1932

Abstract

Peptidoglycan serves as a key structure of the bacterial cell by determining cell shape and providing resistance to internal turgor pressure. However, in addition to these essential and well-studied functions, bacterial signaling by peptidoglycan fragments, or muropeptides, has been demonstrated by recent work. Actively growing bacteria release muropeptides as a consequence of cell wall remodeling during elongation and division. Therefore, the presence of muropeptide synthesis is indicative of growth-promoting conditions and may serve as a broadly conserved signal for nongrowing cells to reinitiate growth. In addition, muropeptides serve as signals between bacteria and eukaryotic organisms during both pathogenic and symbiotic interactions. The increasingly appreciated role of the microbiota in metazoan organisms suggests that muropeptide signaling likely has important implications for homeostatic mammalian physiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091213-112844
2014-09-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/68/1/annurev-micro-091213-112844.html?itemId=/content/journals/10.1146/annurev-micro-091213-112844&mimeType=html&fmt=ahah

Literature Cited

  1. Adin DM, Engle JT, Goldman WE, McFall-Ngai MJ, Stabb EV. 1.  2009. Mutations in ampG and lytic transglycosylase genes affect the net release of peptidoglycan monomers from Vibrio fischeri. J. Bacteriol. 191:2012–22 [Google Scholar]
  2. Altura MA, Stabb E, Goldman W, Apicella M, McFall-Ngai MJ. 2.  2011. Attenuation of host NO production by MAMPs potentiates development of the host in the squid-vibrio symbiosis. Cell. Microbiol. 13:527–37 [Google Scholar]
  3. Amoroso A, Boudet J, Berzigotti S, Duval V, Teller N. 3.  et al. 2012. A peptidoglycan fragment triggers β-lactam resistance in Bacillus licheniformis. PLoS Pathog. 8:e1002571 [Google Scholar]
  4. Andre G, Leenhouts K, Hols P, Dufrene YF. 4.  2008. Detection and localization of single LysM-peptidoglycan interactions. J. Bacteriol. 190:7079–86 [Google Scholar]
  5. Asong J, Wolfert MA, Maiti KK, Miller D, Boons GJ. 5.  2009. Binding and cellular activation studies reveal that Toll-like receptor 2 can differentially recognize peptidoglycan from gram-positive and gram-negative bacteria. J. Biol. Chem. 284:8643–53 [Google Scholar]
  6. Atilano ML, Yates J, Glittenberg M, Filipe SR, Ligoxygakis P. 6.  2011. Wall teichoic acids of Staphylococcus aureus limit recognition by the Drosophila peptidoglycan recognition protein-SA to promote pathogenicity. PLoS Pathog. 7:e1002421 [Google Scholar]
  7. Bassler BL, Losick R. 7.  2006. Bacterially speaking. Cell 125:237–46 [Google Scholar]
  8. Bateman A, Bycroft M. 8.  2000. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J. Mol. Biol. 299:1113–19 [Google Scholar]
  9. Beier S, Jones CM, Mohit V, Hallin S, Bertilsson S. 9.  2011. Global phylogeography of chitinase genes in aquatic metagenomes. Appl. Environ. Microbiol. 77:1101–6 [Google Scholar]
  10. Benner R, Kaiser K. 10.  2003. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnol. Oceanogr. 48:118–28 [Google Scholar]
  11. Berleman JE, Chumley T, Cheung P, Kirby JR. 11.  2006. Rippling is a predatory behavior in Myxococcus xanthus. J. Bacteriol. 188:5888–95 [Google Scholar]
  12. Boneca IG. 12.  2005. The role of peptidoglycan in pathogenesis. Curr. Opin. Microbiol. 8:46–53 [Google Scholar]
  13. Boneca IG, Dussurget O, Cabanes D, Nahori MA, Sousa S. 13.  et al. 2007. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc. Natl. Acad. Sci. USA 104:997–1002 [Google Scholar]
  14. Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B. 14.  2012. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe 12:153–65 [Google Scholar]
  15. Boudreau MA, Fisher JF, Mobashery S. 15.  2012. Messenger functions of the bacterial cell wall-derived muropeptides. Biochemistry 51:2974–90 [Google Scholar]
  16. Bouskra D, Brezillon C, Berard M, Werts C, Varona R. 16.  et al. 2008. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:507–10 [Google Scholar]
  17. Brestoff JR, Artis D. 17.  2013. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14:676–84 [Google Scholar]
  18. Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT. 18.  et al. 2012. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc. Natl. Acad. Sci. USA 109:13859–64 [Google Scholar]
  19. Bui NK, Gray J, Schwarz H, Schumann P, Blanot D, Vollmer W. 19.  2009. The peptidoglycan sacculus of Myxococcus xanthus has unusual structural features and is degraded during glycerol-induced myxospore development. J. Bacteriol. 191:494–505 [Google Scholar]
  20. Buist G, Steen A, Kok J, Kuipers OP. 20.  2008. LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol. Microbiol. 68:838–47 [Google Scholar]
  21. Chang CI, Chelliah Y, Borek D, Mengin-Lecreulx D, Deisenhofer J. 21.  2006. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311:1761–64 [Google Scholar]
  22. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. 22.  2010. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16:228–31 [Google Scholar]
  23. Cloud-Hansen KA, Hackett KT, Garcia DL, Dillard JP. 23.  2008. Neisseria gonorrhoeae uses two lytic transglycosylases to produce cytotoxic peptidoglycan monomers. J. Bacteriol. 190:5989–94 [Google Scholar]
  24. Cloud-Hansen KA, Peterson SB, Stabb EV, Goldman WE, McFall-Ngai MJ, Handelsman J. 24.  2006. Breaching the great wall: peptidoglycan and microbial interactions. Nat. Rev. Microbiol. 4:710–16 [Google Scholar]
  25. Connell JL, Ritschdorff ET, Whiteley M, Shear JB. 25.  2013. 3D printing of microscopic bacterial communities. Proc. Natl. Acad. Sci. USA 110:18380–85 [Google Scholar]
  26. Davis KM, Weiser JN. 26.  2011. Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect. Immunity 79:562–70 [Google Scholar]
  27. Doyle RJ, Chaloupka J, Vinter V. 27.  1988. Turnover of cell walls in microorganisms. Microbiol. Rev. 52:554–67 [Google Scholar]
  28. Dworkin J, Shah IM. 28.  2010. Exit from dormancy in microbial organisms. Nat. Rev. Microbiol. 8:890–96 [Google Scholar]
  29. Dworkin M. 29.  1996. Recent advances in the social and developmental biology of the myxobacteria. Microbiol. Rev. 60:70–102 [Google Scholar]
  30. Dziarski R, Gupta D. 30.  2006. The peptidoglycan recognition proteins (PGRPs). Genome Biol. 7:232 [Google Scholar]
  31. Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V. 31.  et al. 2008. Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem. Biol. 15:438–48 [Google Scholar]
  32. Felix G, Boller T. 32.  2003. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem. 278:6201–8 [Google Scholar]
  33. Fujimoto Y, Pradipta AR, Inohara N, Fukase K. 33.  2012. Peptidoglycan as Nod1 ligand; fragment structures in the environment, chemical synthesis, and their innate immunostimulation. Nat. Prod. Rep. 29:568–79 [Google Scholar]
  34. Ganguly S, Mitchell AP. 34.  2011. Mucosal biofilms of Candida albicans. Curr. Opin. Microbiol. 14:380–85 [Google Scholar]
  35. Garcia DL, Dillard JP. 35.  2008. Mutations in ampG or ampD affect peptidoglycan fragment release from Neisseria gonorrhoeae. J. Bacteriol. 190:3799–807 [Google Scholar]
  36. Gendrin M, Welchman DP, Poidevin M, Herve M, Lemaitre B. 36.  2009. Long-range activation of systemic immunity through peptidoglycan diffusion in Drosophila. PLoS Pathog. 5:e1000694 [Google Scholar]
  37. Goldman WE, Klapper DG, Baseman JB. 37.  1982. Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect. Immun. 36:782–94 [Google Scholar]
  38. Goodell EW, Schwarz U. 38.  1985. Release of cell wall peptides into culture medium by exponentially growing Escherichia coli. J. Bacteriol. 162:391–97 [Google Scholar]
  39. Grimes CL, Ariyananda LD, Melnyk JE, O’Shea EK. 39.  2012. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J. Am. Chem. Soc. 134:13535–37 [Google Scholar]
  40. Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S. 40.  et al. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem. 282:32338–48 [Google Scholar]
  41. Gust AA, Willmann R, Desaki Y, Grabherr HM, Nurnberger T. 41.  2012. Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci. 17:495–502 [Google Scholar]
  42. Hasegawa M, Yang K, Hashimoto M, Park JH, Kim YG. 42.  et al. 2006. Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments. J. Biol. Chem. 281:29054–63 [Google Scholar]
  43. Hayhurst EJ, Kailas L, Hobbs JK, Foster SJ. 43.  2008. Cell wall peptidoglycan architecture in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 105:14603–8 [Google Scholar]
  44. Hett EC, Rubin EJ. 44.  2008. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev. 72:126–56 [Google Scholar]
  45. Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. 45.  1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA 96:9833–38 [Google Scholar]
  46. Huang G, Yi S, Sahni N, Daniels KJ, Srikantha T, Soll DR. 46.  2010. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS Pathog. 6:e1000806 [Google Scholar]
  47. Iizasa E, Mitsutomi M, Nagano Y. 47.  2010. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. J. Biol. Chem. 285:2996–3004 [Google Scholar]
  48. Jacobs C, Frère J, Nomard S. 48.  1997. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell 88:823–32 [Google Scholar]
  49. Jacobs C, Huang LJ, Bartowsky E, Normark S, Park JT. 49.  1994. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J. 13:4684–94 [Google Scholar]
  50. Janeway CA Jr. 50.  1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54:1–13 [Google Scholar]
  51. Jin MS, Lee JO. 51.  2008. Structures of the Toll-like receptor family and its ligand complexes. Immunity 29:182–91 [Google Scholar]
  52. Jogler C, Waldmann J, Huang X, Jogler M, Glockner FO. 52.  et al. 2012. Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in planctomycetes by comparative genomics. J. Bacteriol. 194:6419–30 [Google Scholar]
  53. Johnson JW, Fisher JF, Mobashery S. 53.  2013. Bacterial cell-wall recycling. Ann. N. Y. Acad. Sci. 1277:54–75 [Google Scholar]
  54. Jones G, Dyson P. 54.  2006. Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside. J. Bacteriol. 188:7470–76 [Google Scholar]
  55. Jordan S, Hutchings MI, Mascher T. 55.  2008. Cell envelope stress response in gram-positive bacteria. FEMS Microbiol. Rev. 32:107–46 [Google Scholar]
  56. Jorgensen NO, Stepanaukas R, Pedersen AG, Hansen M, Nybroe O. 56.  2003. Occurrence and degradation of peptidoglycan in aquatic environments. FEMS Microbiol. Ecol. 46:269–80 [Google Scholar]
  57. Kana BD, Gordhan BG, Downing KJ, Sung N, Vostroktunova G. 57.  et al. 2008. The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol. Microbiol. 67:672–84 [Google Scholar]
  58. Kana BD, Mizrahi V. 58.  2010. Resuscitation-promoting factors as lytic enzymes for bacterial growth and signaling. FEMS Immunol. Med. Microbiol. 58:39–50 [Google Scholar]
  59. Kawasaki N, Benner R. 59.  2006. Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol. Oceanogr. 51:2170–80 [Google Scholar]
  60. Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B. 60.  2006. Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol. 14:271–76 [Google Scholar]
  61. Kim MS, Byun M, Oh BH. 61.  2003. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nat. Immunol. 4:787–93 [Google Scholar]
  62. Kocaoglu O, Calvo RA, Sham LT, Cozy LM, Lanning BR. 62.  et al. 2012. Selective penicillin-binding protein imaging probes reveal substructure in bacterial cell division. ACS Chem. Biol. 7:1746–53 [Google Scholar]
  63. Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M. 63.  2013. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl. Acad. Sci. USA 110:1059–64 [Google Scholar]
  64. Korgaonkar AK, Whiteley M. 64.  2011. Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J. Bacteriol. 193:909–17 [Google Scholar]
  65. Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ. 65.  2004. Microbial factor-mediated development in a host-bacterial mutualism. Science 306:1186–88 [Google Scholar]
  66. Kuru E, Hughes H, Brown P, Hall E, Tekkam S. 66.  et al. 2012. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent d-amino acids. Angew. Chem. Int. Ed. Engl. 51:12519–23 doi: 10.1002/anie.201206749 [Google Scholar]
  67. Laroche FJ, Tulotta C, Lamers GE, Meijer AH, Yang P. 67.  et al. 2013. The embryonic expression patterns of zebrafish genes encoding LysM-domains. Gene Expr. Patterns 13:212–24 [Google Scholar]
  68. Lee M, Hesek D, Shah IM, Oliver AG, Dworkin J, Mobashery S. 68.  2010. Synthetic peptidoglycan motifs for germination of bacterial spores. Chembiochem 11:2525–29 [Google Scholar]
  69. Li X, Roseman S. 69.  2004. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc. Natl. Acad. Sci. USA 101:627–31 [Google Scholar]
  70. Liepinsh E, Genereux C, Dehareng D, Joris B, Otting G. 70.  2003. NMR structure of Citrobacter freundii AmpD, comparison with bacteriophage T7 lysozyme and homology with PGRP domains. J. Mol. Biol. 327:833–42 [Google Scholar]
  71. Lim JH, Kim MS, Kim HE, Yano T, Oshima Y. 71.  et al. 2006. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281:8286–95 [Google Scholar]
  72. Litzinger S, Duckworth A, Nitzsche K, Risinger C, Wittmann V, Mayer C. 72.  2010. Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by β-N-acetylglucosaminidase and N-acetylmuramyl-l-alanine amidase. J. Bacteriol. 192:3132–43 [Google Scholar]
  73. Liu T, Liu Z, Song C, Hu Y, Han Z. 73.  et al. 2012. Chitin-induced dimerization activates a plant immune receptor. Science 336:1160–64 [Google Scholar]
  74. Luker KE, Tyler AN, Marshall GR, Goldman WE. 74.  1995. Tracheal cytotoxin structural requirements for respiratory epithelial damage in pertussis. Mol. Microbiol. 16:733–43 [Google Scholar]
  75. Maestro B, Novakova L, Hesek D, Lee M, Leyva E. 75.  et al. 2011. Recognition of peptidoglycan and β-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae. FEBS Lett. 585:357–63 [Google Scholar]
  76. Mallick EM, Bennett RJ. 76.  2013. Sensing of the microbial neighborhood by Candida albicans. PLoS Pathog. 9:e1003661 [Google Scholar]
  77. Mandel MJ, Schaefer AL, Brennan CA, Heath-Heckman EA, Deloney-Marino CR. 77.  et al. 2012. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl. Environ. Microbiol. 78:4620–26 [Google Scholar]
  78. Matias VR, Al-Amoudi A, Dubochet J, Beveridge TJ. 78.  2003. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185:6112–18 [Google Scholar]
  79. Matias VR, Beveridge TJ. 79.  2007. Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. Mol. Microbiol. 64:195–206 [Google Scholar]
  80. Mauck J, Chan L, Glaser L. 80.  1971. Turnover of the cell wall of gram-positive bacteria. J. Biol. Chem. 246:1820–27 [Google Scholar]
  81. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. 81.  2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–18 [Google Scholar]
  82. McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR. 82.  et al. 2010. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc. Natl. Acad. Sci. USA 107:16420–27 [Google Scholar]
  83. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T. 83.  et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110:3229–36 [Google Scholar]
  84. McFall-Ngai MJ, Ruby EG. 84.  1991. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254:1491–94 [Google Scholar]
  85. Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. 85.  2004. The Vibrio cholerae chitin utilization program. Proc. Natl. Acad. Sci. USA 101:2524–29 [Google Scholar]
  86. Melly MA, McGee ZA, Rosenthal RS. 86.  1984. Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J. Infect. Dis. 149:378–86 [Google Scholar]
  87. Michel T, Reichhart JM, Hoffmann JA, Royet J. 87.  2001. Drosophila Toll is activated by gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414:756–59 [Google Scholar]
  88. Mir M, Asong J, Li X, Cardot J, Boons GJ, Husson RN. 88.  2011. The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog. 7e1002182
  89. Mo J, Boyle JP, Howard CB, Monie TP, Davis BK, Duncan JA. 89.  2012. Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP. J. Biol. Chem. 287:23057–67 [Google Scholar]
  90. Molle V, Kremer L. 90.  2010. Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol. Microbiol. 75:1064–77 [Google Scholar]
  91. Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB. 91.  1998. A bacterial cytokine. Proc. Natl. Acad. Sci. USA 95:8916–21 [Google Scholar]
  92. Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB. 92.  et al. 2006. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol. Microbiol. 59:84–98 [Google Scholar]
  93. Mukamolova GV, Turapov OA, Kazarian K, Telkov M, Kaprelyants AS. 93.  et al. 2002. The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol. Microbiol. 46:611–21 [Google Scholar]
  94. Mukamolova GV, Yanopolskaya ND, Kell DB, Kaprelyants AS. 94.  1998. On resuscitation from the dormant state of Micrococcus luteus. Antonie Van Leeuwenhoek 73:237–43 [Google Scholar]
  95. Muller P, Schier AF. 95.  2011. Extracellular movement of signaling molecules. Dev. Cell 21:145–58 [Google Scholar]
  96. Nigro G, Fazio LL, Martino MC, Rossi G, Tattoli I. 96.  et al. 2008. Muramylpeptide shedding modulates cell sensing of Shigella flexneri. Cell. Microbiol. 10:682–95 [Google Scholar]
  97. Nikitushkin VD, Demina GR, Shleeva MO, Kaprelyants AS. 97.  2013. Peptidoglycan fragments stimulate resuscitation of “non-culturable” mycobacteria. Antonie Van Leeuwenhoek 103:37–46 [Google Scholar]
  98. O’Connor KA, Zusman DR. 98.  1997. Starvation-independent sporulation in Myxococcus xanthus involves the pathway for β-lactamase induction and provides a mechanism for competitive cell survival. Mol. Microbiol. 24:839–50 [Google Scholar]
  99. O’Connor KA, Zusman DR. 99.  1999. Induction of β-lactamase influences the course of development in Myxococcus xanthus. J. Bacteriol. 181:6319–31 [Google Scholar]
  100. Paredes-Sabja D, Setlow P, Sarker MR. 100.  2011. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol. 19:85–94 [Google Scholar]
  101. Park JT, Uehara T. 101.  2008. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol. Mol. Biol. Rev. 72:211–27 [Google Scholar]
  102. Peleg AY, Hogan DA, Mylonakis E. 102.  2010. Medically important bacterial-fungal interactions. Nat. Rev. Microbiol. 8:340–49 [Google Scholar]
  103. Petersen BH, Rosenthal RS. 103.  1982. Complement consumption gonococcal peptidoglycan. Infect. Immun. 35:442–48 [Google Scholar]
  104. Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V. 104.  2010. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol. Chem. 285:28902–11 [Google Scholar]
  105. Philippon A, Dusart J, Joris B, Frère JM. 105.  1998. The diversity, structure and regulation of β-lactamases. Cell. Mol. Life Sci. 54:341–6 [Google Scholar]
  106. Pilhofer M, Rappl K, Eckl C, Bauer AP, Ludwig W. 106.  et al. 2008. Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J. Bacteriol. 190:3192–202 [Google Scholar]
  107. Popham DL. 107.  2002. Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell. Mol. Life Sci. 59:426–33 [Google Scholar]
  108. Reith J, Mayer C. 108.  2011. Peptidoglycan turnover and recycling in gram-positive bacteria. Appl. Microbiol. Biotechnol. 92:1–11 [Google Scholar]
  109. Riemann L, Azam F. 109.  2002. Widespread N-acetyl-d-glucosamine uptake among pelagic marine bacteria and its ecological implications. Appl. Environ. Microbiol. 68:5554–62 [Google Scholar]
  110. Rosenthal RS, Jungkind D, Daneo-Moore L, Shockman GD. 110.  1975. Evidence for the synthesis of soluble peptidoglycan fragments by protoplasts of Streptococcus faecalis. J. Bacteriol. 124:398–409 [Google Scholar]
  111. Russell-Goldman E, Xu J, Wang X, Chan J, Tufariello JM. 111.  2008. A Mycobacterium tuberculosis Rpf double-knockout strain exhibits profound defects in reactivation from chronic tuberculosis and innate immunity phenotypes. Infect. Immun. 76:4269–81 [Google Scholar]
  112. Schleifer KH, Kandler O. 112.  1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36:407–77 [Google Scholar]
  113. Schultze M, Quiclet-Sire B, Kondorosi E, Virelizer H, Glushka JN. 113.  et al. 1992. Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proc. Natl. Acad. Sci. USA 89:192–96 [Google Scholar]
  114. Shah IM, Dworkin J. 114.  2010. Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides. Mol. Microbiol. 75:1232–45 [Google Scholar]
  115. Shah IM, Laaberki MH, Popham DL, Dworkin J. 115.  2008. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135:486–96 [Google Scholar]
  116. Shank EA, Kolter R. 116.  2009. New developments in microbial interspecies signaling. Curr. Opin. Microbiol. 12:205–14 [Google Scholar]
  117. Shi XZ, Zhou J, Lan JF, Jia YP, Zhao XF, Wang JX. 117.  2013. A Lysin motif (LysM)-containing protein functions in antibacterial responses of red swamp crayfish, Procambarus clarkii. Dev. Comp. Immunol. 40:311–19 [Google Scholar]
  118. Shimkets LJ, Kaiser D. 118.  1982. Induction of coordinated movement of Myxococcus xanthus cells. J. Bacteriol. 152:451–61 [Google Scholar]
  119. Shimkets LJ, Kaiser D. 119.  1982. Murein components rescue developmental sporulation of Myxococcus xanthus. J. Bacteriol. 152:462–70 [Google Scholar]
  120. Shleeva MO, Bagramyan K, Telkov MV, Mukamolova GV, Young M. 120.  et al. 2002. Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 148:1581–91 [Google Scholar]
  121. Siegrist MS, Whiteside S, Jewett JC, Aditham A, Cava F, Bertozzi CR. 121.  2012. D-Amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS Chem. Biol. 14:14 [Google Scholar]
  122. Simonetti N, Strippoli V, Cassone A. 122.  1974. Yeast-mycelial conversion induced by N-acetyl-d-glucosamine in Candida albicans. Nature 250:344–46 [Google Scholar]
  123. Sinha RK, Rosenthal RS. 123.  1980. Release of soluble peptidoglycan from growing Gonococci: demonstration of anhydro-muramyl-containing fragments. Infect. Immun. 29:914–25 [Google Scholar]
  124. Squeglia F, Marchetti R, Ruggiero A, Lanzetta R, Marasco D. 124.  et al. 2011. Chemical basis of peptidoglycan discrimination by PrkC, a key kinase involved in bacterial resuscitation from dormancy. J. Am. Chem. Soc. 133:20676–79 [Google Scholar]
  125. Travassos LH, Girardin SE, Philpott DJ, Blanot D, Nahori MA. 125.  et al. 2004. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. 5:1000–6 [Google Scholar]
  126. Tuomanen E, Lindquist S, Sande S, Galleni M, Light K. 126.  et al. 1991. Coordinate regulation of beta-lactamase induction and peptidoglycan composition by the amp operon. Science 251:201–4 [Google Scholar]
  127. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE. 127.  et al. 2004. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5:1166–74 [Google Scholar]
  128. Vollmer W, Seligman SJ. 128.  2010. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 18:59–66 [Google Scholar]
  129. Willmann R, Lajunen HM, Erbs G, Newman MA, Kolb D. 129.  et al. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. USA 108:19824–29 [Google Scholar]
  130. Wong JE, Alsarraf HM, Kaspersen JD, Pedersen JS, Stougaard J. 130.  et al. 2014. Cooperative binding of LysM domains determines the carbohydrate affinity of a bacterial endopeptidase protein. FEBS J. 281:1196–208 [Google Scholar]
  131. Xu XL, Lee RT, Fang HM, Wang YM, Li R. 131.  et al. 2008. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4:28–39 [Google Scholar]
  132. Yeats C, Finn RD, Bateman A. 132.  2002. The PASTA domain: a β-lactam-binding domain. Trends Biochem. Sci. 27:438–40 [Google Scholar]
  133. Yoshida H, Kinoshita K, Ashida M. 133.  1996. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271:13854–60 [Google Scholar]
  134. Zhang XC, Cannon SB, Stacey G. 134.  2009. Evolutionary genomics of LysM genes in land plants. BMC Evol. Biol. 9:183 [Google Scholar]
  135. Zhou X, Cegelski L. 135.  2012. Nutrient-dependent structural changes in S. aureus peptidoglycan revealed by solid-state NMR spectroscopy. Biochemistry 51:8143–53 [Google Scholar]
/content/journals/10.1146/annurev-micro-091213-112844
Loading
/content/journals/10.1146/annurev-micro-091213-112844
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error