1932

Abstract

The genetic approach, based on the study of inherited forms of deafness, has proven to be particularly effective for deciphering the molecular mechanisms underlying the development of the peripheral auditory system, the cochlea and its afferent auditory neurons, and how this system extracts the physical parameters of sound. Although this genetic dissection has provided little information about the central auditory system, scattered data suggest that some genes may have a critical role in both the peripheral and central auditory systems. Here, we review the genes controlling the development and function of the peripheral and central auditory systems, focusing on those with demonstrated intrinsic roles in both systems and highlighting the current underappreciation of these genes. Their encoded products are diverse, from transcription factors to ion channels, as are their roles in the central auditory system, mostly evaluated in brainstem nuclei. We examine the ontogenetic and evolutionary mechanisms that may underlie their expression at different sites.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070918-050428
2019-07-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-070918-050428.html?itemId=/content/journals/10.1146/annurev-neuro-070918-050428&mimeType=html&fmt=ahah

Literature Cited

  1. Abedin M, King N. 2008. The premetazoan ancestry of cadherins. Science 319:5865946–48
    [Google Scholar]
  2. Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R 1995. A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem. 270:158730–38
    [Google Scholar]
  3. Alavizadeh A, Kiernan AE, Nolan P, Lo C, Steel KP, Bucan M 2001. The wheels mutation in the mouse causes vascular, hindbrain, and inner ear defects. Dev. Biol. 234:1244–60
    [Google Scholar]
  4. Appler JM, Lu CC, Druckenbrod NR, Yu W-M, Koundakjian EJ, Goodrich LV 2013. Gata3 is a critical regulator of cochlear wiring. J. Neurosci. 33:83679–91
    [Google Scholar]
  5. Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C et al. 2016. The origin and evolution of cell types. Nat. Rev. Genet. 17:12744–57
    [Google Scholar]
  6. Balakrishnan V, Becker M, Löhrke S, Nothwang HG, Güresir E, Friauf E 2003. Expression and function of chloride transporters during development of inhibitory neurotransmission in the auditory brainstem. J. Neurosci. 23:104134–45
    [Google Scholar]
  7. Becker L, Schnee ME, Niwa M, Sun W, Maxeiner S et al. 2018. The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse. eLife 7:e30241
    [Google Scholar]
  8. Beisel KW, Nelson NC, Delimont DC, Fritzsch B 2000. Longitudinal gradients of KCNQ4 expression in spiral ganglion and cochlear hair cells correlate with progressive hearing loss in DFNA2. Brain Res. Mol. Brain Res. 82:1–2137–49
    [Google Scholar]
  9. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR et al. 1997. Math1 is essential for genesis of cerebellar granule neurons. Nature 390:6656169–72
    [Google Scholar]
  10. Ben-Arie N, Hassan BA, Bermingham NA, Malicki DM, Armstrong D et al. 2000. Functional conservation of atonal and Math1 in the CNS and PNS. Development 127:51039–48
    [Google Scholar]
  11. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N et al. 1999. Math1: an essential gene for the generation of inner ear hair cells. Science 284:54211837–41
    [Google Scholar]
  12. Brandt A, Khimich D, Moser T 2005. Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse. J. Neurosci. 25:5011577–85
    [Google Scholar]
  13. Brown S, Zervas M. 2017. Temporal expression of Wnt1 defines the competency state and terminal identity of progenitors in the developing cochlear nucleus and inferior colliculus. Front. Neuroanat. 11:67
    [Google Scholar]
  14. Brunelli S, Innocenzi A, Cossu G 2003. Bhlhb5 is expressed in the CNS and sensory organs during mouse embryonic development. Gene Expr. Patterns 3:6755–59
    [Google Scholar]
  15. Butler BE, Lomber SG. 2013. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration. Front. Syst. Neurosci. 7:92
    [Google Scholar]
  16. Butola T, Wichmann C, Moser T 2017. Piccolo promotes vesicle replenishment at a fast central auditory synapse. Front. Synaptic Neurosci. 9:14
    [Google Scholar]
  17. Cai T, Seymour ML, Zhang H, Pereira FA, Groves AK 2013. Conditional deletion of Atoh1 reveals distinct critical periods for survival and function of hair cells in the organ of Corti. J. Neurosci. 33:2410110–22
    [Google Scholar]
  18. Cai X, Kardon AP, Snyder LM, Kuzirian MS, Minestro S et al. 2016. Bhlhb5::flpo allele uncovers a requirement for Bhlhb5 for the development of the dorsal cochlear nucleus. Dev. Biol. 414:2149–60
    [Google Scholar]
  19. Cant NB, Benson CG. 2003. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res. Bull. 60:5–6457–74
    [Google Scholar]
  20. Cediel R, Riquelme R, Contreras J, Díaz A, Varela-Nieto I 2006. Sensorineural hearing loss in insulin-like growth factor I-null mice: a new model of human deafness. Eur. J. Neurosci. 23:2587–90
    [Google Scholar]
  21. Charizopoulou N, Lelli A, Schraders M, Ray K, Hildebrand MS et al. 2011. Gipc3 mutations associated with audiogenic seizures and sensorineural hearing loss in mouse and human. Nat. Commun. 2:201
    [Google Scholar]
  22. Cheatle Jarvela AM, Hinman VF 2015. Evolution of transcription factor function as a mechanism for changing metazoan developmental gene regulatory networks. EvoDevo 6:3
    [Google Scholar]
  23. Chisaka O, Musci TS, Capecchi MR 1992. Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-#150;1.6. . Nature 355:6360516–20
    [Google Scholar]
  24. Chonko KT, Jahan I, Stone J, Wright MC, Fujiyama T et al. 2013. Atoh1 directs hair cell differentiation and survival in the late embryonic mouse inner ear. Dev. Biol. 381:2401–10
    [Google Scholar]
  25. Choo DI, Tawfik KO, Martin DM, Raphael Y 2017. Inner ear manifestations in CHARGE: abnormalities, treatments, animal models, and progress toward treatments in auditory and vestibular structures. Am. J. Med. Genet. C Semin. Med. Genet. 175:4439–49
    [Google Scholar]
  26. Choo DI, Ward J, Reece A, Dou H, Lin Z, Greinwald J 2006. Molecular mechanisms underlying inner ear patterning defects in kreisler mutants. Dev. Biol. 289:2308–17
    [Google Scholar]
  27. Cordes SP, Barsh GS. 1994. The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79:61025–34
    [Google Scholar]
  28. Cramer KS, Gabriele ML. 2014. Axon guidance in the auditory system: multiple functions of Eph receptors. Neuroscience 277:152–62
    [Google Scholar]
  29. de Mendoza A, Sebé-Pedrós A, Šestak MS, Matejcic M, Torruella G et al. 2013. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. PNAS 110:50E4858–66
    [Google Scholar]
  30. Delmaghani S, Defourny J, Aghaie A, Beurg M, Dulon D et al. 2015. Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163:4894–906
    [Google Scholar]
  31. Delsuc F, Brinkmann H, Chourrout D, Philippe H 2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:7079965–68
    [Google Scholar]
  32. Di Bonito M, Studer M 2017. Cellular and molecular underpinnings of neuronal assembly in the central auditory system during mouse development. Front. Neural Circuits 11:18
    [Google Scholar]
  33. Djenoune L, Wyart C. 2017. Light on a sensory interface linking the cerebrospinal fluid to motor circuits in vertebrates. J. Neurogenet. 31:3113–27
    [Google Scholar]
  34. Duncan JS, Fritzsch B. 2013. Continued expression of GATA3 is necessary for cochlear neurosensory development. PLOS ONE 8:4e62046
    [Google Scholar]
  35. Emptoz A, Michel V, Lelli A, Akil O, Boutet de Monvel J et al. 2017. Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G. PNAS 114:369695–700
    [Google Scholar]
  36. Farago AF, Awatramani RB, Dymecki SM 2006. Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:2205–18
    [Google Scholar]
  37. Frank T, Khimich D, Neef A, Moser T 2009. Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells. PNAS 106:114483–88
    [Google Scholar]
  38. Friedman LM, Avraham KB. 2009. MicroRNAs and epigenetic regulation in the mammalian inner ear: implications for deafness. Mamm. Genome 20:9–10581–603
    [Google Scholar]
  39. Friedman N, Rando OJ. 2015. Epigenomics and the structure of the living genome. Genome Res 25:101482–90
    [Google Scholar]
  40. Fritzsch B, Elliott KL. 2017. Gene, cell, and organ multiplication drives inner ear evolution. Dev. Biol. 431:13–15
    [Google Scholar]
  41. Geisler CD, Frishkopf LS, Rosenblith WA 1958. Extracranial responses to acoustic clicks in man. Science 128:33331210–11
    [Google Scholar]
  42. Gibson F, Walsh J, Mburu P, Varela A, Brown KA et al. 1995. A type VII myosin encoded by the mouse deafness gene shaker-1. . Nature 374:651762–64
    [Google Scholar]
  43. Groves AK, Fekete DM. 2017. New directions in cochlear development. Understanding the Cochlea GA Manley, AW Gummer, AN Popper, RR Fay 33–73 Cham, Switz: Springer
    [Google Scholar]
  44. Gundelfinger ED, Reissner C, Garner CC 2015. Role of bassoon and piccolo in assembly and molecular organization of the active zone. Front. Synaptic Neurosci. 7:19
    [Google Scholar]
  45. Hackney CM, Mahendrasingam S, Penn A, Fettiplace R 2005. The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J. Neurosci. 25:347867–75
    [Google Scholar]
  46. Herzog E, Gilchrist J, Gras C, Muzerelle A, Ravassard P et al. 2004. Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience 123:4983–1002
    [Google Scholar]
  47. Hirtz JJ, Boesen M, Braun N, Deitmer JW, Kramer F et al. 2011. Cav1.3 calcium channels are required for normal development of the auditory brainstem. J. Neurosci. 31:228280–94
    [Google Scholar]
  48. Hirtz JJ, Braun N, Griesemer D, Hannes C, Janz K et al. 2012. Synaptic refinement of an inhibitory topographic map in the auditory brainstem requires functional Cav1.3 calcium channels. J. Neurosci. 32:4214602–16
    [Google Scholar]
  49. Hulpiau P, Gul IS, van Roy F 2016. Evolution of cadherins and associated catenins. The Cadherin Superfamily: Key Regulators of Animal Development and Physiology ST Suzuki, S Hirano 13–37 Tokyo: Springer
    [Google Scholar]
  50. Hurd EA, Poucher HK, Cheng K, Raphael Y, Martin DM 2010. The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. Development 137:183139–50
    [Google Scholar]
  51. Jahan I, Pan N, Kersigo J, Fritzsch B 2010. Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLOS ONE 5:7e11661
    [Google Scholar]
  52. Jean P, Lopez de la Morena D, Michanski S, Jaime Tobón LM, Chakrabarti R et al. 2018. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. eLife 7:e29275
    [Google Scholar]
  53. Joshi PS, Molyneaux BJ, Feng L, Xie X, Macklis JD, Gan L 2008. Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex. Neuron 60:2258–72
    [Google Scholar]
  54. Karis A, Pata I, van Doorninck JH, Grosveld F, de Zeeuw CI et al. 2001. Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J. Comp. Neurol. 429:4615–30
    [Google Scholar]
  55. Karmakar K, Narita Y, Fadok J, Ducret S, Loche A et al. 2017. Hox2 genes are required for tonotopic map precision and sound discrimination in the mouse auditory brainstem. Cell Rep 18:1185–97
    [Google Scholar]
  56. Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA et al. 2007. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449:715887–91
    [Google Scholar]
  57. Kelley MW, Wu DK. 2005. Developmental neurobiology of the ear: current status and future directions. Development of the Inner Ear MW Kelley, DK Wu, RR Fay 1–9 New York: Springer
    [Google Scholar]
  58. Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, El-Amraoui A et al. 2000. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. PNAS 97:84333–38
    [Google Scholar]
  59. Khimich D, Nouvian R, Pujol R, tom Dieck S, Egner A et al. 2005. Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434:7035889–94
    [Google Scholar]
  60. Kim EJ, Hori K, Wyckoff A, Dickel LK, Koundakjian EJ et al. 2011. Spatiotemporal fate map of neurogenin1 (Neurog1) lineages in the mouse central nervous system. J. Comp. Neurol. 519:71355–70
    [Google Scholar]
  61. Kim YJ, Ibrahim LA, Wang S-Z, Yuan W, Evgrafov OV et al. 2016. EphA7 regulates spiral ganglion innervation of cochlear hair cells. Dev. Neurobiol. 76:4452–69
    [Google Scholar]
  62. Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A et al. 1999. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:3437–46
    [Google Scholar]
  63. Kuhn S, Johnson SL, Furness DN, Chen J, Ingham N et al. 2011. miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells. PNAS 108:62355–60
    [Google Scholar]
  64. Kwan T, White PM, Segil N 2009. Development and regeneration of the inner ear. Ann. N. Y. Acad. Sci. 1170:28–33
    [Google Scholar]
  65. Legan PK, Goodyear RJ, Morín M, Mencia A, Pollard H et al. 2014. Three deaf mice: Mouse models for TECTA-based human hereditary deafness reveal domain-specific structural phenotypes in the tectorial membrane. Hum. Mol. Genet. 23:102551–68
    [Google Scholar]
  66. Levi-Montalcini R. 1949. The development to the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J. Comp. Neurol. 91:2209–41
    [Google Scholar]
  67. Lewis MA, Buniello A, Hilton JM, Zhu F, Zhang WI et al. 2016. Exploring regulatory networks of miR-96 in the developing inner ear. Sci. Rep. 6:23363
    [Google Scholar]
  68. Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH et al. 2009. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat. Genet. 41:5614–18
    [Google Scholar]
  69. Li H, Kloosterman W, Fekete DM 2010. MicroRNA-183 family members regulate sensorineural fates in the inner ear. J. Neurosci. 30:93254–63
    [Google Scholar]
  70. Libé-Philippot B, Michel V, Boutet de Monvel J, Le Gal S, Dupont T et al. 2017. Auditory cortex interneuron development requires cadherins operating hair-cell mechanoelectrical transduction. PNAS 114:307765–74
    [Google Scholar]
  71. Liu M, Pereira FA, Price SD, Chu M-J, Shope C et al. 2000. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14:222839–54
    [Google Scholar]
  72. Lohmann C, Friauf E. 1996. Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J. Comp. Neurol. 367:190–109
    [Google Scholar]
  73. Louvi A, Yoshida M, Grove EA 2007. The derivatives of the Wnt3a lineage in the central nervous system. J. Comp. Neurol. 504:5550–69
    [Google Scholar]
  74. Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ 1998. Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:3469–82
    [Google Scholar]
  75. Maricich SM, Xia A, Mathes EL, Wang VY, Oghalai JS et al. 2009. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. J. Neurosci. 29:3611123–33
    [Google Scholar]
  76. Marrs GS, Morgan WJ, Howell DM, Spirou GA, Mathers PH 2013. Embryonic origins of the mouse superior olivary complex. Dev. Neurobiol. 73:5384–98
    [Google Scholar]
  77. McGee J, Goodyear RJ, McMillan DR, Stauffer EA, Holt JR et al. 2006. The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J. Neurosci. 26:246543–53
    [Google Scholar]
  78. McKay IJ, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lewis J 1994. The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120:82199–2211
    [Google Scholar]
  79. Mencía A, Modamio-Høybjør S, Redshaw N, Morín M, Mayo-Merino F et al. 2009. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat. Genet. 41:5609–13
    [Google Scholar]
  80. Michalski N, Goutman JD, Auclair SM, de Monvel JB, Tertrais M et al. 2017. Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses. eLife Sci 6:e31013
    [Google Scholar]
  81. Michalski N, Michel V, Bahloul A, Lefèvre G, Barral J et al. 2007. Molecular characterization of the ankle-link complex in cochlear hair cells and its role in the hair bundle functioning. J. Neurosci. 27:246478–88
    [Google Scholar]
  82. Mire P, Watson GM. 1997. Mechanotransduction of hair bundles arising from multicellular complexes in anemones. Hear. Res. 113:1–2224–34
    [Google Scholar]
  83. Nothwang HG. 2016. Evolution of mammalian sound localization circuits: a developmental perspective. Prog. Neurobiol. 141:1–24
    [Google Scholar]
  84. Nouvian R, Neef J, Bulankina AV, Reisinger E, Pangršič T et al. 2011. Exocytosis at the hair cell ribbon synapse apparently operates without neuronal SNARE proteins. Nat. Neurosci. 14:4411–13
    [Google Scholar]
  85. Ohyama T, Basch ML, Mishina Y, Lyons KM, Segil N, Groves AK 2010. BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea. J. Neurosci. 30:4515044–51
    [Google Scholar]
  86. Ohyama T, Groves AK, Martin K 2007. The first steps towards hearing: mechanisms of otic placode induction. Int. J. Dev. Biol. 51:6–7463–72
    [Google Scholar]
  87. Pace AJ, Madden VJ, Henson OW, Koller BH, Henson MM 2001. Ultrastructure of the inner ear of NKCC1-deficient mice. Hear. Res. 156:1–217–30
    [Google Scholar]
  88. Pan B, Askew C, Galvin A, Heman-Ackah S, Asai Y et al. 2017. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat. Biotechnol. 35:3264–72
    [Google Scholar]
  89. Pangrsic T, Lasarow L, Reuter K, Takago H, Schwander M et al. 2010. Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nat. Neurosci. 13:7869–76
    [Google Scholar]
  90. Park JG, Tischfield MA, Nugent AA, Cheng L, Di Gioia SA et al. 2016. Loss of MAFB function in humans and mice causes Duane syndrome, aberrant extraocular muscle innervation, and inner-ear defects. Am. J. Hum. Genet. 98:61220–27
    [Google Scholar]
  91. Parthier D, Kuner T, Körber C 2018. The presynaptic scaffolding protein Piccolo organizes the readily releasable pool at the calyx of Held. J. Physiol. 596:81485–99
    [Google Scholar]
  92. Petit C, Richardson GP. 2009. Linking genes underlying deafness to hair-bundle development and function. Nat. Neurosci. 12:6703–10
    [Google Scholar]
  93. Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S et al. 2000. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:189–97
    [Google Scholar]
  94. Riccomagno MM, Takada S, Epstein DJ 2005. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 19:131612–23
    [Google Scholar]
  95. Richardson GP, de Monvel JB, Petit C 2011. How the genetics of deafness illuminates auditory physiology. Annu. Rev. Physiol. 73:311–34
    [Google Scholar]
  96. Roux I, Safieddine S, Nouvian R, Grati M, Simmler M-C et al. 2006. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:2277–89
    [Google Scholar]
  97. Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B et al. 2008. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am. J. Hum. Genet. 83:2278–92
    [Google Scholar]
  98. Ryan AF, Ikeda R, Masuda M 2015. The regulation of gene expression in hair cells. Hear. Res. 329:33–40
    [Google Scholar]
  99. Safieddine S, El-Amraoui A, Petit C 2012. The auditory hair cell ribbon synapse: from assembly to function. Annu. Rev. Neurosci. 35:509–28
    [Google Scholar]
  100. Sahly I, Dufour E, Schietroma C, Michel V, Bahloul A et al. 2012. Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice. J. Cell Biol. 199:2381–99
    [Google Scholar]
  101. Satheesh SV, Kunert K, Rüttiger L, Zuccotti A, Schönig K et al. 2012. Retrocochlear function of the peripheral deafness gene Cacna1d. Hum. Mol. Genet 21:173896–909
    [Google Scholar]
  102. Schlosser G, Patthey C, Shimeld SM 2014. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev. Biol. 389:198–119
    [Google Scholar]
  103. Schlüter T, Berger C, Rosengauer E, Fieth P, Krohs C et al. 2018. MiR-96 is required for normal development of the auditory hindbrain. Hum. Mol. Genet. 27:5860–74
    [Google Scholar]
  104. Schneider-Maunoury S, Topilko P, Seitandou T, Levi G, Cohen-Tannoudji M et al. 1993. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75:61199–214
    [Google Scholar]
  105. Seal RP, Akil O, Yi E, Weber CM, Grant L et al. 2008. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron 57:2263–75
    [Google Scholar]
  106. Sham MH, Vesque C, Nonchev S, Marshall H, Frain M et al. 1993. The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. Cell 72:2183–96
    [Google Scholar]
  107. Shi F, Hu L, Jacques BE, Mulvaney JF, Dabdoub A, Edge ASB 2014. β-Catenin is required for hair-cell differentiation in the cochlea. J. Neurosci. 34:196470–79
    [Google Scholar]
  108. Shin D, Lin S-T, Fu Y-H, Ptácek LJ 2013. Very large G protein-coupled receptor 1 regulates myelin-associated glycoprotein via Gαs/Gαq-mediated protein kinases A/C. PNAS 110:4719101–6
    [Google Scholar]
  109. Sloviter RS. 1989. Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J. Comp. Neurol. 280:2183–96
    [Google Scholar]
  110. Stensrud MJ, Sogn CJ, Gundersen V 2015. Immunogold characteristics of VGLUT3-positive GABAergic nerve terminals suggest corelease of glutamate. J. Comp. Neurol. 523:182698–713
    [Google Scholar]
  111. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T et al. 2016. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19:2335–46
    [Google Scholar]
  112. Tritsch NX, Rodríguez-Contreras A, Crins TTH, Wang HC, Borst JGG, Bergles DE 2010. Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset. Nat. Neurosci. 13:91050–52
    [Google Scholar]
  113. Varela-Nieto I, Murillo-Cuesta S, Rodríguez-de la Rosa L, Lassatetta L, Contreras J 2013. IGF-I deficiency and hearing loss: molecular clues and clinical implications. Pediatr. Endocrinol. Rev. 10:4460–72
    [Google Scholar]
  114. Wada H, Saiga H, Satoh N, Holland PW 1998. Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development 125:61113–22
    [Google Scholar]
  115. Wallace MM, Harris JA, Brubaker DQ, Klotz CA, Gabriele ML 2016. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem. Hear. Res. 335:64–75
    [Google Scholar]
  116. Wang VY, Rose MF, Zoghbi HY 2005. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:131–43
    [Google Scholar]
  117. Watson GM, Pham L, Graugnard EM, Mire P 2008. Cadherin 23-like polypeptide in hair bundle mechanoreceptors of sea anemones. J. Comp. Physiol. A 194:9811–20
    [Google Scholar]
  118. Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F et al. 1995. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374:651760–61
    [Google Scholar]
  119. Willaredt MA, Ebbers L, Nothwang HG 2014. Central auditory function of deafness genes. Hear. Res. 312:9–20
    [Google Scholar]
  120. Willaredt MA, Schlüter T, Nothwang HG 2015. The gene regulatory networks underlying formation of the auditory hindbrain. Cell. Mol. Life Sci. 72:3519–35
    [Google Scholar]
  121. Wu W, Rahman MN, Guo J, Roy N, Xue L et al. 2015. Function coupling of otoferlin with GAD65 acts to modulate GABAergic activity. J. Mol. Cell Biol. 7:2168–79
    [Google Scholar]
  122. Yu T, Meiners LC, Danielsen K, Wong MT, Bowler T et al. 2013. Deregulated FGF and homeotic gene expression underlies cerebellar vermis hypoplasia in CHARGE syndrome. eLife 2:e01305
    [Google Scholar]
  123. Yu W-M, Appler JM, Kim Y-H, Nishitani AM, Holt JR, Goodrich LV 2013. A Gata3-Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. eLife 2:e01341
    [Google Scholar]
  124. Zhang LI, Bao S, Merzenich MM 2001. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat. Neurosci. 4:111123–30
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070918-050428
Loading
/content/journals/10.1146/annurev-neuro-070918-050428
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error