. The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol. Microbiol. 74:175–93
    [Google Scholar]
  134. 134.  Xu Y, Xu T, Wang B, Dong X, Sheng A Zhang X-H 2014. A mutation in rcsB, a gene encoding the core component of the Rcs cascade, enhances the virulence of Edwardsiella tarda. Res. Microbiol. 165:226–32
    [Google Scholar]
  135. 135.  Yu WL, Lee MF, Chang MC, Chuang YC 2015. Intrapersonal mutation of rmpA and rmpA2: a reason for negative hypermucoviscosity phenotype and low virulence of rmpA-positive Klebsiella pneumoniae isolates. J. Glob. Antimicrob. Resist. 3:137–41
    [Google Scholar]
  136. 136.  Zschiedrich C, Keidel V, Szurmant H 2016. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 428:3752–75
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062640
Loading
/content/journals/10.1146/annurev-micro-090817-062640
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error