1932

Abstract

Primate face processing depends on a distributed network of interlinked face-selective areas composed of face-selective neurons. In both humans and macaques, the network is divided into a ventral stream and a dorsal stream, and the functional similarities of the areas in humans and macaques indicate they are homologous. Neural correlates for face detection, holistic processing, face space, and other key properties of human face processing have been identified at the single neuron level, and studies providing causal evidence have established firmly that face-selective brain areas are central to face processing. These mechanisms give rise to our highly accurate familiar face recognition but also to our error-prone performance with unfamiliar faces. This limitation of the face system has important implications for consequential situations such as eyewitness identification and policing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070815-013934
2016-07-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/39/1/annurev-neuro-070815-013934.html?itemId=/content/journals/10.1146/annurev-neuro-070815-013934&mimeType=html&fmt=ahah

Literature Cited

  1. Afraz A, Boyden ES, DiCarlo JJ. 2015. Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. PNAS 112:6730–35 [Google Scholar]
  2. Afraz SR, Kiani R, Esteky H. 2006. Microstimulation of inferotemporal cortex influences face categorization. Nature 442:692–95 [Google Scholar]
  3. Andersen SM, Carlson CA, Carlson M, Gronlund SD. 2014. Individual differences predict eyewitness identification performance. Personal. Individ. Differ. 60:36–40 [Google Scholar]
  4. Axelrod V, Yovel G. 2012. Hierarchical processing of face viewpoint in human visual cortex. J. Neurosci. 32:2442–52 [Google Scholar]
  5. Axelrod V, Yovel G. 2013. The challenge of localizing the anterior temporal face area: a possible solution. NeuroImage 81:371–80 [Google Scholar]
  6. Barton JJ, Press DZ, Keenan JP, O'Connor M. 2002. Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia. Neurology 58:71–78 [Google Scholar]
  7. Bell AH, Hadj-Bouziane F, Frihauf JB, Tootell RB, Ungerleider LG. 2009. Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. J. Neurophysiol. 101:688–700 [Google Scholar]
  8. Bentin S, Allison T, Puce A, Perez E, McCarthy G. 1996. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8:551–65 [Google Scholar]
  9. Bernstein M, Oron J, Sadeh B, Yovel G. 2014. An integrated face-body representation in the fusiform gyrus but not the lateral occipital cortex. J. Cogn. Neurosci. 26:2469–78 [Google Scholar]
  10. Bernstein M, Yovel G. 2015. Two neural pathways of face processing: a critical evaluation of current models. Neurosci. Biobehav. Rev. 55:536–46 [Google Scholar]
  11. Bouvier SE, Engel SA. 2006. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb. Cortex 16:183–91 [Google Scholar]
  12. Bowles DC, McKone E, Dawel A, Duchaine B, Palermo R. et al. 2009. Diagnosing prosopagnosia: effects of ageing, sex, and participant-stimulus ethnic match on the Cambridge Face Memory Test and Cambridge Face Perception Test. Cogn. Neuropsychol. 26:423–55 [Google Scholar]
  13. Bruce V. 1982. Changing faces: visual and non-visual coding processes in face recognition. Br. J. Psychol. 73:105–16 [Google Scholar]
  14. Bruce V, Ellis H, Gibling F, Young A. 1987. Parallel processing of the sex and familiarity of faces. Can. J. Psychol. 41:510–20 [Google Scholar]
  15. Bruce V, Young A. 1986. Understanding face recognition. Br. J. Psychol. 77:305–27 [Google Scholar]
  16. Bukowski H, Dricot L, Hanseeuw B, Rossion B. 2013. Cerebral lateralization of face-sensitive areas in left-handers: Only the FFA does not get it right. Cortex 49:2583–89 [Google Scholar]
  17. Burton AM, Jenkins R. 2011. Unfamiliar face perception. Oxford Handbook of Face Perception A Calder, G Rhodes, M Johnson, JV Haxby 287–306 Oxford, UK: Oxford Univ. Press [Google Scholar]
  18. Burton AM, Jenkins R, Hancock PJB, White D. 2005. Robust representations for face recognition: the power of averages. Cogn. Psychol. 51:256–84 [Google Scholar]
  19. Busigny T, Van Belle G, Jemel B, Hosein A, Joubert S, Rossion B. 2014. Face-specific impairment in holistic perception following focal lesion of the right anterior temporal lobe. Neuropsychologia 56:312–33 [Google Scholar]
  20. Calder AJ, Young AW. 2005. Understanding the recognition of facial identity and facial expression. Nat. Neurosci. 6:641–51 [Google Scholar]
  21. Carbon CC, Schweinberger SR, Kaufmann JM, Leder H. 2005. The Thatcher illusion seen by the brain: an event-related brain potentials study. Brain Res. Cogn. Brain Res. 24:544–55 [Google Scholar]
  22. Carlin JD, Calder AJ, Kriegeskorte N, Nili H, Rowe JB. 2011. A head view-invariant representation of gaze direction in anterior superior temporal sulcus. Curr. Biol. 21:1817–21 [Google Scholar]
  23. Chan AW, Downing PE. 2011. Faces and eyes in human lateral prefrontal cortex. Front. Hum. Neurosci. 5:51 [Google Scholar]
  24. Clutterbuck R, Johnston RA. 2005. Demonstrating how unfamiliar faces become familiar using a face matching task. Eur. J. Cog. Psychol. 17:97–116 [Google Scholar]
  25. Curtois MR, Mueller JH. 1979. Processing multiple physical features in facial recognition. Bull. Psychon. Soc. 14:74–76 [Google Scholar]
  26. Dalrymple KA, Oruç I, Duchaine B, Pancaroglu R, Fox CJ. et al. 2011. The anatomic basis of the right face-selective N170 IN acquired prosopagnosia: a combined ERP/fMRI study. Neuropsychologia 49:2553–63 [Google Scholar]
  27. Davis JP, Lander K, Jansari A. 2013. I never forget a face. Psychologist 26:726–29 [Google Scholar]
  28. De Renzi E, Perani D, Carlesimo GA, Silveri MC, Fazio F. 1994. Prosopagnosia can be associated with damage confined to the right hemisphere—an MRI and PET study and a review of the literature. Neuropsychologia 32:893–902 [Google Scholar]
  29. De Souza WC, Eifuku S, Tamura R, Nishijo H, Ono T. 2005. Differential characteristics of face neuron responses within the anterior superior temporal sulcus of macaques. J. Neurophysiol. 94:1252–66 [Google Scholar]
  30. DeGutis J, Wilmer J, Mercado RJ, Cohan S. 2013. Using regression to measure holistic face processing reveals a strong link with face recognition ability. Cognition 126:87–100 [Google Scholar]
  31. Dennett HW, McKone E, Edwards M, Susilo T. 2012. Face aftereffects predict individual differences in face recognition ability. Psychol. Sci. 23:1279–87 [Google Scholar]
  32. Desimone R, Albright TD, Gross CG, Bruce C. 1984. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4:2051–62 [Google Scholar]
  33. Dilks DD, Julian JB, Paunov AM, Kanwisher N. 2013. The occipital place area is causally and selectively involved in scene perception. J. Neurosci. 33:1331–36 [Google Scholar]
  34. Dubois J, de Berker AO, Tsao DY. 2015. Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA. J. Neurosci. 35:2791–802 [Google Scholar]
  35. Duchaine B, Yovel G. 2015. A revised neural framework for face processing. Annu. Rev. Vis. Sci. 1:293–416 [Google Scholar]
  36. Duchaine B, Yovel G, Nakayama K. 2007. No global processing deficit in the Navon task in 14 developmental prosopagnosics. Soc. Cogn. Affect. Neurosci. 2:104–13 [Google Scholar]
  37. Eifuku S, De Souza WC, Nakata R, Ono T, Tamura R. 2011. Neural representations of personally familiar and unfamiliar faces in the anterior inferior temporal cortex of monkeys. PLOS ONE 6:e18913 [Google Scholar]
  38. Ellis HD, Shepherd JW, Davies GM. 1979. Identification of familiar and unfamiliar faces from internal and external features: some implications for theories of face recognition. Perception 8:431–39 [Google Scholar]
  39. Farah MJ, Tanaka JW, Drain HM. 1995. What causes the face inversion effect?. J. Exp. Psychol. Hum. Percept. Perform. 21:628–34 [Google Scholar]
  40. Fisher C, Freiwald WA. 2015a. Contrasting specializations for facial motion within the macaque face-processing system. Curr. Biol. 25:261–66 [Google Scholar]
  41. Fisher C, Freiwald WA. 2015b. Whole-agent selectivity within the macaque face-processing system. PNAS 112:14717–22 [Google Scholar]
  42. Fox CJ, Hanif HM, Iaria G, Duchaine BC, Barton JJ. 2011. Perceptual and anatomic patterns of selective deficits in facial identity and expression processing. Neuropsychologia 49:3188–200 [Google Scholar]
  43. Fox CJ, Moon SY, Iaria G, Barton JJ. 2009. The correlates of subjective perception of identity and expression in the face network: an fMRI adaptation study. NeuroImage 44:569–80 [Google Scholar]
  44. Freiwald WA, Tsao DY. 2010. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–51 [Google Scholar]
  45. Freiwald WA, Tsao DY, Livingstone MS. 2009. A face feature space in the macaque temporal lobe. Nat. Neurosci. 12:1187–96 [Google Scholar]
  46. Fujita I, Tanaka K, Ito M, Cheng K. 1992. Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–46 [Google Scholar]
  47. Germine L, Nakayama K, Duchaine BC, Chabris CF, Chatterjee G, Wilmer JB. 2012. Is the Web as good as the lab? Comparable performance from Web and lab in cognitive/perceptual experiments. Psychon. Bull. Rev. 19:847–57 [Google Scholar]
  48. Gothard KM, Battaglia FP, Erickson CA, Spitler KM, Amaral DG. 2007. Neural responses to facial expression and face identity in the monkey amygdala. J. Neurophysiol. 97:1671–83 [Google Scholar]
  49. Gross CG. 2002. Genealogy of the “grandmother cell.”. Neuroscientist 8:512–18 [Google Scholar]
  50. Gschwind M, Pourtois G, Schwartz S, Van De Ville D, Vuilleumier P. 2012. White-matter connectivity between face-responsive regions in the human brain. Cereb. Cortex 22:1564–76 [Google Scholar]
  51. Halgren E, Dale AM, Sereno MI, Tootell RB, Marinkovic K, Rosen BR. 1999. Location of human face-selective cortex with respect to retinotopic areas. Hum. Brain Mapp. 7:29–37 [Google Scholar]
  52. Hasson U, Levy I, Behrmann M, Hendler T, Malach R. 2002. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34:479–90 [Google Scholar]
  53. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–30 [Google Scholar]
  54. Haxby JV, Hoffman EA, Gobbini MI. 2000. The distributed human neural system for face perception. Trends Cogn. Sci. 4:223–33 [Google Scholar]
  55. Hemond CC, Kanwisher NG, Op de Beeck HP. 2007. A preference for contralateral stimuli in human object- and face-selective cortex. PLOS ONE 2:e574 [Google Scholar]
  56. Hill H, Schyns PG, Akamatsu S. 1997. Information and viewpoint dependence in face recognition. Cognition 62:201–22 [Google Scholar]
  57. Hubel DH. 1982. Exploration of the primary visual cortex, 1955–78. Nature 299:515–24 [Google Scholar]
  58. Hugenberg K, Young SG, Bernstein MJ, Sacco DF. 2010. The categorization-individuation model: an integrative account of the other-race recognition deficit. Psychol. Rev. 117:1168–87 [Google Scholar]
  59. Hung CC, Yen CC, Ciuchta JL, Papoti D, Bock NA. et al. 2015. Functional mapping of face-selective regions in the extrastriate visual cortex of the marmoset. J. Neurosci. 35:1160–72 [Google Scholar]
  60. Issa EB, DiCarlo JJ. 2012. Precedence of the eye region in neural processing of faces. J. Neurosci. 32:16666–82 [Google Scholar]
  61. Issa EB, Papanastassiou AM, DiCarlo JJ. 2013. Large-scale, high-resolution neurophysiological maps underlying fMRI of macaque temporal lobe. J. Neurosci. 33:15207–19 [Google Scholar]
  62. Jenkins R, Burton AM. 2006. Face recognition from unconstrained images: progress with prototypes. Proc. Seventh IEEE Int. Conf. Autom. Face Gesture Recognit.25–30 Los Alamitos, CA: IEEE Comput. Soc. [Google Scholar]
  63. Jenkins R, Burton AM. 2011. Stable face representations. Philos. Trans. R. Soc. B 366:1671–83 [Google Scholar]
  64. Johnston A, Hill H, Carman N. 1992. Recognising faces: effects of lighting direction, inversion, and brightness reversal. Perception 21:365–75 [Google Scholar]
  65. Johnston RA, Edmonds AJ. 2009. Familiar and unfamiliar face recognition: a review. Memory 17:577–96 [Google Scholar]
  66. Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvee M. et al. 2012. Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience 222:281–88 [Google Scholar]
  67. Jonas J, Rossion B, Krieg J, Koessler L, Colnat-Coulbois S. et al. 2014. Intracerebral electrical stimulation of a face-selective area in the right inferior occipital cortex impairs individual face discrimination. NeuroImage 99:487–97 [Google Scholar]
  68. Kanwisher N. 2000. Domain specificity in face perception. Nat. Neurosci. 3:759–63 [Google Scholar]
  69. Kanwisher N. 2010. Functional specificity in the human brain: a window into the functional architecture of the mind. PNAS 107:11163–70 [Google Scholar]
  70. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:4302–11 [Google Scholar]
  71. Kemp R, Pike G, White P, Musselman A. 1996. Perception and recognition of normal and negative faces: the role of shape from shading and pigmentation cues. Perception 25:37–52 [Google Scholar]
  72. Kietzmann TC, Swisher JD, Konig P, Tong F. 2012. Prevalence of selectivity for mirror-symmetric views of faces in the ventral and dorsal visual pathways. J. Neurosci. 32:11763–72 [Google Scholar]
  73. Lafer-Sousa R, Conway BR. 2013. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat. Neurosci. 16:1870–78 [Google Scholar]
  74. Lafer-Sousa R, Conway BR, Kanwisher NG. 2016. Color-biased regions of the ventral visual pathway lie between face- and place-selective regions in humans, as in macaques. J. Neurosci. 36:1682–97 [Google Scholar]
  75. Le Grand R, Mondloch CJ, Maurer D, Brent HP. 2004. Impairment in holistic face processing following early visual deprivation. Psychol. Sci. 15:762–68 [Google Scholar]
  76. LeCun Y, Bengio Y. 1995. Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks MA Arbib 255–58 Cambridge, MA: MIT Press [Google Scholar]
  77. Leopold DA, Bondar IV, Giese MA. 2006. Norm-based face encoding by single neurons in monkey inferotemporal cortex. Nature 442:572–75 [Google Scholar]
  78. Leopold DA, O'Toole AJ, Vetter T, Blanz V. 2001. Prototype-referenced shape encoding revealed by high-level aftereffects. Nat. Neurosci. 4:89–94 [Google Scholar]
  79. Levy I, Hasson U, Avidan G, Hendler T, Malach R. 2001. Center-periphery organization of human object areas. Nat. Neurosci. 4:533–39 [Google Scholar]
  80. Malpass RS, Kravitz J. 1969. Recognition for faces of own and other race. J. Personal. Soc. Psychol. 13:330–34 [Google Scholar]
  81. McCarthy G, Puce A, Gore JC, Allison T. 1997. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9:605–10 [Google Scholar]
  82. McGugin RW, Tanaka JW, Lebrecht S, Tarr MJ, Gauthier I. 2011. Race-specific perceptual discrimination improvement following short individuation training with faces. Cogn. Sci. 35:330–47 [Google Scholar]
  83. Megreya AM, Burton AM. 2006. Unfamiliar faces are not faces: evidence from a matching task. Mem. Cogn. 34:865–76 [Google Scholar]
  84. Meissner CA, Brigham JC. 2001. Thirty years of investigating the own-race bias in memory for faces: a meta-analytic review. Psychol. Public Policy Law 7:3–35 [Google Scholar]
  85. Meyers EM, Borzello M, Freiwald WA, Tsao D. 2015. Intelligent information loss: the coding of facial identity, head pose, and non-face information in the macaque face patch system. J. Neurosci. 35:7069–81 [Google Scholar]
  86. Moeller S, Freiwald WA, Tsao DY. 2008. Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–59 [Google Scholar]
  87. Natl. Res. Counc. Natl. Acad 2014. Identifying the Culprit: Assessing Eyewitness Identification. Washington, DC: Natl. Acad.
  88. Nelissen K, Vanduffel W, Orban GA. 2006. Charting the lower superior temporal region, a new motion-sensitive region in monkey superior temporal sulcus. J. Neurosci. 26:5929–47 [Google Scholar]
  89. Ó Scalaidhe SP, Wilson FAW, Goldman-Rakic PS. 1997. Areal segregation of face-processing neurons in prefrontal cortex. Science 278:1135–38 [Google Scholar]
  90. O'Toole AJ, Edelman S, Bülthoff HH. 1998. Stimulus-specific effects in face recognition over changes in viewpoint. Vis. Res. 38:2351–63 [Google Scholar]
  91. Ohayon S, Freiwald WA, Tsao DY. 2012. What makes a cell face selective? The importance of contrast. Neuron 74:567–81 [Google Scholar]
  92. Parvizi J, Jacques C, Foster BL, Witthoft N, Rangarajan V. et al. 2012. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32:14915–20 [Google Scholar]
  93. Peelen MV, Downing PE. 2005. Selectivity for the human body in the fusiform gyrus. J. Neurophysiol. 93:603–8 [Google Scholar]
  94. Perrett DI, Hietanen JK, Oram MW, Benson PJ. 1992. Organization and functions of cells responsive to faces in the temporal cortex. Philos. Trans. R. Soc. B 335:23–30 [Google Scholar]
  95. Perrett DI, Rolls ET, Caan W. 1982. Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47:329–42 [Google Scholar]
  96. Perrett DI, Smith PAJ, Potter DD, Mistlin AJ, Head AS. et al. 1985. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc. R. Soc. B 223:293–317 [Google Scholar]
  97. Perrett DI, Smith PAJ, Potter DD, Mistlin AJ, Head AS. et al. 1984. Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. Hum. Neurobiol. 3:197–208 [Google Scholar]
  98. Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ. et al. 2009. Neural representations of faces and body parts in macaque and human cortex: a comparative fMRI study. J. Neurophysiol. 101:2581–600 [Google Scholar]
  99. Pitcher D. 2014. Facial expression recognition takes longer in the posterior superior temporal sulcus than in the occipital face area. J. Neurosci. 34:9173–77 [Google Scholar]
  100. Pitcher D, Charles L, Devlin JT, Walsh V, Duchaine B. 2009. Triple dissociation of faces, bodies, and objects in extrastriate cortex. Curr. Biol. 19:319–24 [Google Scholar]
  101. Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N. 2011a. Differential selectivity for dynamic versus static information in face-selective cortical regions. NeuroImage 56:2356–63 [Google Scholar]
  102. Pitcher D, Goldhaber T, Duchaine B, Walsh V, Kanwisher N. 2012. Two critical and functionally distinct stages of face and body perception. J. Neurosci. 32:15877–85 [Google Scholar]
  103. Pitcher D, Walsh V, Duchaine B. 2011b. The role of the occipital face area in the cortical face perception network. Exp. Brain Res. 209:481–93 [Google Scholar]
  104. Pitcher D, Walsh V, Yovel G, Duchaine B. 2007. TMS evidence for the involvement of the right occipital face area in early face processing. Curr. Biol. 17:1568–73 [Google Scholar]
  105. Popivanov ID, Jastorff J, Vanduffel W, Vogels R. 2012. Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI. NeuroImage 63:723–41 [Google Scholar]
  106. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. 2005. Invariant visual representation by single neurons in the human brain. Nature 435:1102–7 [Google Scholar]
  107. Rajimehr R, Bilenko NY, Vanduffel W, Tootell RB. 2014. Retinotopy versus face selectivity in macaque visual cortex. J. Cogn. Neurosci. 26:2691–700 [Google Scholar]
  108. Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C. et al. 2014. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J. Neurosci. 34:12828–36 [Google Scholar]
  109. Rattner A. 1988. Convicted but innocent: wrongful conviction and the criminal justice system. Law Hum. Behav. 12:283–93 [Google Scholar]
  110. Rhodes G, Byatt G, Tremewan T, Kennedy A. 1997. Facial distinctiveness and the power of caricatures. Perception 26:207–23 [Google Scholar]
  111. Rhodes G, Jeffery L. 2006. Adaptive norm-based coding of facial identity. Vis. Res. 46:2977–87 [Google Scholar]
  112. Rhodes G, Leopold DA. 2011. Adaptive norm-based coding of facial identity. Oxford Handbook of Face Perception A Calder, G Rhodes, M Johnson, JV Haxby 263–86 Oxford, UK: Oxford Univ. Press [Google Scholar]
  113. Riesenhuber M, Poggio T. 1999. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2:1019–25 [Google Scholar]
  114. Robertson DJ, Noyes E, Dowsett AJ, Jenkins R, Burton AM. 2016. Face recognition by Metropolitan Police super-recognisers. PLOS ONE 11:e0150036 [Google Scholar]
  115. Rolls ET, Critchley HD, Browning AS, Inoue K. 2006. Face-selective and auditory neurons in the primate orbitofrontal cortex. Exp. Brain Res. 170:74–87 [Google Scholar]
  116. Rossion B. 2014. Understanding face perception by means of prosopagnosia and neuroimaging. Front. Biosci. 6:258–307 [Google Scholar]
  117. Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E. 2003. A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain: J. Neurol. 126:2381–95 [Google Scholar]
  118. Russell R, Chatterjee G, Nakayama K. 2012. Developmental prosopagnosia and super-recognition: no special role for surface reflectance processing. Neuropsychologia 50:334–40 [Google Scholar]
  119. Russell R, Duchaine B, Nakayama K. 2009. Super-recognizers: people with extraordinary face recognition ability. Psychon. Bull. Rev. 16:252–57 [Google Scholar]
  120. Schwarzlose RF, Baker CI, Kanwisher N. 2005. Separate face and body selectivity on the fusiform gyrus. J. Neurosci. 25:11055–59 [Google Scholar]
  121. Schwarzlose RF, Swisher JD, Dang S, Kanwisher N. 2008. The distribution of category and location information across object-selective regions in human visual cortex. PNAS 105:4447–52 [Google Scholar]
  122. Sinha P. 2002. Qualitative representations for recognition. Biologically Motivated Computer Vision HH Bülthoff, C Wallraven, SW Lee, TA Poggio 249–62 Berlin: Springer-Verlag [Google Scholar]
  123. Song Y, Luo YL, Li X, Xu M, Liu J. 2013. Representation of contextually related multiple objects in the human ventral visual pathway. J. Cogn. Neurosci. 25:1261–69 [Google Scholar]
  124. Sorger B, Goebel R, Schiltz C, Rossion B. 2007. Understanding the functional neuroanatomy of acquired prosopagnosia. NeuroImage 35:836–52 [Google Scholar]
  125. Stewart CB, Disotell TR. 1998. Primate evolution—in and out of Africa. Curr. Biol. 8:R582–88 [Google Scholar]
  126. Sugase Y, Yamane S, Ueno S, Kawano K. 1999. Global and fine information coded by single neurons in the temporal visual cortex. Nature 400:869–73 [Google Scholar]
  127. Susilo T, Duchaine B. 2013. Advances in developmental prosopagnosia research. Curr. Opin. Neurobiol. 23:423–29 [Google Scholar]
  128. Tanaka JW, Farah MJ. 1993. Parts and wholes in face recognition. Q. J. Exp. Psychol. 46A:225–45 [Google Scholar]
  129. Taubert J, Van Belle G, Vanduffel W, Rossion B, Vogels R. 2015a. The effect of face inversion for neurons inside and outside fMRI-defined face-selective cortical regions. J. Neurophysiol. 113:1644–55 [Google Scholar]
  130. Taubert J, Van Belle G, Vanduffel W, Rossion B, Vogels R. 2015b. Neural correlate of the Thatcher face illusion in a monkey face-selective patch. J. Neurosci. 35:9872–78 [Google Scholar]
  131. Thompson P. 1980. Margaret Thatcher: a new illusion. Perception 9:483–84 [Google Scholar]
  132. Todorov A. 2008. Evaluating faces on trustworthiness: an extension of systems for recognition of emotions signaling approach/avoidance behaviors. Ann. N.Y. Acad. Sci. 1124:208–24 [Google Scholar]
  133. Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB. 2003. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6:989–95 [Google Scholar]
  134. Tsao DY, Freiwald WA, Tootell RB, Livingstone MS. 2006. A cortical region consisting entirely of face-selective cells. Science 311:670–74 [Google Scholar]
  135. Tsao DY, Moeller S, Freiwald WA. 2008a. Comparing face patch systems in macaques and humans. PNAS 105:19514–19 [Google Scholar]
  136. Tsao DY, Schweers N, Moeller S, Freiwald WA. 2008b. Patches of face-selective cortex in the macaque frontal lobe. Nat. Neurosci. 11:877–79 [Google Scholar]
  137. Turk M, Pentland A. 1991. Eigenfaces for recognition. J. Cogn. Neurosci. 3:71–86 [Google Scholar]
  138. Valentine T. 1991. A unified account of the effects of distinctiveness, inversion, and race in face recognition. Q. J. Exp. Psychol. 43A:161–204 [Google Scholar]
  139. Van Belle G, De Graef P, Verfaillie K, Busigny T, Rossion B. 2010. Whole not hole: Expert face recognition requires holistic perception. Neuropsychologia 48:2620–29 [Google Scholar]
  140. Wells GL, Olson E, Charman S. 2002. Eyewitness identification confidence. Curr. Dir. Psychol. Sci. 11:151–54 [Google Scholar]
  141. White D, Kemp RI, Jenkins R, Matheson M, Burton AM. 2014. Passport officers' errors in face matching. PLOS ONE 9:e103510 [Google Scholar]
  142. Wilhelm O, Herzmann G, Kunina O, Danthiir V, Schacht A, Sommer W. 2010. Individual differences in perceiving and recognizing faces—one element of social cognition. J. Pers. Soc. Psychol. 99:530–48 [Google Scholar]
  143. Wilmer JB, Germine L, Chabris CF, Chatterjee G, Williams M. et al. 2010. Human face recognition ability is specific and highly heritable. PNAS 107:5238–41 [Google Scholar]
  144. Yang H, Susilo T, Duchaine B. 2016. The anterior temporal face area contains invariant representations of face identity that can persist despite the loss of right FFA and OFA. Cereb. Cortex 26:1096–107 [Google Scholar]
  145. Yarmey AD. 1971. Recognition memory for familiar “public” faces: effects of orientation and delay. Psychon. Sci. 24:286–88 [Google Scholar]
  146. Yeatman JD, Weiner KS, Pestilli F, Rokem A, Mezer A, Wandell BA. 2014. The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. PNAS 111:E5214–23 [Google Scholar]
  147. Yin R. 1969. Looking at upside down faces. J. Exp. Psychol. 81:141–45 [Google Scholar]
  148. Young AW, Hay DC, McWeeny KH, Flude BM, Ellis AW. 1985. Matching familiar and unfamiliar faces on internal and external features. Perception 14:737–46 [Google Scholar]
  149. Young AW, Hellawell D, Hay DC. 1987. Configurational information in face perception. Perception 16:747–59 [Google Scholar]
  150. Young MP, Yamane S. 1992. Sparse population coding of faces in the inferotemporal cortex. Science 29:1327–31 [Google Scholar]
  151. Yovel G, Freiwald WA. 2013. Face recognition systems in monkey and human: Are they the same thing?. F1000Prime Rep. 5:10 [Google Scholar]
  152. Yovel G, Wilmer JB, Duchaine B. 2014. What can individual differences reveal about face processing?. Front. Hum. Neurosci. 8:562 [Google Scholar]
  153. Zhu Q, Song Y, Hu S, Li X, Tian M. et al. 2010. Heritability of the specific cognitive ability of face perception. Curr. Biol. 20:137–42 [Google Scholar]
/content/journals/10.1146/annurev-neuro-070815-013934
Loading
/content/journals/10.1146/annurev-neuro-070815-013934
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error