1932

Abstract

Corals are fundamental ecosystem engineers, creating large, intricate reefs that support diverse and abundant marine life. At the core of a healthy coral animal is a dynamic relationship with microorganisms, including a mutually beneficial symbiosis with photosynthetic dinoflagellates ( spp.) and enduring partnerships with an array of bacterial, archaeal, fungal, protistan, and viral associates, collectively termed the coral holobiont. The combined genomes of this coral holobiont form a coral hologenome, and genomic interactions within the hologenome ultimately define the coral phenotype. Here we integrate contemporary scientific knowledge regarding the ecological, host-specific, and environmental forces shaping the diversity, specificity, and distribution of microbial symbionts within the coral holobiont, explore physiological pathways that contribute to holobiont fitness, and describe potential mechanisms for holobiont homeostasis. Understanding the role of the microbiome in coral resilience, acclimation, and environmental adaptation is a new frontier in reef science that will require large-scale collaborative research efforts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102215-095440
2016-09-08
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/1/annurev-micro-102215-095440.html?itemId=/content/journals/10.1146/annurev-micro-102215-095440&mimeType=html&fmt=ahah

Literature Cited

  1. Agostini S, Suzuki Y, Higuchi T, Casareto B, Yoshinaga K. 1.  et al. 2012. Biological and chemical characteristics of the coral gastric cavity. Coral Reefs 31:147–56 [Google Scholar]
  2. Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B. 2.  et al. 2015. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 9:2261–74 doi:10.1038/ismej.2015.39 [Google Scholar]
  3. Ainsworth TD, Thurber RV, Gates RD. 3.  2010. The future of coral reefs: a microbial perspective. Trends Ecol. Evol. 25:233–40 [Google Scholar]
  4. Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT. 4.  et al. 2015. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98–101 [Google Scholar]
  5. Apprill A, Marlow HQ, Martindale MQ, Rappe MS. 5.  2009. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 3:685–99 [Google Scholar]
  6. Baird AH, Bhagooli R, Ralph PJ, Takahashi S. 6.  2009. Coral bleaching: the role of the host. Trends Ecol. Evol. 24:16–20 [Google Scholar]
  7. Barott KL, Rodriguez-Mueller B, Youle M, Marhaver KL, Vermeij MJA. 7.  et al. 2012. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae. Proc. R. Soc. B 279:1655–64 [Google Scholar]
  8. Barott KL, Rohwer FL. 8.  2012. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20:621–28 [Google Scholar]
  9. Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML. 9.  et al. 2013. Bacteriophage adhering to mucus provide a non-host-derived immunity. PNAS 110:10771–76 [Google Scholar]
  10. Bayer T, Arif C, Ferrier-Pages C, Zoccola D, Aranda M, Voolstra CR. 10.  2013. Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini. Mar. Ecol. Prog. Ser. 479:75–84 [Google Scholar]
  11. Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK. 11.  et al. 2013. The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl. Environ. Microbiol. 79:4759–62 [Google Scholar]
  12. Beinart RA, Nyholm SV, Dubilier N, Girguis PR. 12.  2014. Intracellular Oceanospirillales inhabit the gills of the hydrothermal vent snail Alviniconcha with chemosynthetic, γ-proteobacterial symbionts. Environ. Microbiol. Rep. 6:656–64 [Google Scholar]
  13. Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS. 13.  2013. Could some coral reefs become sponge reefs as our climate changes?. Glob. Change Biol. 19:2613–24 [Google Scholar]
  14. Bentis CJ, Kaufman L, Golubic S. 14.  2000. Endolithic fungi in reef-building corals (order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biol. Bull. 198:254–60 [Google Scholar]
  15. Blackall LL, Wilson B, Oppen MJH. 15.  2015. Coral—the world's most diverse symbiotic ecosystem. Mol. Ecol. 24:5330–47 [Google Scholar]
  16. Bordenstein SR, Theis KR. 16.  2015. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLOS Biol. 13:e1002226 [Google Scholar]
  17. Bourne D, Iida Y, Uthicke S, Smith-Keune C. 17.  2008. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2:350–63 [Google Scholar]
  18. Brown BE. 18.  1997. Coral bleaching: causes and consequences. Coral Reefs 16:129–38 [Google Scholar]
  19. Brown BE, Bythell JC. 19.  2005. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296:291–309 [Google Scholar]
  20. Brune A, Dietrich C. 20.  2015. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69:145–66 [Google Scholar]
  21. Bythell JC, Wild C. 21.  2011. Biology and ecology of coral mucus release. J. Exp. Mar. Biol. Ecol. 408:88–93 [Google Scholar]
  22. Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L. 22.  et al. 2015. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc. R. Soc. Lond. Ser. B 282:20152257 [Google Scholar]
  23. Ceh J, Kilburn MR, Cliff JB, Raina J-B, Keulen M, Bourne DG. 23.  2013. Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol. Evol. 3:2393–400 [Google Scholar]
  24. Correa AMS, Welsh RM, Thurber RLV. 24.  2013. Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals. ISME J. 7:13–27 [Google Scholar]
  25. Cumbo VR, Baird AH, Moore RB, Negri AP, Neilan BA. 25.  et al. 2013. Chromera velia is endosymbiotic in larvae of the reef corals Acropora digitifera and A. tenuis. Protist 164:237–44 [Google Scholar]
  26. Davy SK, Allemand D, Weiss VM. 26.  2012. Cell-biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76:229–61 [Google Scholar]
  27. Day T, Bonduriansky R. 27.  2011. A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am. Nat. 178:E18–36 [Google Scholar]
  28. De'ath G, Fabricius KE, Sweatman H, Puotinen M. 28.  2012. The 27-year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109:17995–99 [Google Scholar]
  29. Decelle J. 29.  2013. New perspectives on the functioning and evolution of photosymbiosis in plankton: mutualism or parasitism?. Commun. Integr. Biol. 6:e24560 [Google Scholar]
  30. Deschaseaux ESM, Jones GB, Deseo MA, Shepherd KM, Kiene RP. 30.  et al. 2014. Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol. Oceanogr. 59:758–68 [Google Scholar]
  31. Dias BG, Ressler KJ. 31.  2014. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17:89–96 [Google Scholar]
  32. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M. 32.  et al. 2008. Functional metagenomic profiling of nine biomes. Nature 452:629–32 [Google Scholar]
  33. Dinsdale EA, Rohwer F. 33.  2011. Fish or germs? Microbial dynamics associated with changing trophic structures on coral reefs. Coral Reefs: An Ecosystem in Transition Z Dubinsky, N Stambler 231–40 Dordrecht, Neth.: Springer [Google Scholar]
  34. Durham BP, Sharma S, Luo H, Smith CB, Amin SA. 34.  et al. 2015. Cryptic carbon and sulfur cycling between surface ocean plankton. PNAS 112:453–57 [Google Scholar]
  35. Dyhrman ST, Benitez-Nelson CR, Orchard ED, Haley ST, Pellechia PJ. 35.  2009. A microbial source of phosphonates in oligotrophic marine systems. Nat. Geosci. 2:696–99 [Google Scholar]
  36. Fabricius KE. 36.  2011. Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. Coral Reefs: An Ecosystem in Transition Z Dubinsky, N Stambler 493–505 Dordrecht, Neth.: Springer [Google Scholar]
  37. Falkowski PG, Dubinsky Z, Muscatine L, McCloskey LR. 37.  1993. Population control in symbiotic corals. Bioscience 43:453–64 [Google Scholar]
  38. Falkowski PG, Dubinsky Z, Muscatine L, Porter JW. 38.  1984. Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–9 [Google Scholar]
  39. Fan L, Liu M, Simister R, Webster NS, Thomas T. 39.  2013. Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J. 7:991–1002 [Google Scholar]
  40. Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S. 40.  et al. 2012. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. PNAS 109:E1878–87 [Google Scholar]
  41. Ferrier-Pages C, Houlbreque F, Wyse E, Richard C, Allemand D, Boisson F. 41.  2005. Bioaccumulation of zinc in the scleractinian coral Stylophora pistillata. Coral Reefs 24:636–45 [Google Scholar]
  42. Fine M, Loya Y. 42.  2002. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc. R. Soc. Lond. B 269:1205–10 [Google Scholar]
  43. Fiore CL, Jarett JK, Olson ND, Lesser MP. 43.  2010. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 18:455–63 [Google Scholar]
  44. Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A. 44.  et al. 2009. Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J. Exp. Mar. Biol. Ecol. 373:102–10 [Google Scholar]
  45. Fraune S, Bosch TCG. 45.  2010. Why bacteria matter in animal development and evolution. BioEssays 32:571–80 [Google Scholar]
  46. Garren M, Azam F. 46.  2012. Corals shed bacteria as a potential mechanism of resilience to organic matter enrichment. ISME J. 6:1159–65 [Google Scholar]
  47. Garren M, Son K, Raina J-B, Rusconi R, Menolascina F. 47.  et al. 2014. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 8:999–1007 [Google Scholar]
  48. Gilbert JA, Thomas S, Cooley NA, Kulakova A, Field D. 48.  et al. 2009. Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters. Environ. Microbiol. 11:111–25 [Google Scholar]
  49. Goffredi SK, Orphan VJ, Rouse GW, Jahnke L, Embaye T. 49.  et al. 2005. Evolutionary innovation: a bone-eating marine symbiosis. Environ. Microbiol. 7:1369–78 [Google Scholar]
  50. Golubic S, Radtke G, Le Campion-Alsumard T. 50.  2005. Endolithic fungi in marine ecosystems. Trends Microbiol. 13:229–35 [Google Scholar]
  51. Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ. 51.  et al. 2012. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLOS ONE 7:e33353 [Google Scholar]
  52. Haas AF, Fairoz MFM, Kelly LW, Nelson CE, Dinsdae EA. 52.  et al. 2016. Global microbialization of coral reefs. Nat. Microbiol. 1:16042 [Google Scholar]
  53. Haas AF, Nelson CE, Rohwer F, Wegley-Kelly L, Quistad SD. 53.  et al. 2013. Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ. 1:e108 [Google Scholar]
  54. Herndl GJ, Velimirov B. 54.  1986. Microheterotrophic utilization of mucus released by the Mediterranean coral Cladocora cespitosa. Mar. Biol. 90:363–69 [Google Scholar]
  55. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P. 55.  et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:1737–42 [Google Scholar]
  56. Hong M-J, Yu Y-T, Chen CA, Chiang P-W, Tang S-L. 56.  2009. Influence of species specificity and other factors on bacteria associated with the coral Stylophora pistillata in Taiwan. Appl. Environ. Microbiol. 75:7797–806 [Google Scholar]
  57. Janouskovec J, Horak A, Barott KL, Rohwer FL, Keeling PJ. 57.  2012. Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr. Biol. 22:R518–19 [Google Scholar]
  58. Jin P, Gao K, Beardall J. 58.  2013. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution 67:1869–78 [Google Scholar]
  59. Katz SM, Pollock FJ, Bourne DG, Willis BL. 59.  2014. Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals. Coral Reefs 33:705–16 [Google Scholar]
  60. Kelly LW, Williams GJ, Barott KL, Carlson CA, Dinsdale EA. 60.  et al. 2014. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. PNAS 111:10227–32 [Google Scholar]
  61. Kimes NE, Van Nostrand JD, Weil E, Zhou J, Morris PJ. 61.  2010. Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environ. Microbiol. 12:541–56 [Google Scholar]
  62. Kline DI, Kuntz NM, Breitbart M, Knowlton N, Rohwer F. 62.  2006. Role of elevated organic carbon levels and microbial activity in coral mortality. Mar. Ecol. Prog. Ser. 314:119–25 [Google Scholar]
  63. Knowlton N, Jackson JBC. 63.  2001. The ecology of coral reefs. Marine Community Ecology MD Bertness, SD Gaines, ME Hay 395–422 Sunderland, MA: Sinauer Assoc. [Google Scholar]
  64. Krediet CJ, Ritchie KB, Alagely A, Teplitski M. 64.  2013. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J. 7:980–90 [Google Scholar]
  65. Kvennefors ECE, Leggat W, Hoegh-Guldberg O, Degnan BM, Barnes AC. 65.  2008. An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev. Comp. Immunol. 32:1582–92 [Google Scholar]
  66. Kvennefors ECE, Leggat W, Kerr CC, Ainsworth TD, Hoegh-Guldberg O, Barnes AC. 66.  2010. Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. Dev. Comp. Immunol. 34:1219–29 [Google Scholar]
  67. Lema KA, Bourne DG, Willis BL. 67.  2014. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol. Ecol. 23:4682–95 [Google Scholar]
  68. Lema KA, Clode PL, Kilburn MR, Thornton R, Willis BL, Bourne DG. 68.  2016. Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora. ISME J. 101804–8
  69. Lema KA, Willis BL, Bourne DG. 69.  2012. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl. Environ. Microbiol. 78:3136–44 [Google Scholar]
  70. Lesser MP, Falcon LI, Rodriguez-Roman A, Enriquez S, Hoegh-Guldberg O, Iglesias- Prieto R. 70.  2007. Nitrogen fixation by symbiotic cyanobactieria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 347:143–52 [Google Scholar]
  71. Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG. 71.  2004. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000 [Google Scholar]
  72. Littman R, Willis BL, Bourne DG. 72.  2011. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ. Microbiol. Rep. 3:651–60 [Google Scholar]
  73. Littman RA, Willis BL, Pfeffer C, Bourne DG. 73.  2009. Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiol. Ecol. 68:152–63 [Google Scholar]
  74. Liu J, Weinbauer MG, Maier C, Dai M, Gattuso J-P. 74.  2010. Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquat. Microb. Ecol. 61:291–305 [Google Scholar]
  75. Lobban CS, Raymundo LM, Montagnes DJS. 75.  2011. Porpostoma guamensis n. sp., a philasterine scutico-ciliate associated with brown-band disease of corals. J. Eukaryot. Microbiol. 58:103–13 [Google Scholar]
  76. Magurran AE, Henderson PA. 76.  2003. Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–16 [Google Scholar]
  77. Marhaver KL, Edwards RA, Rohwer F. 77.  2008. Viral communities associated with healthy and bleaching corals. Environ. Microbiol. 10:2277–86 [Google Scholar]
  78. McDole T, Nulton J, Barott KL, Felts B, Hand C. 78.  et al. 2012. Assessing coral reefs on a Pacific-wide scale using the microbialization score. PLOS ONE 7:e43233 [Google Scholar]
  79. McFall-Ngai M. 79.  2014. Divining the essence of symbiosis: insights from the squid-Vibrio model. PLOS Biol. 12:e1001783 [Google Scholar]
  80. Meron D, Atias E, Iasur Kruh L, Elifantz H, Minz D. 80.  et al. 2011. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 5:51–60 [Google Scholar]
  81. Moberg F, Folke C. 81.  1999. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29:215–33 [Google Scholar]
  82. Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancovva M. 82.  et al. 2008. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–63 [Google Scholar]
  83. Moran NA, Sloan DB. 83.  2015. The hologenome concept: helpful or hollow?. PLOS Biol. 13:e1002311 [Google Scholar]
  84. Morrow KM, Bourne DG, Humphrey C, Botte ES, Laffy P. 84.  et al. 2014. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J. 9:894–908 [Google Scholar]
  85. Morrow KM, Ritson-Williams R, Ross C, Liles MR, Paul VJ. 85.  2012. Macroalgal extracts induce bacterial assemblage shifts and sublethal tissue stress in Caribbean corals. PLOS ONE 7:e44859 [Google Scholar]
  86. Mouchka ME, Hewson I, Harvell CD. 86.  2010. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50:662–74 [Google Scholar]
  87. Muscatine L, Porter JW. 87.  1977. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–60 [Google Scholar]
  88. Muyzer G, Stams AJM. 88.  2008. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6:441–54 [Google Scholar]
  89. Neave M, Rachmawati R, Xun L, Michell C, Bourne DG. 89.  et al. 2016. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. In press. doi:10.1038/ismej.2016.95
  90. Neave MJ, Michell CT, Apprill A, Voolstra CR. 90.  2014. Whole-genome sequences of three symbiotic endozoicomonas strains. Genome Announc. 2:e00802–14 [Google Scholar]
  91. Nelson CE, Goldberg SJ, Kelly LW, Haas AF, Smith JE. 91.  et al. 2013. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 7:962–79 [Google Scholar]
  92. Nguyen MTHD, Liu M, Thomas T. 92.  2014. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol. Ecol. 23:1635–45 [Google Scholar]
  93. Nyholm SV, McFall-Ngai M. 93.  2004. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2:632–42 [Google Scholar]
  94. O'Brien PA, Morrow KM, Willis BL, Bourne DG. 94.  2016. Implications of ocean acidification for marine microorganisms from the free-living to the host-associated. Front. Mar. Sci. 3:47 [Google Scholar]
  95. Page CA, Willis BL. 95.  2008. Epidemiology of skeletal eroding band on the Great Barrier Reef and the role of injury in the initiation of this widespread coral disease. Coral Reefs 27:257–72 [Google Scholar]
  96. Palardy JE, Rodrigues LJ, Grottoli AG. 96.  2008. The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J. Exp. Mar. Biol. Ecol. 367:180–88 [Google Scholar]
  97. Pernice M, Levy O. 97.  2014. Novel tools integrating metabolic and gene function to study the impact of the environment on coral symbiosis. Front. Microbiol. 5:448 [Google Scholar]
  98. Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I. 98.  et al. 2012. A single-cell view of ammonium assimilation in coral-dinoflagellate symbiosis. ISME J. 6:1314–24 [Google Scholar]
  99. Peters EC. 99.  1984. A survey of cellular reactions to environmental stress and disease in Caribbean scleractinian corals. Helgol. Meeresunters. 37:113–37 [Google Scholar]
  100. Phillips NW. 100.  1984. Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull. Mar. Sci. 35:283–98 [Google Scholar]
  101. Piggot AM, Fouke BW, Sivaguru M, Sanford RA, Gaskins HR. 101.  2009. Change in zooxanthellae and mucocyte tissue density as an adaptive response to environmental stress by the coral, Montastraea annularis. Mar. Biol. 156:2379–89 [Google Scholar]
  102. Pinzon JH, Kamel B, Burge CA, Harvell CD, Medina M. 102.  et al. 2015. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2:140214 [Google Scholar]
  103. Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J. 103.  2006. Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol. Phylogenet. Evol. 38:20–30 [Google Scholar]
  104. Pollock FJ, Lamb JB, Field SN, Heron SF, Schaffelke B. 104.  et al. 2014. Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. PLOS ONE 9:e102498 [Google Scholar]
  105. Radecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. 105.  2015. Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends Microbiol. 23:490–97 doi:10.1016/j.tim.2015.03.008 [Google Scholar]
  106. Raina J-B, Dinsdale E, Willis BL, Bourne DG. 106.  2010. Do organic sulphur compounds DMSP and DMS drive coral microbial associations?. Trends Microbiol. 18:101–8 [Google Scholar]
  107. Raina J-B, Tapiolas DM, Foret S, Lutz A, Abrego D. 107.  et al. 2013. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 502:677–80 [Google Scholar]
  108. Raina J-B, Tapiolas DM, Motti CA, Forêt S, Seemann T. 108.  et al. 2016. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ. In press
  109. Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME. 109.  2011. Macroalgal terpenes function as allelopathic agents against reef corals. PNAS 108:17726–31 [Google Scholar]
  110. Ravindran J, Kannapiran E, Manikandan B, Francis K, Arora S. 110.  et al. 2013. UV-absorbing bacteria in coral mucus and their response to simulated temperature elevations. Coral Reefs 32:1043–50 [Google Scholar]
  111. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E. 111.  2006. The coral probiotic hypothesis. Environ. Microbiol. 8:2068–73 [Google Scholar]
  112. Ritchie KB. 112.  2006. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322:1–14 [Google Scholar]
  113. Rohwer F, Seguritan V, Azam F, Knowlton N. 113.  2002. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243:1–10 [Google Scholar]
  114. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. 114.  2007. The role of microorganisms in coral health, disease and evolution. Nat. Rev. 5:355–62 [Google Scholar]
  115. Sandin SA, Walsh SM, Jackson JBC. 115.  2010. Prey release, trophic cascades, and phase shifts in tropical nearshore ecosystems. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature J Terborgh, JA Estes 71–90 Washington: Island Press [Google Scholar]
  116. Sato Y, Civiello M, Bell SC, Willis BL, Bourne DG. 116.  2015. Integrated approach to understanding the onset and pathogenesis of black band disease in corals. Environ. Microbiol. 18:752–65 [Google Scholar]
  117. Seymour JR, Simo R, Ahmed T, Stocker R. 117.  2010. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329:342–45 [Google Scholar]
  118. Shade A, Peter H, Allison SD, Baho DL, Berga M. 118.  et al. 2012. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3:417 [Google Scholar]
  119. Sharp KH, Distel D, Paul VJ. 119.  2012. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J. 6:790–801 [Google Scholar]
  120. Shashar N, Banaszak AT, Lesser MP, Amrami D. 120.  1997. Coral endolithic algae: life in a protected environment. Pac. Sci. 51:167–73 [Google Scholar]
  121. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K. 121.  et al. 2011. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–23 [Google Scholar]
  122. Siboni N, Ben-Dov E, Sivan A, Kushmaro A. 122.  2008. Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ. Microbiol. 10:2979–90 [Google Scholar]
  123. Sievert SM, Kiene RP, Schultz-Vogt HN. 123.  2007. The sulfur cycle. Oceanography 20:117–23 [Google Scholar]
  124. Smith JE, Shaw M, Edwards RA, Obura D, Pantos O. 124.  et al. 2006. Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol. Lett. 9:835–45 [Google Scholar]
  125. Soffer N, Brandt ME, Correa AMS, Smith TB, Thurber RV. 125.  2014. Potential role of viruses in white plague coral disease. ISME J. 8:271–83 [Google Scholar]
  126. Stefels J. 126.  2000. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J. Sea Res. 43:183–97 [Google Scholar]
  127. Sunagawa S, Woodley CM, Medina M. 127.  2010. Threatened corals provide underexplored microbial habitats. PLOS ONE 5:e9554 [Google Scholar]
  128. Sweet MJ, Croquer A, Bythell JC. 128.  2011. Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs 30:39–52 [Google Scholar]
  129. Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA. 129.  et al. 2009. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol. 11:2148–63 [Google Scholar]
  130. Tout J, Jeffries TC, Petrou K, Tyson GW, Webster NS. 130.  et al. 2015. Chemotaxis by natural populations of coral reef bacteria. ISME J. 9:1764–77 [Google Scholar]
  131. Tremblay P, Grover R, Maguer J-F, Hoogenboom M, Ferrier-Pagès C. 131.  2014. Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs 33:1–13 [Google Scholar]
  132. Ursell LK, Metcalf JL, Parfrey LW, Knight R. 132.  2012. Defining the human microbiome. Nutr. Rev. 70:S38–44 [Google Scholar]
  133. Van Alstyne KL, Schupp P, Slattery M. 133.  2006. The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates. Coral Reefs 25:321–27 [Google Scholar]
  134. van Oppen MJH, Leong J-A, Gates RD. 134.  2009. Coral-virus interactions: a double-edged sword?. Symbiosis 47:1–8 [Google Scholar]
  135. Vega Thurber RLV, Barott KL, Hall D, Liu H, Rodriguez-Mueller B. 135.  et al. 2008. Metagenomic analysis indicates that stressors induce production of herpeslike viruses in the coral Porites compressa. PNAS 105:18413–18 [Google Scholar]
  136. Voolstra CR, Miller DJ, Ragan MA, Hoffmann AA, Hoegh-Guldberg O. 136.  et al. 2015. The ReFuGe 2020 Consortium—using “omics” approaches to explore the adaptability and resilience of coral holobionts to environmental change. Front. Mar. Sci. 2:00068 [Google Scholar]
  137. Weber M, de Beer D, Lott C, Polerecky L, Kohls K. 137.  et al. 2012. Mechanisms of damage to corals exposed to sedimentation. PNAS 109:E1558–67 [Google Scholar]
  138. Webster NS, Negri AP, Botté ES, Laffy PW, Flores F. 138.  et al. 2016. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci. Rep. 6:19324 [Google Scholar]
  139. Webster NS, Thomas T. 139.  2016. The sponge hologenome. mBio 7:2e00135–16 [Google Scholar]
  140. Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F. 140.  2007. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ. Microbiol. 9:2707–19 [Google Scholar]
  141. Wegley L, Yu Y, Breitbart M, Casas V, Kline DI, Rohwer F. 141.  2004. Coral-associated Archaea. Mar. Ecol. Prog. Ser. 273:89–96 [Google Scholar]
  142. Weis VM, Davy SK, Hoegh-Guldberg O, Rodriguez-Lanetty M, Pringe JR. 142.  2008. Cell biology in model systems as the key to understanding corals. Trends Ecol. Evol. 23:369–76 [Google Scholar]
  143. Welsh RM, Zaneveld JR, Rosales SM, Payet JP, Burkepile DE, Thurber RV. 143.  2015. Bacterial predation in a marine host-associated microbiome. ISME J. 10:1540–44 [Google Scholar]
  144. Weynberg JD, Voolstra CR, Neave MJ, Buerger P, van Oppen MJH. 144.  2014. From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5:17889 [Google Scholar]
  145. Weynberg KD, Wood-Charlson EM, Suttle CA, van Oppen MJH. 145.  2014. Generating viral metagenomes from the coral holobiont. Front. Microbiol. 5:206 [Google Scholar]
  146. Wiedenmann J, D'Angelo C, Smith EG, Hunt AN, Legiret F-E. 146.  et al. 2013. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3:160–64 [Google Scholar]
  147. Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jorgensen BB. 147.  2004. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70 [Google Scholar]
  148. Wilson W, Francis I, Ryan K, Davy S. 148.  2001. Temperature induction of viruses in symbiotic dinoflagellates. Aquat. Microb. Ecol. 25:99–102 [Google Scholar]
  149. Wilson WH, Dale AL, Davy JE, Davy SK. 149.  2005. An enemy within? Observations of virus-like particles in reef corals. Coral Reefs 24:145–48 [Google Scholar]
  150. Wooldridge SA. 150.  2009. A new conceptual model for the warm-water breakdown of the coral-algae endosymbiosis. Mar. Freshwater Res. 60:483–96 [Google Scholar]
  151. Work TM, Aeby GS. 151.  2014. Microbial aggregates within tissues infect a diversity of corals throughout the Indo-Pacific. Mar. Ecol. Prog. Ser. 500:1–9 [Google Scholar]
  152. Yang S, Sun W, Zhang F, Li Z. 152.  2013. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea. Mar. Biotechnol. 15:540–51 [Google Scholar]
  153. Yellowlees D, Rees TAV, Leggat W. 153.  2008. Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ. 31:679–94 [Google Scholar]
  154. Yuen YS, Yamazaki SS, Baird AH, Nakamura T, Yamasaki H. 154.  2013. Sulfate-reducing bacteria in the skeleton of the massive coral Goniastrea aspera from the Great Barrier Reef. Galaxea J. Coral Reef Stud. 15:154–59 [Google Scholar]
  155. Zan J, Cicirelli EM, Mohamed NM, Sibhatu H, Kroll S. 155.  et al. 2012. A complex LuxR-LuxI type quorum sensing network in a roseobacterial marine sponge symbiont activates flagellar motility and inhibits biofilm formation. Mol. Microbiol. 85:916–33 [Google Scholar]
  156. Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R. 156.  et al. 2016. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7:11833 [Google Scholar]
  157. Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT. 157.  2015. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. PNAS 112:4381–86 [Google Scholar]
/content/journals/10.1146/annurev-micro-102215-095440
Loading
/content/journals/10.1146/annurev-micro-102215-095440
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error