1932

Abstract

Why the cerebral cortex folds in some mammals but not in others has long fascinated and mystified neurobiologists. Over the past century—especially the past decade—researchers have used theory and experiment to support different folding mechanisms such as tissue buckling from mechanical stress, axon tethering, localized proliferation, and external constraints. In this review, we synthesize these mechanisms into a unifying framework and introduce a hitherto unappreciated mechanism, the radial intercalation of new neurons at the top of the cortical plate, as a likely proximate force for tangential expansion that then leads to cortical folding. The interplay between radial intercalation and various biasing factors, such as local variations in proliferation rate and connectivity, can explain the formation of both random and stereotypically positioned folds.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071714-034128
2015-07-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/neuro/38/1/annurev-neuro-071714-034128.html?itemId=/content/journals/10.1146/annurev-neuro-071714-034128&mimeType=html&fmt=ahah

Literature Cited

  1. Aronica E, Becker AJ, Spreafico R. 2012. Malformations of cortical development. Brain Pathol. 22:380–401 [Google Scholar]
  2. Barron DH. 1950. An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex. J. Exp. Zool. 113:553–81 [Google Scholar]
  3. Barros W, de Azevedo EN, Engelsberg M. 2012. Surface pattern formation in a swelling gel. Soft Matter 8:8511–16 [Google Scholar]
  4. Bayer SA, Altman J, Russo RJ, Dai XF, Simmons JA. 1991. Cell migration in the rat embryonic neocortex. J. Comp. Neurol. 307:499–516 [Google Scholar]
  5. Bayly PV, Okamoto RJ, Xu G, Shi Y, Taber LA. 2013. A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys. Biol. 10:016005 [Google Scholar]
  6. Bayly PV, Taber LA, Kroenke CD. 2014. Mechanical forces in cerebral cortical folding: a review of measurements and models. J. Mech. Behav. Biomed. Mater. 29:568–81 [Google Scholar]
  7. Cao Y-P, Li B, Feng X-Q. 2011. Surface wrinkling and folding of core–shell soft cylinders. Soft Matter 8:556–62 [Google Scholar]
  8. Chen H, Zhang T, Guo L, Li K, Yu X. et al. 2013. Coevolution of gyral folding and structural connection patterns in primate brains. Cereb. Cortex 23:1208–17 [Google Scholar]
  9. Chenn A, Walsh CA. 2002. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–69 [Google Scholar]
  10. de Beer G. 1958. Embryos and Ancestors London: Oxford Univ. Press
  11. Dehay C, Giroud P, Berland M, Killackey H, Kennedy H. 1996. Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J. Comp. Neurol. 367:70–89 [Google Scholar]
  12. Dehay C, Kennedy H. 2007. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8:438–50 [Google Scholar]
  13. Dehay C, Savatier P, Cortay V, Kennedy H. 2001. Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J. Neurosci. 21:201–14 [Google Scholar]
  14. Dervaux J, Amar BM. 2011. Buckling condensation in constrained growth. J. Mech. Phys. Solids 59:538–60 [Google Scholar]
  15. Dervaux J, Amar MB. 2012. Mechanical instabilities of gels. Annu. Rev. Condens. Matter Phys. 3:311–32 [Google Scholar]
  16. Dervaux J, Couder Y, Guedeau-Boudeville M-A, Amar MB. 2011. Shape transition in artificial tumors: from smooth buckles to singular creases. Phys. Rev. Lett. 107:018103 [Google Scholar]
  17. Desmond ME, Jacobson AG. 1977. Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev. Biol. 57:188–98 [Google Scholar]
  18. Garzón-Alvarado DA, Martinez AMR, Segrera DLL. 2011. A model of cerebral cortex formation during fetal development using reaction–diffusion–convection equations with Turing space parameters. Comput. Methods Progr. Biomed. 104:489–97 [Google Scholar]
  19. Gato A, Desmond ME. 2009. Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Dev. Biol. 327:263–72 [Google Scholar]
  20. Heller E, Kumar KV, Grill SW, Fuchs E. 2014. Forces generated by cell intercalation tow epidermal sheets in mammalian tissue morphogenesis. Dev. Cell 28:617–32 [Google Scholar]
  21. Hilgetag C, Barbas H. 2006. Role of mechanical factors in the morphology of the primate cerebral cortex. PLOS Comput. Biol. 2:e22 [Google Scholar]
  22. Hofman MA. 1985. Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav. Evol. 27:28–40 [Google Scholar]
  23. Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM. 2013. The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb. Cortex 23:2521–30 [Google Scholar]
  24. Jackson CA, Peduzzi JD, Hickey TL. 1989. Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons. J. Neurosci. 9:1242–53 [Google Scholar]
  25. Kelava I, Lewitus E, Huttner WB. 2013. The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal. Front. Neuroanat. 7:16 [Google Scholar]
  26. Keller RE. 1980. The cellular basis of epiboly: an SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis. J. Embryol. Exp. Morphol. 60:201–34 [Google Scholar]
  27. Keller R, Davidson L, Edlund A, Elul T, Ezin M. et al. 2000. Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. B 355:897–922 [Google Scholar]
  28. Klyachko VA, Stevens CF. 2003. Connectivity optimization and the positioning of cortical areas. PNAS 100:7937–41 [Google Scholar]
  29. Knutsen AK, Kroenke CD, Chang YV, Taber LA, Bayly PV. 2013. Spatial and temporal variations of cortical growth during gyrogenesis in the developing ferret brain. Cereb. Cortex 23:488–98 [Google Scholar]
  30. Kosodo Y, Suetsugu T, Suda M, Mimori-Kiyosue Y, Toida K. et al. 2011. Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. EMBO J. 30:1690–704 [Google Scholar]
  31. Kriegstein A, Noctor S, Martínez-Cerdeño V. 2006. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 7:883–90 [Google Scholar]
  32. Kücken M. 2007. Models for fingerprint pattern formation. Forensic Sci. Int. 171:85–96 [Google Scholar]
  33. Le Gros Clark WE. 1945. Deformation patterns on the cerebral cortex. Essays on Growth and Form WE Le Gros Clark, PB Medawar 1–22 London: Clarendon [Google Scholar]
  34. Lewitus E, Kelava I, Huttner WB. 2013. Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development. Front. Hum. Neurosci. 7:424 [Google Scholar]
  35. Lewitus E, Kelava I, Kalinka AT, Tomancak P, Huttner WB. 2014. An adaptive threshold in mammalian neocortical evolution. PLOS Biol. 12:e1002000 [Google Scholar]
  36. Li B, Cao Y-P, Feng X-Q, Yu S-W. 2011. Mucosal wrinkling in animal antra induced by volumetric growth. Appl. Phys. Lett. 98:153701 [Google Scholar]
  37. Lui JH, Hansen DV, Kriegstein AR. 2011. Development and evolution of the human neocortex. Cell 146:18–36 [Google Scholar]
  38. Manger PR, Prowse M, Haagensen M, Hemingway J. 2012. Quantitative analysis of neocortical gyrencephaly in African elephants (Loxodonta africana) and six species of cetaceans: comparison with other mammals. J. Comp. Neurol. 520:2430–39 [Google Scholar]
  39. McGowan LD, Alaama RA, Freise AC, Huang JC, Charvet CJ, Striedter GF. 2012. Expansion, folding, and abnormal lamination of the chick optic tectum after intraventricular injections of FGF2. PNAS 109:Suppl. 110640–46 [Google Scholar]
  40. Moon HM, Wynshaw-Boris A. 2013. Cytoskeleton in action: lissencephaly, a neuronal migration disorder. Wiley Interdiscip. Rev. Dev. Biol. 2:229–45 [Google Scholar]
  41. Mota B, Herculano-Houzel S. 2012. How the cortex gets its folds: an inside-out, connectivity-driven model for the scaling of mammalian cortical folding. Front. Neuroanat. 6:3 [Google Scholar]
  42. Neal J, Takahashi M, Silva M, Tiao G, Walsh CA, Sheen VL. 2007. Insights into the gyrification of developing ferret brain by magnetic resonance imaging. J. Anat. 210:66–77 [Google Scholar]
  43. Nie J, Guo L, Li G, Faraco C, Miller LS, Liu T. 2010. A computational model of cerebral cortex folding. J. Theor. Biol. 264:467–78 [Google Scholar]
  44. Nie J, Guo L, Li K, Wang Y, Chen G. et al. 2012. Axonal fiber terminations concentrate on gyri. Cereb. Cortex 22:2831–39 [Google Scholar]
  45. Nonaka-Kinoshita M, Reillo I, Artegiani B, Martínez-Martínez , Nelson M. et al. 2013. Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J. 32:1817–28 [Google Scholar]
  46. Ono M, Kubick S, Abernathy CD. 1990. Atlas of the Cerebral Sulci New York: G. Thieme Verlag
  47. Pillay P, Manger PR. 2007. Order-specific quantitative patterns of cortical gyrification. Eur. J. Neurosci. 25:2705–12 [Google Scholar]
  48. Prothero JW, Sundsten JW. 1984. Folding of the cerebral cortex in mammals. A scaling model. Brain Behav. Evol. 24:152–67 [Google Scholar]
  49. Raj A, Chen Y-H. 2011. The wiring economy principle: Connectivity determines anatomy in the human brain. PLOS ONE 6:e14832 [Google Scholar]
  50. Rajimehr R, Tootell RBH. 2009. Does retinotopy influence cortical folding in primate visual cortex?. J. Neurosci. 29:11149–52 [Google Scholar]
  51. Rakic P. 1988. Specification of cerebral cortical areas. Science 241:170–76 [Google Scholar]
  52. Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM. 2013. Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J. Neurosci. 33:10802–14 [Google Scholar]
  53. Reillo I, de Juan Romero C, García-Cabezas , Borrell V. 2011. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21:1674–94 [Google Scholar]
  54. Retzius G. 1896. Das Menschenhirn Stockholm: K. Buchdruckerei
  55. Ribeiro PFM, Ventura-Antunes L, Gabi M, Mota B, Grinberg LT. et al. 2013. The human cerebral cortex is neither one nor many: Neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding. Front. Neuroanat. 7:28 [Google Scholar]
  56. Richman DP, Stewart RM, Hutchinson JW, Caviness VS Jr. 1975. Mechanical model of brain convolutional development. Science 189:18–21 [Google Scholar]
  57. Ronan L, Pienaar R, Williams G, Bullmore ED, Crow TJ. et al. 2011. Intrinsic curvature: a marker of millimeter-scale tangential cortical-cortical connectivity?. Int. J. Neur. Syst. 21:351–66 [Google Scholar]
  58. Ronan L, Voets N, Rua C, Alexander-Bloch A, Hough M. et al. 2013. Differential tangential expansion as a mechanism for cortical gyrification. Cereb. Cortex 24:2219–28 [Google Scholar]
  59. Sanes JR, Lichtman JW. 1999. Can molecules explain long-term potentiation?. Nat. Neurosci. 2:597–604 [Google Scholar]
  60. Sauer ME, Walker BE. 1959. Radioautographic study of interkinetic nuclear migration in the neural tube. Proc. Soc. Exp. Biol. Med. 101:557–60 [Google Scholar]
  61. Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H. et al. 2011. On the growth and form of the gut. Nature 476:57–62 [Google Scholar]
  62. Sekine K, Honda T, Kawauchi T, Kubo K-I, Nakajima K. 2011. The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent “inside-out” lamination in the neocortex. J. Neurosci. 31:9426–39 [Google Scholar]
  63. Sekine K, Kubo K-I, Nakajima K. 2014. How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex?. Neurosci. Res. 86:50–58 [Google Scholar]
  64. Sidman RL, Rakic P. 1973. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 62:1–35 [Google Scholar]
  65. Smart IH, McSherry GM. 1986. Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes. J. Anat. 146:141–52 [Google Scholar]
  66. Stahl R, Walcher T, De Juan Romero C, Pilz GA, Cappello S. et al. 2013. Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153:3535–49 [Google Scholar]
  67. Stewart RM, Richman DP, Caviness VS. 1975. Lissencephaly and Pachygyria: an architectonic and topographical analysis. Acta Neuropathol. 31:1–12 [Google Scholar]
  68. Striedter GF. 2005. Principles of Brain Evolution Sunderland, MA: Sinauer
  69. Striegel DA, Hurdal MK. 2009. Chemically based mathematical model for development of cerebral cortical folding patterns. PLOS Comput. Biol. 5:e1000524 [Google Scholar]
  70. Sun T, Hevner RF. 2014. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat. Rev. Neurosci. 15:217–32 [Google Scholar]
  71. Tallinen T, Chung JY, Biggins JS, Mahadevan L. 2014. Gyrification from constrained cortical expansion. PNAS 111:12667–72 [Google Scholar]
  72. Tanaka T, Sun S-T, Hirokawa Y, Katayama S, Kucera J. et al. 1987. Mechanical instability of gels at the phase transition. Nature 325:796–98 [Google Scholar]
  73. Todd PH. 1982. A geometric model for the cortical folding pattern of simple folded brains. J. Theor. Biol. 97:529–38 [Google Scholar]
  74. Todd PH. 1985. Gaussian curvature as a parameter of biological surface growth. J. Theor. Biol. 113:63–68 [Google Scholar]
  75. Tonosaki M, Itoh K, Umekage M, Kishimoto T, Yaoi T. et al. 2014. L1cam is crucial for cell locomotion and terminal translocation of the Soma in radial migration during murine corticogenesis. PLOS ONE 9:e86186 [Google Scholar]
  76. Toro R. 2012. On the possible shapes of the brain. Evol. Biol. 39:600–12 [Google Scholar]
  77. Toro R, Burnod Y. 2005. A morphogenetic model for the development of cortical convolutions. Cereb. Cortex 15:1900–13 [Google Scholar]
  78. Van Essen DC. 1997. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–18 [Google Scholar]
  79. Walck-Shannon E, Hardin J. 2014. Cell intercalation from top to bottom. Nat. Rev. Mol. Cell Biol. 15:34–48 [Google Scholar]
  80. Warga RM, Kimmel CB. 1990. Cell movements during epiboly and gastrulation in zebrafish. Development 108:569–80 [Google Scholar]
  81. Welker W. 1990. Why does the cerebral cortex fissure and fold?. Comparative Structure and Evolution of Cerebral Cortex, Part 2 EG Jones, A Peters 3–136 New York: Springer [Google Scholar]
  82. Xu G, Knutsen AK, Dikranian K, Kroenke CD, Bayly PV, Taber LA. 2010. Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132:071013 [Google Scholar]
  83. Yang C-H, Lin Y-Y. 2014. Surface wrinkles of swelling gels under arbitrary lateral confinements. Eur. J. Mech. A Solids 45:90–100 [Google Scholar]
  84. Yin J, Cao Z, Li C, Sheinman I, Chen X. 2008. Stress-driven buckling patterns in spheroidal core/shell structures. PNAS 105:19132–35 [Google Scholar]
  85. Zilles K, Armstrong E, Moser KH, Schleicher A, Stephan H. 1989. Gyrification in the cerebral cortex of primates. Brain Behav. Evol. 34:143–50 [Google Scholar]
  86. Zilles K, Armstrong E, Schleicher A, Kretschmann HJ. 1988. The human pattern of gyrification in the cerebral cortex. Anat Embryol. 179:173–79 [Google Scholar]
  87. Zilles K, Palomero-Gallagher N, Amunts K. 2013. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 36:275–84 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071714-034128
Loading
/content/journals/10.1146/annurev-neuro-071714-034128
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error