1932

Abstract

Magnetic fields pass through tissue undiminished and without producing harmful effects, motivating their use as a wireless, minimally invasive means to control neural activity. Here, we review mechanisms and techniques coupling magnetic fields to changes in electrochemical potentials across neuronal membranes. Biological magnetoreception, although incompletely understood, is discussed as a potential source of inspiration. The emergence of magnetic properties in materials is reviewed to clarify the distinction between biomolecules containing transition metals and ferrite nanoparticles that exhibit significant net moments. We describe recent developments in the use of magnetic nanomaterials as transducers converting magnetic stimuli to forms readily perceived by neurons and discuss opportunities for multiplexed and bidirectional control as well as the challenges posed by delivery to the brain. The variety of magnetic field conditions and mechanisms by which they can be coupled to neuronal signaling cascades highlights the desirability of continued interchange between magnetism physics and neurobiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070918-050241
2019-07-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-070918-050241.html?itemId=/content/journals/10.1146/annurev-neuro-070918-050241&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham J-A, Linnartz C, Dreissen G, Springer R, Blaschke S et al. 2018. Directing neuronal outgrowth and network formation of rat cortical neurons by cyclic substrate stretch. Langmuir In press. https://doi.org/10.1021/acs.langmuir.8b02003
    [Crossref] [Google Scholar]
  2. Amstad E, Kohlbrecher J, Müller E, Schweizer T, Textor M, Reimhult E 2011. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett 11:1664–70
    [Google Scholar]
  3. Anikeeva P, Jasanoff A. 2016. Magnetogenetics: problems on the back of an envelope. eLife 5:e19569
    [Google Scholar]
  4. Bean CP, Livingston JD. 1959. Superparamagnetism. J. Appl. Phys. 30:S120–29
    [Google Scholar]
  5. Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR 2016. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. NeuroImage 140:4–19
    [Google Scholar]
  6. Bonmassar G, Lee SW, Freeman DK, Polasek M, Fried S, Gale JT 2012. Microscopic magnetic stimulation of neural tissue. Nat. Comm. 3:921
    [Google Scholar]
  7. Brown WF, Hornreich RM, Shtrikman S 1968. Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168:574–77
    [Google Scholar]
  8. Brunoni AR, Chaimani A, Moffa AH, Razza LB, Gattaz WF et al. 2017. Repetitive transcranial magnetic stimulation for the acute treatment of major depressive episodes: a systematic review with network meta-analysis. JAMA Psychiatry 74:143–53
    [Google Scholar]
  9. Carrey J, Mehdaoui B, Respaud M 2011. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109:083921
    [Google Scholar]
  10. Carvalho-de-Souza JL, Treger JS, Dang B, Kent SB, Pepperberg DR, Bezanilla F 2015. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86:207–17
    [Google Scholar]
  11. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–24
    [Google Scholar]
  12. Chasteen ND, Harrison PM. 1999. Mineralization in ferritin: an efficient means of iron storage. J. Struct. Biol. 126:182–94
    [Google Scholar]
  13. Chen R, Christiansen MG, Anikeeva P 2013. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano 7:8990–9000
    [Google Scholar]
  14. Chen R, Christiansen MG, Sourakov A, Mohr A, Matsumoto Y et al. 2016. High-performance ferrite nanoparticles through nonaqueous redox phase tuning. Nano Lett 16:1345–51
    [Google Scholar]
  15. Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P 2015. Wireless magnetothermal deep brain stimulation. Science 347:1477–80
    [Google Scholar]
  16. Chen S, Weitenmier AZ, Zeng X, Linmeng H, Wang X et al. 2018. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359:679–84
    [Google Scholar]
  17. Cheng Y, Muroski ME, Petit DCMC, Mansell R, Vemulkar T et al. 2017. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma. J. Control. Release 223:75–84
    [Google Scholar]
  18. Christiansen MG, Howe CM, Bono DC, Perreault DJ, Anikeeva P 2017. Practical methods for generating alternating magnetic fields for biomedical research. Rev. Sci. Instrum. 88:084301
    [Google Scholar]
  19. Christiansen MG, Senko AW, Chen R, Romero G, Anikeeva P 2014. Magnetically multiplexed heating of single domain nanoparticles. Appl. Phys. Lett. 104:213103
    [Google Scholar]
  20. Cosolo WC, Martinello P, Louis WJ, Christophidis N 1989. Blood-brain barrier disruption using mannitol: time course and electron microscopy studies. Am. J. Physiol. 256:443–47
    [Google Scholar]
  21. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S et al. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60
    [Google Scholar]
  22. Cullity BD, Graham CD. 2009. Introduction to Magnetic Materials Hoboken, NJ: Wiley & Sons
  23. Deisseroth K. 2015. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18:1213–25
    [Google Scholar]
  24. Delmas P, Hao J, Rodat-Despoix L 2011. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 12:139–53
    [Google Scholar]
  25. Dong J, Zink JI. 2014. Taking the temperature of the interiors of magnetically heated nanoparticles. ACS Nano 8:5199–207
    [Google Scholar]
  26. Edelman NB, Fritz T, Nimpf S, Pichler P, Lauwers M et al. 2015. No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. PNAS 112:262–67
    [Google Scholar]
  27. Elfick A, Rischitor G, Mouras R, Azfer A, Lungaro L et al. 2017. Biosynthesis of magnetic nanoparticles by human mesenchymal stem cells following transfection with the magnetotactic bacterial gene mms6. Sci. Rep. 7:39755
    [Google Scholar]
  28. Engels S, Schneider N-L, Lefeldt N, Hein CM, Zapka M et al. 2014. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509:353–56
    [Google Scholar]
  29. Faivre D, Schüler D. 2008. Magnetotactic bacteria and magnetosomes. Chem. Rev. 108:4875–98
    [Google Scholar]
  30. Fischer G, Däne M, Ernst A, Bruno P, Lüders M et al. 2009. Exchange coupling in transition metal monoxides: electronic structure calculations. Phys. Rev. B 80:014408
    [Google Scholar]
  31. Freeman DK, O'Brien JM, Kumar P, Daniels B, Irion RA et al. 2017. A sub-millimeter, inductively powered neural stimulator. Front. Neurosci. 11:659
    [Google Scholar]
  32. Fuchs F, Landers EU, Schmid R, Wiesinger J 1998. Lightning current and magnetic field parameters caused by lightning strikes to tall structures relating to interference of electronic systems. IEEE Trans. Electromagn. Compat. 40:444–51
    [Google Scholar]
  33. Gegear RJ, Casselman A, Waddell S, Reppert SM 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. . Nature 454:1014–18
    [Google Scholar]
  34. Gilder SA, Wack M, Kaub L, Roud SC, Petersen N et al. 2018. Distribution of magnetic remanence carriers in the human brain. Sci. Rep. 8:11363
    [Google Scholar]
  35. Gould JL, Kirschvink JL, Deffeyes KS 1978. Bees have magnetic remanence. Science 201:1026–28
    [Google Scholar]
  36. Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A et al. 2017. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169:1029–41
    [Google Scholar]
  37. Guduru R, Liang P, Hong J, Rodzinski A, Hadjikhani A et al. 2015. Magnetoelectric ‘spin’ on stimulating the brain. Nanomedicine 10:2051–61
    [Google Scholar]
  38. Holland RA. 2010. Differential effects of magnetic pulses on the orientation of naturally migrating birds. J. R. Soc. Interface 7:1617–25
    [Google Scholar]
  39. Hore PJ, Mouritsen H. 2016. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45:299–344
    [Google Scholar]
  40. Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A 2010. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5:602–6
    [Google Scholar]
  41. Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E et al. 2015. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7:11142–54
    [Google Scholar]
  42. Hughes S, McBain S, Dobson J, El Haj AJ 2007. Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface 5:855–63
    [Google Scholar]
  43. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA 2001. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220:640–46
    [Google Scholar]
  44. Jang JT, Nah H, Lee JH, Moon SH, Kim MG, Cheon J 2009. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. 48:1234–38
    [Google Scholar]
  45. Johnsen S, Lohmann KJ. 2005. The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6:703–12
    [Google Scholar]
  46. Jutz G, van Rijn P, Santos Miranda B, Böker A 2015. Ferritin: a versatile building block for bionanotechnology. Chem. Rev. 115:1653–701
    [Google Scholar]
  47. Kalmijn A. 1981. Biophysics of geomagnetic field detection. IEEE Trans. Magn. 17:1113–24
    [Google Scholar]
  48. Kargol A, Malkinski L, Caruntu G 2012. Biomedical applications of multiferroic nanoparticles. Advanced Magnetic Materials L Malkinski 89–118 Rijeka, Croat.: InTech
    [Google Scholar]
  49. Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton TA 2006. Limits of localized heating by electromagnetically excited nanoparticles. J. Appl. Phys. 100:054305
    [Google Scholar]
  50. Kim D-H, Rozhkova EA, Ulasov IV, Bader SD, Rajh T et al. 2010. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9:165–71
    [Google Scholar]
  51. Kim D, Lee N, Park M, Kim BH, An K, Hyeon T 2009. Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 131:454–55
    [Google Scholar]
  52. Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ 1992. Magnetite biomineralization in the human brain. PNAS 89:7683–87
    [Google Scholar]
  53. Kirschvink JL, Walker MM, Chang S-B, Dizon AE, Peterson KA 1985. Chains of single-domain magnetite particles in chinook salmon, Oncorhynchus tshawytscha. J. Comp. Physiol. A 157:375–81
    [Google Scholar]
  54. Kirschvink JL, Walker MM, Diebel CE 2001. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 11:462–67
    [Google Scholar]
  55. Kishkinev D, Chernetsov N, Pakhomov A, Heyers D, Mouritsen H 2015. Eurasian reed warblers compensate for virtual magnetic displacement. Curr. Biol. 25:R822–24
    [Google Scholar]
  56. Knopp T, Buzug TM. 2012. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation Berlin/Heidelberg: Springer-Verlag
  57. Kolinko I, Lohße A, Borg S, Raschdorf O, Jogler C et al. 2014. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol. 9:193–97
    [Google Scholar]
  58. Kumar M, Keller B, Makalou N, Sutton RE 2001. Systematic determination of the packaging limit of lentiviral vectors. Hum. Gene Ther. 12:1893–905
    [Google Scholar]
  59. Kwon KY, Lee H-M, Ghovanloo M, Weber A, Li W 2015. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front. Syst. Neurosci. 9:69
    [Google Scholar]
  60. LaBelle J, Treumann RA. 2002. Auroral radio emissions, 1. Hisses, roars, and bursts. Space Sci. Rev. 101:295–440
    [Google Scholar]
  61. Lamoureux P, Ruthel G, Buxbaum RE, Heidermann SR 2002. Mechanical tension can specify axonal fate in hippocampal neurons. J. Cell Biol. 159:499–508
    [Google Scholar]
  62. Lee J-H, Kim J-W, Levy M, Dao A, Noh S-H et al. 2014. Magnetic nanoparticles for ultrafast mechanical control of inner ear hair cells. ACS Nano 8:6590–98
    [Google Scholar]
  63. Lee SW, Fallegger F, Casse BDF, Fried SI 2016. Implantable microcoils for intracortical magnetic stimulation. Sci. Adv. 2:e1600889
    [Google Scholar]
  64. Lefaucheur J-P, Andre-Obadia N, Antal A, Ayache SS, Baeken C et al. 2014. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125:2150–206
    [Google Scholar]
  65. Lefaucheur J-P, Antal A, Ayache SS, Benninger DH, Brunelin J et al. 2017. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 128:56–92
    [Google Scholar]
  66. Legon W, Sato TF, Optiz A, Mueller J, Barbour A et al. 2014. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat. Neurosci. 17:322–29
    [Google Scholar]
  67. Liu XL, Yang Y, Ng CT, Zhao LY, Zhang Y et al. 2015. Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Adv. Mater. 27:1939–44
    [Google Scholar]
  68. Liu JF, Neel N, Dang P, Lamb M, McKenna J et al. 2018. Radiofrequency‐triggered drug release from nanoliposomes with millimeter‐scale resolution using a superimposed static gating field. Small 14:1802563
    [Google Scholar]
  69. Long X, Ye J, Zhao D, Zhang S-J 2015. Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci. Bull. 60:2107–19
    [Google Scholar]
  70. Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E 2008. Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol. 3:36–40
    [Google Scholar]
  71. McClintock SM, Reti IM, Carpenter LL, McDonald WM, Dubin M et al. 2018. Consensus recommendations for the clinical application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. J. Clin. Psychiatry 79:16cs10905
    [Google Scholar]
  72. Meister M. 2016. Physical limits to magnetogenetics. eLife 5:e17210
    [Google Scholar]
  73. Monzel C, Vicario C, Piehler J, Coppey M, Dahan M 2017. Magnetic control of cellular processes using biofunctional nanoparticles. Chem. Sci. 8:7330–38
    [Google Scholar]
  74. Moskowitz BM, Banerjee SK. 1979. Grain size limits for pseudosingle domain behavior in magnetite: implications for paleomagnetism. IEEE Trans. Magn. 15:1241–46
    [Google Scholar]
  75. Moskowitz BM, Frankel RB, Bazylinski DA 1993. Rock magnetic criteria for the detection of biogenic magnetite. Earth Planet. Sci. Lett. 120:283–300
    [Google Scholar]
  76. Mouritsen H. 2018. Long-distance navigation and magnetoreception in migratory animals. Nature 558:50–59
    [Google Scholar]
  77. Muheim R, Sjöberg S, Pinzon-Rodriguez A 2016. Polarized light modulates light-dependent magnetic compass orientation in birds. PNAS 113:1654–59
    [Google Scholar]
  78. Müller P, Ahmad M. 2011. Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception. J. Biol. Chem. 286:21033–40
    [Google Scholar]
  79. Munshi R, Qadri SM, Pralle A 2018. Transient magnetothermal neuronal silencing using the chloride channel anoctamin 1 (TMEM16A). Front. Neurosci. 12:560
    [Google Scholar]
  80. Munshi R, Qadri SM, Zhang Q, Castellanos Rubio I, del Pino P, Pralle A 2017. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. eLife 6:e27069
    [Google Scholar]
  81. Nan C-W, Bichurin MI, Dong S, Viehland D, Srinivasan G 2008. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103:031101
    [Google Scholar]
  82. Neél L. 1949. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Geophys. 5:99–136
    [Google Scholar]
  83. Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H et al. 2014. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:49–60
    [Google Scholar]
  84. Nitshe MA, Cohen LG, Wasserman EM, Priori A, Lang N et al. 2008. Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1:206–223
    [Google Scholar]
  85. Noh S-H, Na W, Jang J-T, Lee J-H, Lee EJ 2012. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12:3716–21
    [Google Scholar]
  86. Obeso JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, Lang AE 2001. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N. Engl. J. Med. 345:956–63
    [Google Scholar]
  87. Pang K, You H, Chen Y, Chu P, Hu M et al. 2017. MagR alone is insufficient to confer cellular calcium responses to magnetic stimulation. Front. Neural Circuits 11:11
    [Google Scholar]
  88. Pankhurst QA, Connolly J, Jones SK, Dobson J 2003. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36:R167–81
    [Google Scholar]
  89. Park H-J, Bonmassar G, Kaltenbach JA, Machado AG, Manzoor NF 2013. Activation of the central nervous system induced by micro-magnetic stimulation. Nat. Comm. 4:2463
    [Google Scholar]
  90. Park J, An K, Hwang Y, Park J-G, Noh H-J 2004. Ultra-large-scale synthesis of monodisperse nanocrystals. Nat. Mater. 3:891–95
    [Google Scholar]
  91. Paulin MG. 1995. Electroreception and the compass sense of sharks. J. Theor. Biol. 174:325–39
    [Google Scholar]
  92. Peddis D, Mansilla MV, Mørup S, Cannas C, Musinu A et al. 2008. Spin-canting and magnetic anisotropy in ultrasmall CoFe2O4 nanoparticles. J. Phys. Chem. B 112:8507–13
    [Google Scholar]
  93. Qin S, Yin H, Yang C, Dou Y, Liu Z et al. 2016. A magnetic protein biocompass. Nat. Mater. 15:217–26
    [Google Scholar]
  94. Riedinger A, Guardia P, Curcio A, Garcia MA, Cingolani R et al. 2013. Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. Nano Lett 13:2399–406
    [Google Scholar]
  95. Ritz T, Adem S, Schulten K 2000. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 390:371–76
    [Google Scholar]
  96. Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W 2004. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429:177–80
    [Google Scholar]
  97. Roberts AP, Chang L, Rowan CJ, Horng C-S, Florindo F 2011. Magnetic properties of sedimentary greigite (Fe3S4): an update. Rev. Geophys. 49:RG1002
    [Google Scholar]
  98. Rogan SC, Roth BL. 2011. Remote control of neuronal signalling. Pharmacol. Rev. 63:291–315
    [Google Scholar]
  99. Romero G, Christiansen MG, Stocche Barbosa L, Garcia F, Anikeeva P 2016. Localized excitation of neural activity via rapid magnetothermal drug release. Adv. Funct. Mater. 26:6471–78
    [Google Scholar]
  100. Rosensweig RE. 2002. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252:370–74
    [Google Scholar]
  101. Ruff CC, Driver J, Bestmann S 2009. Combining TMS and fMRI. Cortex 45:1043–49
    [Google Scholar]
  102. Rühle B, Datz S, Argyo C, Bein T, Zink JI 2016. A molecular nanocap activated by superparamagnetic heating for externally stimulated cargo release. Chem. Commun. 52:1843–46
    [Google Scholar]
  103. Schüler D, Frankel RB. 1999. Bacterial magnetosomes: microbiology. biomineralization and biotechnological applications 52:464–73
    [Google Scholar]
  104. Seo D, Southard KM, Kim J-W, Lee H-W, Farlow J et al. 2016. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell 165:1507–18
    [Google Scholar]
  105. Shen Y, Wu C, Uyeda TQP, Plaza GR, Liu B et al. 2017. Elongated nanoparticle aggregates in cancer cells for mechanical destruction with low frequency rotating magnetic field. Theranostics 7:1735–48
    [Google Scholar]
  106. Smith DH, Wolf JA, Meaney DF 2001. A new strategy to produce sustained growth of central nervous system axons: continuous mechanical tension. Tissue Eng 7:131–39
    [Google Scholar]
  107. Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM 2012. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:604–8
    [Google Scholar]
  108. Stanley SA, Kelly L, Latcha KN, Schmidt SF, Yu X et al. 2016. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 531:647–50
    [Google Scholar]
  109. Stanley SA, Sauer J, Kane RS, Dordick JS, Friedman JM 2014. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21:92–98
    [Google Scholar]
  110. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM 2004. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126:273–79
    [Google Scholar]
  111. Suzuki Y, Hu G, van Dover RB, Cava RJ 1999. Magnetic anisotropy of epitaxial cobalt ferrite thin films. J. Magn. Magn. Mater. 191:1–8
    [Google Scholar]
  112. Szablowski JO, Lee-Gosselin A, Lue B, Malounda D, Shapiro MG 2018. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat. Biomed. Eng. 2:475–84
    [Google Scholar]
  113. Tay A, Di Carlo D 2017. Magnetic nanoparticle-based mechanical stimulation for restoration of mechano-sensitive ion channel equilibrium in neural networks. Nano Lett 17:886–92
    [Google Scholar]
  114. Tay A, Sohrabi A, Poole K, Seidlits S, Di Carlo D 2018a. A 3D magnetic hyaluronic acid hydrogel for magneto mechanical neuromodulation of primary dorsal root ganglion neurons. Adv. Mater. 10:e1800927
    [Google Scholar]
  115. Tay ZW, Chandrasekharan P, Chiu-Lam A, Hensley DW, Dhavalikar R et al. 2018b. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano 12:3699–713
    [Google Scholar]
  116. Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C et al. 2012. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484:367–70
    [Google Scholar]
  117. Tseng P, Judy J, Di Carlo D 2012. Magnetic nanoparticle-mediated massively-parallel mechanical modulation of single-cell behavior. Nat. Methods 9:1113–19
    [Google Scholar]
  118. Usov NA. 2010. Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J. Appl. Phys. 107:123909
    [Google Scholar]
  119. Usov NA, Barandiarán JM. 2012. Magnetic nanoparticles with combined anisotropy. J. Appl. Phys. 112:053915
    [Google Scholar]
  120. van Embden J, Chesman ASR, Jasieniak JJ 2015. The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 27:2246–85
    [Google Scholar]
  121. van Landeghem FKH, Maier-Hauff K, Jordan A, Hoffmann K-T, Gneveckow U et al. 2009. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57
    [Google Scholar]
  122. Wagner T, Valero-Cabre A, Pascual-Leone A 2007. Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng. 9:527–65
    [Google Scholar]
  123. Walcott C, Gould J, Kirschvink J 1979. Pigeons have magnets. Science 205:1027–29
    [Google Scholar]
  124. Wang Y-XJ. 2011. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant. Imaging Med. Surg. 1:35–40
    [Google Scholar]
  125. Wang JB, Aryal M, Zhong Q, Vyas DB, Airan RD 2018. Noninvasive ultrasonic drug uncaging maps whole-brain functional networks. Neuron 100:728–38
    [Google Scholar]
  126. Wells JD, Kao C, Jansen ED, Konrad PE, Mahadevan-Jansen A 2005. Application of infrared light for in vivo neural stimulation. J. Biomed. Opt. 10:064003
    [Google Scholar]
  127. Wheeler MA, Smith CJ, Ottolini M, Barker BS, Purohit AM et al. 2016. Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 19:756–61
    [Google Scholar]
  128. Wiltschko R, Thalau P, Gehring D, Nießner C, Ritz T, Wiltschko W 2015. Magnetoreception in birds: the effect of radio-frequency fields. J. R. Soc. Interface 12:20141103
    [Google Scholar]
  129. Wiltschko W, Wiltschko R. 1972. Magnetic compass of European robins. Science 176:62–64
    [Google Scholar]
  130. Wiltschko W, Wiltschko R. 2005. Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191:675–93
    [Google Scholar]
  131. Winklhofer M, Mouritsen H. 2016. A room-temperature ferrimagnet made of metallo-proteins?. bioRxiv 094607. https://doi.org/10.1101/094607
    [Crossref]
  132. Wu W, Wu Z, Yu T, Jiang C, Kim W-S 2015. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16:023501
    [Google Scholar]
  133. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B et al. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–34
    [Google Scholar]
  134. Yang Y, Liu X, Lv Y, Herng TS, Xu X et al. 2015. Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 nanodisc. Adv. Funct. Mater. 25:812–20
    [Google Scholar]
  135. Yasuo T, Yoshikazu U. 2002. Basic mechanisms of TMS. J. Clin. Neurophysiol. 19:322–43
    [Google Scholar]
  136. Young JH, Wang MT, Brezovich IA 1980. Frequency/depth penetration considerations in hyperthermia by magnetically induced currents. Electron. Lett. 16:358–59
    [Google Scholar]
  137. Yue K, Guduru R, Hong J, Liang P, Nair M, Khizroev S 2012. Magneto-electric nano-particles for non-invasive brain stimulation. PLOS ONE 7:e44040
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070918-050241
Loading
/content/journals/10.1146/annurev-neuro-070918-050241
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error