1932

Abstract

Ten years of remarkable progress in understanding the fundamental biochemistry of Alzheimer's disease have been followed by ten years of remarkable and increasing clinical insight into the natural progression of the disorder. The concept of a long, intermediary, prodromal phase between the first appearance of amyloid plaques and tangles and the manifestation of dementia is now well established. The major challenge for the next decade is to chart the many cellular processes that underlie this phase and link the biochemical alterations to the clinical manifestation of Alzheimer's disease. We discuss here how genetics, new cell culture systems, and improved animal models will fuel this work. We anticipate that the resulting novel insights will provide a basis for further drug development for this terrible disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070815-014015
2016-07-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/39/1/annurev-neuro-070815-014015.html?itemId=/content/journals/10.1146/annurev-neuro-070815-014015&mimeType=html&fmt=ahah

Literature Cited

  1. Acx H, Chávez-Gutiérrez L, Serneels L, Lismont S, Benurwar M. et al. 2014. Signature amyloid β profiles are produced by different γ-secretase complexes. J. Biol. Chem. 289:4346–55 [Google Scholar]
  2. Aisen PS, Gauthier S, Ferris SH, Saumier D, Haine D. et al. 2012. Tramiprosate in mild-to-moderate Alzheimer's disease – a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch. Med. Sci. 7:102–11 [Google Scholar]
  3. Akoury E, Pickhardt M, Gajda M, Biernat J, Mandelkow E, Zweckstetter M. 2013. Mechanistic basis of phenothiazine-driven inhibition of Tau aggregation. Angew. Chem. Int. Ed. Engl. 52:3511–15 [Google Scholar]
  4. Alexander R, Budd S, Russell M, Kugler A, Cebers G. et al. 2014. AZD3293 a novel BACE1 inhibitor: safety, tolerability, and effects on plasma and CSF Aβ peptides following single- and multiple-dose administration. Neurobiol. Aging 35:Suppl. 1S2 [Google Scholar]
  5. Arbel M, Yacoby I, Solomon B. 2005. Inhibition of amyloid precursor protein processing by β-secretase through site-directed antibodies. PNAS 102:7718–23 [Google Scholar]
  6. Ardiles AO, Tapia-Rojas CC, Mandal M, Alexandre F, Kirkwood A. et al. 2012. Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer's disease. PNAS 109:13835–40 [Google Scholar]
  7. Arsenault D, Julien C, Tremblay C, Calon F. 2011. DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice. PLOS ONE 6:e17397 [Google Scholar]
  8. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J. et al. 2015. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18:1584–93 [Google Scholar]
  9. Ashe KH, Zahs KR. 2010. Probing the biology of Alzheimer's disease in mice. Neuron 66:631–45 [Google Scholar]
  10. Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ. et al. 2011. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo. Sci. Transl. Med. 3:84ra43 [Google Scholar]
  11. Bai XC, Yan C, Yang G, Lu P, Ma D. et al. 2015. An atomic structure of human γ-secretase. Nature 525:212–17 [Google Scholar]
  12. Barão S, Gärtner A, Leyva-Diaz E, Demyanenko G, Munck S. et al. 2015. Antagonistic effects of BACE1 and APH1B-γ-secretase control axonal guidance by regulating growth cone collapse. Cell Rep. 12:1367–76 [Google Scholar]
  13. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A. et al. 2012. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367:795–804 [Google Scholar]
  14. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R. et al. 2012. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485:512–16 [Google Scholar]
  15. Benilova I, De Strooper B. 2013. Promiscuous Alzheimer's amyloid: yet another partner. Science 341:1354–55 [Google Scholar]
  16. Benilova I, Karran E, De Strooper B. 2012. The toxic Aβa oligomer and Alzheimer's disease: an emperor in need of clothes. Nat. Neurosci. 15:349–57 [Google Scholar]
  17. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR. et al. 2006. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15:433–42 [Google Scholar]
  18. Blundell J, Kouser M, Powell CM. 2008. Systemic inhibition of mammalian target of rapamycin inhibits fear memory reconsolidation. Neurobiol. Learn. Mem. 90:28–35 [Google Scholar]
  19. Boland B, Kumar A, Lee S, Platt FM, Wegiel J. et al. 2008. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J. Neurosci. 28:6926–37 [Google Scholar]
  20. Borgegård T, Gustavsson S, Nilsson C, Parpal S, Klintenberg R. et al. 2012. Alzheimer's disease: Presenilin 2-sparing γ-secretase inhibition is a tolerable Aβ peptide-lowering strategy. J. Neurosci. 32:17297–305 [Google Scholar]
  21. Braak H, Braak E. 1991. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82:239–59 [Google Scholar]
  22. Brodbeck J, McGuire J, Liu Z, Meyer-Franke A, Balestra ME. et al. 2011. Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors. J. Biol. Chem. 286:17217–26 [Google Scholar]
  23. Busche MA, Chen X, Henning HA, Reichwald J, Staufenbiel M. et al. 2012. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer's disease. PNAS 109:8740–45 [Google Scholar]
  24. Carrillo MC, Dean RA, Nicolas F, Miller DS, Berman R. et al. 2013. Revisiting the framework of the National Institute on Aging-Alzheimer's Association diagnostic criteria. Alzheimer's Dement. 9:594–601 [Google Scholar]
  25. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB. et al. 2011. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci. Transl. Med. 3:89ra57 [Google Scholar]
  26. Chen HK, Liu Z, Meyer-Franke A, Brodbeck J, Miranda RD. et al. 2012. Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. J. Biol. Chem. 287:5253–66 [Google Scholar]
  27. Chiang K, Koo EH. 2014. Emerging therapeutics for Alzheimer's disease. Annu. Rev. Pharmacol. Toxicol. 54:381–405 [Google Scholar]
  28. Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S. et al. 2014. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 515:274–78 [Google Scholar]
  29. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S. et al. 2009. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11:909–13 [Google Scholar]
  30. Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D. et al. 2013. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric Aβ, and frank neuronal loss. J. Neurosci. 33:6245–56 [Google Scholar]
  31. Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M. et al. 2012. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8:609–22 [Google Scholar]
  32. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC. et al. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–23 [Google Scholar]
  33. Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC. et al. 2012. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335:1503–6 [Google Scholar]
  34. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y. et al. 2014. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature 505:550–54 [Google Scholar]
  35. Cruchaga C, Kauwe JS, Harari O, Jin SC, Cai Y. et al. 2013. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease. Neuron 78:256–68 [Google Scholar]
  36. Cruchaga C, Kauwe JS, Mayo K, Spiegel N, Bertelsen S. et al. 2010. SNPs associated with cerebrospinal fluid phospho-tau levels influence rate of decline in Alzheimer's disease. PLOS Genet. 6:e1001101 [Google Scholar]
  37. Cuyvers E, De Roeck A, Van den Bossche T, Van Cauwenberghe C, Bettens K. et al. 2015. Mutations in ABCA7 in a Belgian cohort of Alzheimer's disease patients: a targeted resequencing study. Lancet Neurol. 14:814–22 [Google Scholar]
  38. D'Avanzo C, Aronson J, Kim YH, Choi SH, Tanzi RE, Kim DY. 2015. Alzheimer's in 3D culture: challenges and perspectives. Bioessays 37:1139–48 [Google Scholar]
  39. Deane R, Sagare A, Hamm K, Parisi M, Lane S. et al. 2008. apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Investig. 118:4002–13 [Google Scholar]
  40. de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH. et al. 2012. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73:685–97 [Google Scholar]
  41. De Strooper B. 2014. Lessons from a failed γ-secretase Alzheimer trial. Cell 159:721–26 [Google Scholar]
  42. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G. et al. 1998. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–90 [Google Scholar]
  43. De Strooper B, Karran E. 2016. The cellular phase of Alzheimer's disease. Cell 164:603–15 [Google Scholar]
  44. De Strooper B, Simons M, Multhaup G, Van Leuven F, Beyreuther K, Dotti CG. 1995. Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence. EMBO J. 14:4932–38 [Google Scholar]
  45. Dickey CA, Dunmore J, Lu B, Wang JW, Lee WC. et al. 2006. HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J. 20:753–55 [Google Scholar]
  46. Do Carmo S, Cuello AC. 2013. Modeling Alzheimer's disease in transgenic rats. Mol. Neurodegener. 8:37 [Google Scholar]
  47. Dodart JC, Marr RA, Koistinaho M, Gregersen BM, Malkani S. et al. 2005. Gene delivery of human apolipoprotein E alters brain Aβ burden in a mouse model of Alzheimer's disease. PNAS 102:1211–16 [Google Scholar]
  48. Dominguez D, Tournoy J, Hartmann D, Huth T, Cryns K. et al. 2005. Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J. Biol. Chem. 280:30797–806 [Google Scholar]
  49. Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B. et al. 2013. A phase 3 trial of semagacestat for treatment of Alzheimer's disease. N. Engl. J. Med. 369:341–50 [Google Scholar]
  50. Dow LE. 2015. Modeling disease in vivo with CRISPR/Cas9. Trends Mol. Med. 21:609–21 [Google Scholar]
  51. Duan L, Bhattacharyya BJ, Belmadani A, Pan L, Miller RJ, Kessler JA. 2014. Stem cell derived basal forebrain cholinergic neurons from Alzheimer's disease patients are more susceptible to cell death. Mol. Neurodegener. 9:3 [Google Scholar]
  52. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL. et al. 2014. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 13:614–29 [Google Scholar]
  53. Esterházy D, Stützer I, Wang H, Rechsteiner MP, Beauchamp J. et al. 2011. Bace2 is a β cell-enriched protease that regulates pancreatic β cell function and mass. Cell Metab. 14:365–77 [Google Scholar]
  54. Fagan AM, Head D, Shah AR, Marcus D, Mintun M. et al. 2009. Decreased cerebrospinal fluid Aβ42 correlates with brain atrophy in cognitively normal elderly. Ann. Neurol. 65:176–83 [Google Scholar]
  55. Fazzari P, Snellinx A, Sabanov V, Ahmed T, Serneels L. et al. 2014. Cell autonomous regulation of hippocampal circuitry via Aph1b-γ-secretase/neuregulin 1 signalling. eLife 3:e02196 [Google Scholar]
  56. Forman M, Tseng J, Palcza J, Leempoels J, Ramael S. et al. 2012. The novel BACE inhibitor MK-8931 dramatically lowers CSF Aβ peptides in healthy subjects: results from a rising single dose study (PL02.004) Presented at 64th Am. Acad. Neurol. Annu. Meet., New Orleans, LA [Google Scholar]
  57. Forny-Germano L, Lyra e Silva NM, Batista AF, Brito-Moreira J, Gralle M. et al. 2014. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J. Neurosci. 34:13629–43 [Google Scholar]
  58. Frederick C, Ando K, Leroy K, Heraud C, Suain V. et al. 2014. Rapamycin ester analog CCI-779/temsirolimus alleviates tau pathology and improves motor deficit in mutant tau transgenic mice. J. Alzheimer's Dis. 44:1145–56 [Google Scholar]
  59. Frost B, Jacks RL, Diamond MI. 2009. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 284:12845–52 [Google Scholar]
  60. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P. et al. 1995. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–27 [Google Scholar]
  61. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA. et al. 2006. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry 63:168–74 [Google Scholar]
  62. Genin E, Hannequin D, Wallon D, Sleegers K, Hiltunen M. et al. 2011. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 16:903–7 [Google Scholar]
  63. Glenner GG, Wong CW. 1984. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120:885–90 [Google Scholar]
  64. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F. et al. 1991. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349:704–6 [Google Scholar]
  65. Graham DL, Gray AJ, Joyce JA, Yu D, O'Moore J. et al. 2013. Increased O-GlcNAcylation reduces pathological tau without affecting its normal phosphorylation in a mouse model of tauopathy. Neuropharmacology 79:307–13 [Google Scholar]
  66. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E. et al. 2013. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368:117–27 [Google Scholar]
  67. Hampel H, Ewers M, Burger K, Annas P, Mortberg A. et al. 2009. Lithium trial in Alzheimer's disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry 70:922–31 [Google Scholar]
  68. Hanes J, Zilka N, Bartkova M, Caletkova M, Dobrota D, Novak M. 2009. Rat tau proteome consists of six tau isoforms: implication for animal models of human tauopathies. J. Neurochem. 108:1167–76 [Google Scholar]
  69. Hardy JA, Higgins GA. 1992. Alzheimer's disease: the amyloid cascade hypothesis. Science 256:184–85 [Google Scholar]
  70. Hardy JA, Selkoe DJ. 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–56 [Google Scholar]
  71. Hardy JA, Singleton A. 2009. Genomewide association studies and human disease. N. Engl. J. Med. 360:1759–68 [Google Scholar]
  72. Harris FM, Brecht WJ, Xu Q, Tesseur I, Kekonius L. et al. 2003. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer's disease-like neurodegeneration and behavioral deficits in transgenic mice. PNAS 100:10966–71 [Google Scholar]
  73. Heilmann S, Drichel D, Clarimon J, Fernandez V, Lacour A. et al. 2015. PLD3 in non-familial Alzheimer's disease. Nature 520:E3–5 [Google Scholar]
  74. Hemming ML, Elias JE, Gygi SP, Selkoe DJ. 2009. Identification of β-secretase (BACE1) substrates using quantitative proteomics. PLOS ONE 4:e8477 [Google Scholar]
  75. Herrup K. 2015. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18:794–99 [Google Scholar]
  76. Heuer E, Rosen RF, Cintron A, Walker LC. 2012. Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr. Pharm. Des. 18:1159–69 [Google Scholar]
  77. Hoe HS, Freeman J, Rebeck GW. 2006. Apolipoprotein E decreases tau kinases and phospho-tau levels in primary neurons. Mol. Neurodegener. 1:18 [Google Scholar]
  78. Holzer M, Craxton M, Jakes R, Arendt T, Goedert M. 2004. Tau gene (MAPT) sequence variation among primates. Gene 341:313–22 [Google Scholar]
  79. Hooli BV, Lill CM, Mullin K, Qiao D, Lange C. et al. 2015. PLD3 gene variants and Alzheimer's disease. Nature 520:E7–8 [Google Scholar]
  80. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y. et al. 1996. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102 [Google Scholar]
  81. Hu W, Qiu B, Guan W, Wang Q, Wang M. et al. 2015. Direct conversion of normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17:204–12 [Google Scholar]
  82. Hu X, Hicks CW, He W, Wong P, Macklin WB. et al. 2006. Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci. 9:1520–25 [Google Scholar]
  83. Inestrosa NC, Reyes AE, Chacón MA, Cerpa W, Villalón A. et al. 2005. Human-like rodent amyloid-β-peptide determines Alzheimer pathology in aged wild-type Octodon degu. Neurobiol. Aging 26:1023–28 [Google Scholar]
  84. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y. et al. 2012. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 482:216–20 [Google Scholar]
  85. Jack CR Jr., Knopman DS, Jagust WJ, Petersen RC, Weiner MW. et al. 2013. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12:207–16 [Google Scholar]
  86. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV. et al. 2013. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 368:107–16 [Google Scholar]
  87. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL. et al. 1987. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–36 [Google Scholar]
  88. Karran E, Hardy J. 2014. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann. Neurol. 76:185–205 [Google Scholar]
  89. Karran E, Mercken M, De Strooper B. 2011. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10:698–712 [Google Scholar]
  90. Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R. et al. 2010. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. PNAS 107:21830–35 [Google Scholar]
  91. Kim WS, Li H, Ruberu K, Chan S, Elliott DA. et al. 2013. Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer's disease. J. Neurosci. 33:4387–94 [Google Scholar]
  92. Kleinberger G, Yamanishi Y, Suárez-Calvet M, Czirr E, Lohmann E. et al. 2014. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 6:243ra86 [Google Scholar]
  93. Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y. et al. 2013. Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12:487–96 [Google Scholar]
  94. Kuhn PH, Koroniak K, Hogl S, Colombo A, Zeitschel U. et al. 2012. Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J. 31:3157–68 [Google Scholar]
  95. Lai R, Albala B, Kaplow JM, Aluri J, Yen M, Satlin A. 2012. First-in-human study of E2609, a novel BACE1 inhibitor, demonstrates prolonged reductions in plasma beta-amyloid levels after single dosing. Alzheimer's Dement. 8:P96 [Google Scholar]
  96. Lalli MA, Bettcher BM, Arcila ML, Garcia G, Guzman C. et al. 2015. Whole-genome sequencing suggests a chemokine gene cluster that modifies age at onset in familial Alzheimer's disease. Mol. Psychiatry 20:1294–300 [Google Scholar]
  97. Lambert JC, Grenier-Boley B, Bellenguez C, Pasquier F, Campion D. et al. 2015. PLD3 and sporadic Alzheimer's disease risk. Nature 520:E1 [Google Scholar]
  98. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R. et al. 2013. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45:1452–58 [Google Scholar]
  99. Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A. et al. 2011. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes. Dev. 25:2248–53 [Google Scholar]
  100. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX. 2004. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. PNAS 101:10804–9 [Google Scholar]
  101. Lleo A, Greenberg SM, Growdon JH. 2006. Current pharmacotherapy for Alzheimer's disease. Annu. Rev. Med. 57:513–33 [Google Scholar]
  102. Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK. et al. 2015. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94–98 [Google Scholar]
  103. Ma J, Yee A, Brewer HB Jr., Das S, Potter H. 1994. Amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 372:92–94 [Google Scholar]
  104. Ma T, Hoeffer CA, Capetillo-Zarate E, Yu F, Wong H. et al. 2010. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer's disease. PLOS ONE 5:e12845 [Google Scholar]
  105. Martin L, Latypova X, Terro F. 2011. Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem. Int. 58:458–71 [Google Scholar]
  106. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. 1985. Amyloid plaque core protein in Alzheimer disease and Down syndrome. PNAS 82:4245–49 [Google Scholar]
  107. Medina DX, Caccamo A, Oddo S. 2010. Methylene blue reduces Aβ levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathol. 21:140–49 [Google Scholar]
  108. Mertens J, Paquola AC, Ku M, Hatch E, Bohnke L. et al. 2015. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17:705–18 [Google Scholar]
  109. Min SW, Chen X, Tracy TE, Li Y, Zhou Y. et al. 2015. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21:1154–62 [Google Scholar]
  110. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V. et al. 2010. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67:953–66 [Google Scholar]
  111. Moore S, Evans LD, Andersson T, Portelius E, Smith J. et al. 2015. APP metabolism regulates tau proteostasis in human cerebral cortex neurons. Cell Rep. 11:689–96 [Google Scholar]
  112. Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T. et al. 2014. The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum. Mol. Genet. 23:3523–36 [Google Scholar]
  113. Niu Y, Shen B, Cui Y, Chen Y, Wang J. et al. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–43 [Google Scholar]
  114. Palop JJ, Mucke L. 2010. Amyloid-β–induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13:812–18 [Google Scholar]
  115. Parsons RG, Gafford GM, Helmstetter FJ. 2006. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J. Neurosci. 26:12977–83 [Google Scholar]
  116. Patterson KR, Ward SM, Combs B, Voss K, Kanaan NM. et al. 2011. Heat shock protein 70 prevents both tau aggregation and the inhibitory effects of preexisting tau aggregates on fast axonal transport. Biochemistry 50:10300–10 [Google Scholar]
  117. Pedersen JT, Sigurdsson EM. 2015. Tau immunotherapy for Alzheimer's disease. Trends Mol. Med. 21:394–402 [Google Scholar]
  118. Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H. et al. 2004. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet. 13:703–14 [Google Scholar]
  119. Podlisny MB, Tolan DR, Selkoe DJ. 1991. Homology of the amyloid beta protein precursor in monkey and human supports a primate model for beta amyloidosis in Alzheimer's disease. Am. J. Pathol. 138:1423–35 [Google Scholar]
  120. Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP. 2013. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 14:389–94 [Google Scholar]
  121. Price JL, McKeel DW Jr., Buckles VD, Roe CM, Xiong C. et al. 2009. Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol. Aging 30:1026–36 [Google Scholar]
  122. Pritchard JK. 2001. Are rare variants responsible for susceptibility to complex diseases?. Am. J. Hum. Genet. 69:124–37 [Google Scholar]
  123. Quinn JF, Raman R, Thomas RG, Yurko-Mauro K, Nelson EB. et al. 2010. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA 304:1903–11 [Google Scholar]
  124. Rabinovich-Nikitin I, Rakover IS, Becker M, Solomon B. 2012. Beneficial effect of antibodies against β-secretase cleavage site of APP on Alzheimer's-like pathology in triple-transgenic mice. PLOS ONE 7:e46650 [Google Scholar]
  125. Ramanan VK, Risacher SL, Nho K, Kim S, Shen L. et al. 2015. GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer's disease implicates microglial activation gene IL1RAP. Brain 138:3076–88 [Google Scholar]
  126. Risch N, Merikangas K. 1996. The future of genetic studies of complex human diseases. Science 273:1516–17 [Google Scholar]
  127. Rochin L, Hurbain I, Serneels L, Fort C, Watt B. et al. 2013. BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells. PNAS 110:10658–63 [Google Scholar]
  128. Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P. et al. 2014. Single App knock-in mouse models of Alzheimer's disease. Nat. Neurosci. 17:661–63 [Google Scholar]
  129. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W. et al. 2014. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370:322–33 [Google Scholar]
  130. Saman S, Kim W, Raya M, Visnick Y, Miro S. et al. 2012. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287:3842–49 [Google Scholar]
  131. Sandoe J, Eggan K. 2013. Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat. Neurosci. 16:780–89 [Google Scholar]
  132. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H. et al. 1999. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–77 [Google Scholar]
  133. Selkoe DJ. 2013. The therapeutics of Alzheimer's disease: where we stand and where we are heading. Ann. Neurol. 74:328–36 [Google Scholar]
  134. Serneels L, Van Biervliet J, Craessaerts K, Dejaegere T, Horré K. et al. 2009. γ-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer's disease. Science 324:639–42 [Google Scholar]
  135. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G. et al. 1995. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375:754–60 [Google Scholar]
  136. Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G. et al. 2016. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients. Alzheimer's Dement. 122110–20
  137. Small SA, Duff K. 2008. Linking Aβ and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. Neuron 60:534–42 [Google Scholar]
  138. Soldner F, Jaenisch R. 2015. Dissecting risk haplotypes in sporadic Alzheimer's disease. Cell Stem Cell 16:341–42 [Google Scholar]
  139. Spillantini MG, Goedert M. 2013. Tau pathology and neurodegeneration. Lancet Neurol. 12:609–22 [Google Scholar]
  140. Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A. et al. 2015. Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. Nat. Genet. 47:445–47 [Google Scholar]
  141. Tesseur I, De Strooper B. 2013. When the dust settles: What did we learn from the bexarotene discussion?. Alzheimer's Res. Ther. 5:54 [Google Scholar]
  142. Tian Y, Chang JC, Fan EY, Flajolet M, Greengard P. 2013. Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer's APP-CTF for terminal degradation via autophagy. PNAS 110:17071–76 [Google Scholar]
  143. Tyedmers J, Mogk A, Bukau B. 2010. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11:777–88 [Google Scholar]
  144. van der Lee SJ, Holstege H, Wong TH, Jakobsdottir J, Bis JC. et al. 2015. PLD3 variants in population studies. Nature 520:E2–3 [Google Scholar]
  145. Vardarajan BN, Ghani M, Kahn A, Sheikh S, Sato C. et al. 2015. Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci. Ann. Neurol. 78:487–98 [Google Scholar]
  146. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA. et al. 1999. β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–41 [Google Scholar]
  147. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E. et al. 2009. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18:4153–70 [Google Scholar]
  148. Wen Y, Li W, Poteet EC, Xie L, Tan C. et al. 2011. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J. Biol. Chem. 286:16504–15 [Google Scholar]
  149. Wetzel-Smith MK, Hunkapiller J, Bhangale TR, Srinivasan K, Maloney JA. et al. 2014. A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death. Nat. Med. 20:1452–57 [Google Scholar]
  150. Willem M, Garratt AN, Novak B, Citron M, Kaufmann S. et al. 2006. Control of peripheral nerve myelination by the β-secretase BACE1. Science 314:664–66 [Google Scholar]
  151. Willem M, Tahirovic S, Busche MA, Ovsepian SV, Chafai M. et al. 2015. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 526:443–47 [Google Scholar]
  152. William CM, Andermann ML, Goldey GJ, Roumis DK, Reid RC. et al. 2012. Synaptic plasticity defect following visual deprivation in Alzheimer's disease model transgenic mice. J. Neurosci. 32:8004–11 [Google Scholar]
  153. Yan R, Vassar R. 2014. Targeting the β secretase BACE1 for Alzheimer's disease therapy. Lancet Neurol. 13:319–29 [Google Scholar]
  154. Yanamandra K, Kfoury N, Jiang H, Mahan TE, Ma S. et al. 2013. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80:402–14 [Google Scholar]
  155. Ye S, Huang Y, Mullendorff K, Dong L, Giedt G. et al. 2005. Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. PNAS 102:18700–5 [Google Scholar]
  156. Young JE, Boulanger-Weill J, Williams DA, Woodruff G, Buen F. et al. 2015. Elucidating molecular phenotypes caused by the SORL1 Alzheimer's disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell 16:373–85 [Google Scholar]
  157. Yu JT, Tan L, Hardy J. 2014. Apolipoprotein E in Alzheimer's disease: an update. Annu. Rev. Neurosci. 37:79–100 [Google Scholar]
  158. Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y. et al. 2012. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat. Chem. Biol. 8:393–99 [Google Scholar]
  159. Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P. et al. 2015. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat. Neurosci. 18:978–87 [Google Scholar]
  160. Zhou L, Barão S, Laga M, Bockstael K, Borgers M. et al. 2012. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J. Biol. Chem. 287:25927–40 [Google Scholar]
  161. Zhou L, Chávez-Gutiérrez L, Bockstael K, Sannerud R, Annaert W. et al. 2011. Inhibition of β-secretase in vivo via antibody binding to unique loops (D and F) of BACE1. J. Biol. Chem. 286:8677–87 [Google Scholar]
/content/journals/10.1146/annurev-neuro-070815-014015
Loading
/content/journals/10.1146/annurev-neuro-070815-014015
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error