1932

Abstract

Microsatellite mutations involving the expansion of tri-, tetra-, penta-, or hexanucleotide repeats cause more than 40 different neurological disorders. Although, traditionally, the position of the repeat within or outside of an open reading frame has been used to focus research on disease mechanisms involving protein loss of function, protein gain of function, or RNA gain of function, the discoveries of bidirectional transcription and repeat-associated non-ATG (RAN) have blurred these distinctions. Here we review what is known about RAN proteins in disease, the mechanisms by which they are produced, and the novel therapeutic opportunities they provide.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070918-050405
2019-07-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-070918-050405.html?itemId=/content/journals/10.1146/annurev-neuro-070918-050405&mimeType=html&fmt=ahah

Literature Cited

  1. Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL et al. 2013. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–46
    [Google Scholar]
  2. Ayhan F, Perez BA, Shorrock HK, Zu T, Banez-Coronel M et al. 2018. SCA8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF3F. EMBO J 37:e99023
    [Google Scholar]
  3. Bañez-Coronel M, Ayhan F, Tarabochia AD, Zu T, Perez BA et al. 2015. RAN translation in Huntington disease. Neuron 88:667–77
    [Google Scholar]
  4. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C et al. 2015. Huntington disease. Nat. Rev. Dis. Primers 1:15005
    [Google Scholar]
  5. Bäuerlein FJB, Saha I, Mishra A, Kalemanov M, Martinez-Sanchez A et al. 2017. In situ architecture and cellular interactions of polyQ inclusions. Cell 171:179–87.e10
    [Google Scholar]
  6. Bevivino AE, Loll PJ. 2001. An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates parallel β-fibrils. PNAS 98:11955–60
    [Google Scholar]
  7. Bidichandani SI, Ashizawa T, Patel PI 1998. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am. J. Hum. Genet. 62:111–21
    [Google Scholar]
  8. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M et al. 1996. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–27
    [Google Scholar]
  9. Castro H, Kul E, Buijsen RAM, Severijnen L, Willemsen R et al. 2017. Selective rescue of heightened anxiety but not gait ataxia in a premutation 90CGG mouse model of Fragile X–associated tremor/ataxia syndrome. Hum. Mol. Genet. 26:2133–45
    [Google Scholar]
  10. Chai N, Gitler AD. 2018. Yeast screen for modifiers of C9orf72 poly(glycine-arginine) dipeptide repeat toxicity. FEMS Yeast Res18:foy024
    [Google Scholar]
  11. Chang YJ, Jeng US, Chiang YL, Hwang IS, Chen YR 2016. The glycine-alanine dipeptide repeat from C9orf72 hexanucleotide expansions forms toxic amyloids possessing cell-to-cell transmission properties. J. Biol. Chem. 291:4903–11
    [Google Scholar]
  12. Cheng HM, Chern Y, Chen IH, Liu CR, Li SH et al. 2015. Effects on murine behavior and lifespan of selectively decreasing expression of mutant huntingtin allele by supt4h knockdown. PLOS Genet 11:e1005043
    [Google Scholar]
  13. Cheng W, Wang S, Mestre AA, Fu C, Makarem A et al. 2018. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nat. Commun. 9:51
    [Google Scholar]
  14. Chitiprolu M, Jagow C, Tremblay V, Bondy-Chorney E, Paris G et al. 2018. A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat. Commun. 9:2794
    [Google Scholar]
  15. Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ 2005. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol. Cell 20:483–89
    [Google Scholar]
  16. Cleary JD, LaSpada AR, Pearson CE 2006. DNA replication, repeat instability, and human disease. DNA Replication and Human Disease ML DePamphilis 461–80 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
    [Google Scholar]
  17. Cleary JD, Pattamatta A, Ranum LPW 2018. Repeat-associated non-ATG (RAN) translation. J. Biol. Chem. 293:16127–41
    [Google Scholar]
  18. Cleary JD, Ranum LPW. 2013. Repeat-associated non-ATG (RAN) translation in neurological disease. Hum. Mol. Genet. 22:R45–51
    [Google Scholar]
  19. Cleary JD, Ranum LPW. 2014. Repeat-associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Curr. Opin. Genet. Dev. 26:6–15
    [Google Scholar]
  20. Clemens MJ. 2001. Initiation factor eIF2α phosphorylation in stress responses and apoptosis. Prog. Mol. Subcell. Biol. 27:57–89
    [Google Scholar]
  21. Connelly CM, Moon MH, Schneekloth JS 2016. The emerging role of RNA as a therapeutic target for small molecules. Cell Chem. Biol. 23:1077–90
    [Google Scholar]
  22. Cristofani R, Crippa V, Vezzoli G, Rusmini P, Galbiati M et al. 2018. The small heat shock protein B8 (HSPB8) efficiently removes aggregating species of dipeptides produced in C9ORF72-related neurodegenerative diseases. Cell Stress Chaperones 23:1–12
    [Google Scholar]
  23. Duennwald ML, Lindquist S. 2008. Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Gene Dev 22:3308–19
    [Google Scholar]
  24. Figiel M, Szlachcic WJ, Switonski PM, Gabka A, Krzyzosiak WJ 2012. Mouse models of polyglutamine diseases: review and data table. Part I. Mol. Neurobiol. 46:393–429
    [Google Scholar]
  25. Flores BN, Dulchaysky ME, Krans A, Sawaya MR, Paulson HL et al. 2016. Distinct C9orf72-associated dipeptide repeat structures correlate with neuronal toxicity. PLOS ONE 11:e0165084
    [Google Scholar]
  26. Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S et al. 2015. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525:129–33
    [Google Scholar]
  27. Gao Z, Cooper TA. 2013. Antisense oligonucleotides: rising stars in eliminating RNA toxicity in myotonic dystrophy. Hum. Gene Ther. 24:499–507
    [Google Scholar]
  28. Gendron TF, Chew J, Stankowski JN, Hayes LR, Zhang YJ et al. 2017. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci. Transl. Med. 9:eaai7866
    [Google Scholar]
  29. Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Engelborghs S et al. 2016. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol. Psychiatry 21:1112–24
    [Google Scholar]
  30. Green KM, Glineburg MR, Kearse MG, Flores BN, Linsalata AE et al. 2017. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat. Commun. 8:2005
    [Google Scholar]
  31. Grima JC, Daigle JG, Arbez N, Cunningham KC, Zhang K et al. 2017. Mutant Huntingtin disrupts the nuclear pore complex. Neuron 94:93–107.e6
    [Google Scholar]
  32. Guo Q, Lehmer C, Martinez-Sanchez A, Rudack T, Beck F et al. 2018. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell 172:696–705.e12
    [Google Scholar]
  33. Hagerman P. 2013. Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 126:1–19
    [Google Scholar]
  34. Hagerman R, Hagerman P. 2013. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol 12:786–98
    [Google Scholar]
  35. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R et al. 2000. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6:1099–108
    [Google Scholar]
  36. Harley HG, Brook JD, Rundle SA, Crow S, Reardon W et al. 1992. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355:545–46
    [Google Scholar]
  37. Hautbergue GM, Castelli LM, Ferraiuolo L, Sanchez-Martinez A, Cooper-Knock J et al. 2017. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat. Commun. 8:16063
    [Google Scholar]
  38. Hinnebusch AG. 2014. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83:779–812
    [Google Scholar]
  39. Holcik M, Sonenberg N. 2005. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 6:318–27
    [Google Scholar]
  40. Ishiguro T, Sato N, Ueyama M, Fujikake N, Sellier C et al. 2017. Regulatory role of RNA chaperone TDP-43 for RNA misfolding and repeat-associated translation in SCA31. Neuron 94:108–24.e7
    [Google Scholar]
  41. Jenquin JR, Coonrod LA, Silverglate QA, Pellitier NA, Hale MA et al. 2018. Furamidine rescues myotonic dystrophy type I associated mis-splicing through multiple mechanisms. ACS Chem. Biol. 13:2708–18
    [Google Scholar]
  42. Jiang J, Cleveland DW. 2016. Bidirectional transcriptional inhibition as therapy for ALS/FTD caused by repeat expansion in C9orf72. . Neuron 92:1160–63
    [Google Scholar]
  43. Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M et al. 2016. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90:535–50
    [Google Scholar]
  44. Jiang Y, Chadwick SR, Lajoie P 2016. Endoplasmic reticulum stress: the cause and solution to Huntington's disease?. Brain Res 1648:650–57
    [Google Scholar]
  45. Jovicic A, Mertens J, Boeynaems S, Bogaert E, Chai N et al. 2015. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat. Neurosci. 18:1226–29
    [Google Scholar]
  46. Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM et al. 2006. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. PNAS 103:11748–53
    [Google Scholar]
  47. Kearse MG, Green KM, Krans A, Rodriguez CM, Linsalata AE et al. 2016. CGG repeat-associated non-AUG translation utilizes a cap-dependent scanning mechanism of initiation to produce toxic proteins. Mol. Cell 62:314–22
    [Google Scholar]
  48. Khosravi B, Hartmann H, May S, Mohl C, Ederle H et al. 2017. Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in C9orf72 ALS/FTLD. Hum. Mol. Genet. 26:790–800
    [Google Scholar]
  49. Komar AA, Hatzoglou M. 2011. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 10:229–40
    [Google Scholar]
  50. Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T et al. 2002. Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum. Mol. Genet. 11:1505–15
    [Google Scholar]
  51. Kramer NJ, Carlomagno Y, Zhang YJ, Almeida S, Cook CN et al. 2016. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. Science 353:708–12
    [Google Scholar]
  52. Kramer NJ, Haney MS, Morgens DW, Jovicic A, Couthouis J et al. 2018. CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nat. Genet. 50:603–12
    [Google Scholar]
  53. Krans A, Kearse MG, Todd PK 2016. RAN translation from antisense CCG repeats in fragile X tremor/ataxia syndrome. Ann. Neurol. 80:871–81
    [Google Scholar]
  54. Kroemer G, Marino G, Levine B 2010. Autophagy and the integrated stress response. Mol. Cell 40:280–93
    [Google Scholar]
  55. Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P et al. 2014. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345:1139–45
    [Google Scholar]
  56. Labbadia J, Morimoto RI. 2013. Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci. 38:378–85
    [Google Scholar]
  57. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  58. Lee KH, Zhang P, Kim HJ, Mitrea DM, Sarkar M et al. 2016. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167:774–88.e17
    [Google Scholar]
  59. Lee YB, Baskaran P, Gomez-Deza J, Chen HJ, Nishimura AL et al. 2017. C9orf72 poly GA RAN-translated protein plays a key role in amyotrophic lateral sclerosis via aggregation and toxicity. Hum. Mol. Genet. 26:4765–77
    [Google Scholar]
  60. Lehmer C, Oeckl P, Weishaupt JH, Volk AE, Diehl-Schmid J et al. 2017. Poly-GP in cerebrospinal fluid links C9orf72-associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD. EMBO Mol. Med. 9:859–68
    [Google Scholar]
  61. Leitman J, Hartl FU, Lederkremer GZ 2013. Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nat. Commun. 4:2753
    [Google Scholar]
  62. Lin Y, Mori E, Kato M, Xiang S, Wu L et al. 2016. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 167:789–802.e12
    [Google Scholar]
  63. Liu Y, Pattamatta A, Zu T, Reid T, Bardhi O et al. 2016. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 90:521–34
    [Google Scholar]
  64. Lopez Castel A, Cleary JD, Pearson CE 2010. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat. Rev. Mol. Cell Biol. 11:165–70
    [Google Scholar]
  65. Lopez-Gonzalez R, Lu Y, Gendron TF, Karydas A, Tran H et al. 2016. Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron 92:383–91
    [Google Scholar]
  66. May S, Hornburg D, Schludi MH, Arzberger T, Rentzsch K et al. 2014. C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol 128:485–503
    [Google Scholar]
  67. Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ et al. 2000. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J 19:4439–48
    [Google Scholar]
  68. Mills JD, Kavanagh T, Kim WS, Chen BJ, Kawahara Y et al. 2013. Unique transcriptome patterns of the white and grey matter corroborate structural and functional heterogeneity in the human frontal lobe. PLOS ONE 8:e78480
    [Google Scholar]
  69. Mizielinska S, Grönke S, Niccoli T, Ridler CE, Clayton EL et al. 2014. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345:1192–94
    [Google Scholar]
  70. Mohan A, Goodwin M, Swanson MS 2014. RNA-protein interactions in unstable microsatellite diseases. Brain Res 1584:3–14
    [Google Scholar]
  71. Moore LR, Rajpal G, Dillingham IT, Qutob M, Blumenstein KG et al. 2017. Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol. Ther. Nucleic Acids 7:200–10
    [Google Scholar]
  72. Mori K, Weng SM, Arzberger T, May S, Rentzsch K et al. 2013. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–38
    [Google Scholar]
  73. Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK et al. 2006. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat. Genet. 38:758–69
    [Google Scholar]
  74. Naguib A, Sandmann T, Yi F, Watts RJ, Lewcock JW et al. 2019. SUPT4H1 depletion leads to a global reduction in RNA. Cell Rep 26:45–53
    [Google Scholar]
  75. Nelson DL, Orr HT, Warren ST 2013. The unstable repeats–three evolving faces of neurological disease. Neuron 77:825–43
    [Google Scholar]
  76. Oh SY, He F, Krans A, Frazer M, Taylor JP et al. 2015. RAN translation at CGG repeats induces ubiquitin proteasome system impairment in models of fragile X-associated tremor ataxia syndrome. Hum. Mol. Genet. 24:4317–26
    [Google Scholar]
  77. Ohki Y, Wenninger-Weinzierl A, Hruscha A, Asakawa K, Kawakami K et al. 2017. Glycine-alanine dipeptide repeat protein contributes to toxicity in a zebrafish model of C9orf72 associated neurodegeneration. Mol. Neurodegener. 12:6
    [Google Scholar]
  78. O'Rourke JR, Swanson MS. 2009. Mechanisms of RNA-mediated disease. J. Biol. Chem. 284:7419–23
    [Google Scholar]
  79. Orr HT, Zoghbi HY. 2007. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30:575–621
    [Google Scholar]
  80. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM 2016. The integrated stress response. EMBO Rep 17:1374–95
    [Google Scholar]
  81. Pinto BS, Saxena T, Oliveira R, Mendez-Gomez HR, Cleary JD et al. 2017. Impeding transcription of expanded microsatellite repeats by deactivated Cas9. Mol. Cell 68:479–90.e5
    [Google Scholar]
  82. Poirier MA, Jiang H, Ross CA 2005. A structure-based analysis of huntingtin mutant polyglutamine aggregation and toxicity: evidence for a compact beta-sheet structure. Hum. Mol. Genet. 14:765–74
    [Google Scholar]
  83. Ranum LPW, Cooper TA. 2006. RNA-mediated neuromuscular disorders. Annu. Rev. Neurosci. 29:259–77
    [Google Scholar]
  84. Sah DW, Aronin N. 2011. Oligonucleotide therapeutic approaches for Huntington disease. J. Clin. Investig. 121:500–7
    [Google Scholar]
  85. Sakae N, Bieniek KF, Zhang YJ, Ross K, Gendron TF et al. 2018. Poly-GR dipeptide repeat polymers correlate with neurodegeneration and clinicopathological subtypes in C9ORF72-related brain disease. Acta Neuropathol. Commun. 6:63
    [Google Scholar]
  86. Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N et al. 2004. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15:95–105
    [Google Scholar]
  87. Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R et al. 1999. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. PNAS 96:4604–9
    [Google Scholar]
  88. Scoles DR, Meera P, Schneider MD, Paul S, Dansithong W et al. 2017. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature 544:362–66
    [Google Scholar]
  89. Scotti MM, Swanson MS. 2016. RNA mis-splicing in disease. Nat. Rev. Genet. 17:19–32
    [Google Scholar]
  90. Sellier C, Buijsen RAM, He F, Natla S, Jung L et al. 2017. Translation of expanded CGG repeats into FMRpolyG is pathogenic and may contribute to fragile X tremor ataxia syndrome. Neuron 93:331–47
    [Google Scholar]
  91. Shi YX, Lin SY, Staats KA, Li YC, Chang WH et al. 2018. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med. 24:313–25
    [Google Scholar]
  92. Siboni RB, Nakamori M, Wagner SD, Struck AJ, Coonrod LA et al. 2015. Actinomycin D specifically reduces expanded CUG repeat RNA in myotonic dystrophy models. Cell Rep 13:2386–94
    [Google Scholar]
  93. Solomon DA, Stepto A, Au WH, Adachi Y, Diaper DC et al. 2018. A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-α mediates C9orf72-related neurodegeneration. Brain 141:2908–24
    [Google Scholar]
  94. Sonenberg N, Hinnebusch AG. 2009. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–45
    [Google Scholar]
  95. Sonobe Y, Ghadge G, Masaki K, Sendoel A, Fuchs E, Roos RP 2018. Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress. Neurobiol. Dis. 116:155–65
    [Google Scholar]
  96. Soragni E, Petrosyan L, Rinkoski TA, Wieben ED, Baratz KH et al. 2018. Repeat-associated non-ATG (RAN) translation in Fuchs' endothelial corneal dystrophy. Investig. Ophthalmol. Vis. Sci. 59:1888–96
    [Google Scholar]
  97. Stopford MJ, Higginbottom A, Hautbergue GM, Cooper-Knock J, Mulcahy PJ et al. 2017. C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten. Hum. Mol. Genet. 26:1133–45
    [Google Scholar]
  98. Switonski PM, Szlachcic WJ, Gabka A, Krzyzosiak WJ, Figiel M 2012. Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol. Neurobiol. 46:430–66
    [Google Scholar]
  99. Tabet R, Schaeffer L, Freyermuth F, Jambeau M, Workman M et al. 2018. CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nat. Commun. 9:152
    [Google Scholar]
  100. Taylor JP, Brown RH, Cleveland DW 2016. Decoding ALS: from genes to mechanism. Nature 539:197–206
    [Google Scholar]
  101. Todd PK, Oh SY, Krans A, He F, Sellier C et al. 2013. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78:440–55
    [Google Scholar]
  102. Todd PK, Oh SY, Krans A, Pandey UB, Di Prospero NA et al. 2010. Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome. PLOS Genet 6:e1001240
    [Google Scholar]
  103. Todd PK, Paulson HL. 2010. RNA-mediated neurodegeneration in repeat expansion disorders. Ann. Neurol. 67:291–300
    [Google Scholar]
  104. Tóth G, Gáspári Z, Jurka J 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–81
    [Google Scholar]
  105. Trottier Y, Biancalana V, Mandel JL 1994. Instability of CAG repeats in Huntington's disease: relation to parental transmission and age of onset. J. Med. Genet. 31:377–82
    [Google Scholar]
  106. Underwood BR, Rubinsztein DC. 2008. Spinocerebellar ataxias caused by polyglutamine expansions: a review of therapeutic strategies. Cerebellum 7:215–21
    [Google Scholar]
  107. Vatsavayai SC, Yoon SJ, Gardner RC, Gendron TF, Vargas JN et al. 2016. Timing and significance of pathological features in C9orf72 expansion–associated frontotemporal dementia. Brain 139:3202–16
    [Google Scholar]
  108. Vossfeldt H, Butzlaff M, Prüssing K, Ní Chárthaigh RA, Karsten P et al. 2012. Large-scale screen for modifiers of ataxin-3-derived polyglutamine-induced toxicity in Drosophila. . PLOS ONE 7:e47452
    [Google Scholar]
  109. Walsh R, Storey E, Stefani D, Kelly L, Turnbull V 2005. The roles of proteolysis and nuclear localisation in the toxicity of the polyglutamine diseases. A review. Neurotox. Res. 7:43–57
    [Google Scholar]
  110. Wen X, Tan W, Westergard T, Krishnamurthy K, Markandaiah SS et al. 2014. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 84:1213–25
    [Google Scholar]
  111. Westergard T, Jensen BK, Wen X, Cai J, Kropf E et al. 2016. Cell-to-cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Rep 17:645–52
    [Google Scholar]
  112. Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M et al. 2012. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488:111–15
    [Google Scholar]
  113. Wheeler TM, Thornton CA. 2007. Myotonic dystrophy: RNA-mediated muscle disease. Curr. Opin. Neurol. 20:572–76
    [Google Scholar]
  114. Yamakawa M, Ito D, Honda T, Kubo K, Noda M et al. 2015. Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Hum. Mol. Genet. 24:1630–45
    [Google Scholar]
  115. Yang D, Abdallah A, Li Z, Lu Y, Almeida S, Gao FB 2015. FTD/ALS-associated poly(GR) protein impairs the Notch pathway and is recruited by poly(GA) into cytoplasmic inclusions. Acta Neuropathol 130:525–35
    [Google Scholar]
  116. Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB et al. 2015. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525:56–61
    [Google Scholar]
  117. Zhang Y-J, Gendron TF, Ebbert MTW, O'Raw AD, Yue M et al. 2018. Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nat. Med. 24:1136–42
    [Google Scholar]
  118. Zhang Y-J, Gendron TF, Grima JC, Sasaguri H, Jansen-West K et al. 2016. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. 19:668–77
    [Google Scholar]
  119. Zhang Y-J, Jansen-West K, Xu YF, Gendron TF, Bieniek KF et al. 2014. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 128:505–24
    [Google Scholar]
  120. Zhou Q, Lehmer C, Michaelsen M, Mori K, Alterauge D et al. 2017. Antibodies inhibit transmission and aggregation of C9orf72 poly-GA dipeptide repeat proteins. EMBO Mol. Med. 9:687–702
    [Google Scholar]
  121. Zu T, Cleary JD, Liu Y, Banez-Coronel M, Bubenik JL et al. 2017. RAN translation regulated by muscleblind proteins in myotonic dystrophy type 2. Neuron 95:1292–305.e5
    [Google Scholar]
  122. Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A et al. 2011. Non-ATG-initiated translation directed by microsatellite expansions. PNAS 108:260–65
    [Google Scholar]
  123. Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O et al. 2013. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. PNAS 110:E4968–77
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070918-050405
Loading
/content/journals/10.1146/annurev-neuro-070918-050405
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error