1932

Abstract

The tragedy of epilepsy emerges from the combination of its high prevalence, impact upon sufferers and their families, and unpredictability. Childhood epilepsies are frequently severe, presenting in infancy with pharmaco-resistant seizures; are often accompanied by debilitating neuropsychiatric and systemic comorbidities; and carry a grave risk of mortality. Here, we review the most current basic science and translational research findings on several of the most catastrophic forms of pediatric epilepsy. We focus largely on genetic epilepsies and the research that is discovering the mechanisms linking disease genes to epilepsy syndromes. We also describe the strides made toward developing novel pharmacological and interventional treatment strategies to treat these disorders. The research reviewed provides hope for a complete understanding of, and eventual cure for, these childhood epilepsy syndromes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-072116-031250
2017-07-25
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/neuro/40/1/annurev-neuro-072116-031250.html?itemId=/content/journals/10.1146/annurev-neuro-072116-031250&mimeType=html&fmt=ahah

Literature Cited

  1. Abidi A, Devaux JJ, Molinari F, Alcaraz G, Michon F-X. et al. 2015. A recurrent KCNQ2 pore mutation causing early onset epileptic encephalopathy has a moderate effect on M current but alters subcellular localization of Kv7 channels. Neurobiol. Dis. 80:80–92 [Google Scholar]
  2. Aceti M, Creson TK, Vaissiere T, Rojas C, Huang W-C. et al. 2015. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol. Psychiatry 77:9805–15 [Google Scholar]
  3. Aiba I, Noebels JL. 2015. Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse SUDEP models. Sci. Transl. Med. 7:282ra46 [Google Scholar]
  4. Alvarez-Dolado M, Calcagnoto ME, Karkar KM, Southwell DG, Jones-Davis DM. et al. 2006. Cortical inhibition modified by embryonic neural precursors grafted into the postnatal brain. J. Neurosci. 26:287380–89 [Google Scholar]
  5. Amendola E, Zhan Y, Mattucci C, Castroflorio E, Calcagno E. et al. 2014. Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLOS ONE 9:5e91613 [Google Scholar]
  6. Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR. 1997. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:5337474–76 [Google Scholar]
  7. Araki Y, Zeng M, Zhang M, Huganir RL. 2015. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85:1173–90 [Google Scholar]
  8. Auerbach DS, Jones J, Clawson BC, Offord J, Lenk GM. et al. 2013. Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome. PLOS ONE 8:10e77843 [Google Scholar]
  9. Auvin S, Cilio MR, Vezzani A. 2016. Current understanding and neurobiology of epileptic encephalopathies. Neurobiol. Dis. 92:72–89 [Google Scholar]
  10. Baraban SC, Dinday MT, Hortopan GA. 2013. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat. Commun. 4:2410 [Google Scholar]
  11. Baraban SC, Southwell DG, Estrada RC, Jones DL, Sebe JY. et al. 2009. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. PNAS 106:3615472–77 [Google Scholar]
  12. Barcia G, Fleming MR, Deligniere A, Gazula V-R, Brown MR. et al. 2012. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet. 44:111255–59 [Google Scholar]
  13. Beal JC, Cherian K, Moshe SL. 2012. Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr. Neurol 47:5317–23 [Google Scholar]
  14. Bender AC, Luikart BW, Lenck-Santini PP. 2016. Cognitive deficits associated with NaV1.1 alterations: involvement of neuronal firing dynamics and oscillations. PLOS ONE 11:3e0151538 [Google Scholar]
  15. Bender AC, Natola H, Ndong C, Holmes GL, Scott RC, Pierre-Pascal L-S. 2013. Focal Scn1a knockdown induces cognitive impairment without seizures. Neurobiol. Dis. 54:297–307 [Google Scholar]
  16. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH. et al. 2010. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51:4676–85 [Google Scholar]
  17. Bienvenu T, Poirier K, Friocourt G, Bahi N, Beaumont D. et al. 2002. ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Hum. Mol. Genet. 11:8981–91 [Google Scholar]
  18. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P. et al. 1998. A potassium channel mutation in neonatal human epilepsy. Science 279:5349403–6 [Google Scholar]
  19. Brackenbury WJ, Calhoun JD, Chen C, Miyazaki H, Nukina N. et al. 2010. Functional reciprocity between Na+ channel NaV1.6 and β1 subunits in the coordinated regulation of excitability and neurite outgrowth. PNAS 107:52283–88 [Google Scholar]
  20. Brackenbury WJ, Yuan Y, O'Malley HA, Parent JM, Isom LL. 2013. Abnormal neuronal patterning occurs during early postnatal brain development of Scn1b-null mice and precedes hyperexcitability. PNAS 110:31089–94 [Google Scholar]
  21. Brewster AL, Bender RA, Chen Y, Dube C, Eghbal-Ahmadi M, Baram TZ. 2002. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J. Neurosci. 22:114591–99 [Google Scholar]
  22. Calcagnotto ME, Ruiz LP, Blanco MM, Santos-Junior JG, Valente MF. et al. 2010. Effect of neuronal precursor cells derived from medial ganglionic eminence in an acute epileptic seizure model. Epilepsia 51:Suppl. 371–75 [Google Scholar]
  23. Carvill GL, Heavin SB, Yendle SC, McMahon JM, O'Roak BJ. et al. 2013a. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2. SYNGAP1. Nat. Genet. 45:7825–30 [Google Scholar]
  24. Carvill GL, Regan BM, Yendle SC, O'Roak BJ, Lozovaya N. et al. 2013b. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat. Genet. 45:91073–76 [Google Scholar]
  25. Carvill GL, Weckhuysen S, McMahon JM, Hartmann C, Moller RS. et al. 2014. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology 82:141245–53 [Google Scholar]
  26. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE. et al. 1998. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat. Genet. 18:153–55 [Google Scholar]
  27. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. 2001. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am. J. Hum. Genet. 68:61327–32 [Google Scholar]
  28. Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y. et al. 2012. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151:4709–23 [Google Scholar]
  29. Compagnucci C, Pertini S, Higuraschi N, Trivisano M, Specchio N. et al. 2015. Characterizing PCDH19 in human induced pluripotent stem cells (iPSCs) and iPSC-derived developing neurons: emerging role of a protein involved in controlling polarity during neurogenesis. Oncotarget 6:2926804–13 [Google Scholar]
  30. Cossette P, Lui L, Brisebois K, Dong H, Lortie A. et al. 2002. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat. Genet. 31:2184–89 [Google Scholar]
  31. Costa V, Aigner S, Vukcevic M, Sauter E, Behr K. et al. 2016. mTORC1 inhibition corrects neurodevelopmental and synaptic alterations in a human stem cell model of tuberous sclerosis. Cell Rep 15:186–95 [Google Scholar]
  32. Crino PB. 2016. The mTOR signalling cascade: paving new roads to cure neurological disease. Nat. Rev. Neurol. 12:7379–92 [Google Scholar]
  33. De Camilli P, Emr SD, McPherson PS, Novick P. 1996. Phosphoinositides as regulators in membrane traffic. Science 271:52551533–39 [Google Scholar]
  34. De Stasi AM, Farisello P, Marcon I, Cavallari S, Forli A. et al. 2016. Unaltered network activity and interneuronal firing during spontaneous cortical dynamics in vivo in a mouse model of severe myoclonic epilepsy of infancy. Cereb. Cortex 26:41778–94 [Google Scholar]
  35. Della Sala G, Putignano E, Chelini G, Melani R, Calcagno E. et al. 2014. Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin-like growth factor 1. Biol. Psychiatry 80:4302–11 [Google Scholar]
  36. Depienne C, Bouteiller D, Keren B, Cheuret E, Poirier K. et al. 2009. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLOS Genet 5:2e1000381 [Google Scholar]
  37. Dibbens LM, Tarpey PS, Hynes K, Bayly MA, Scheffer IE. et al. 2008. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat. Genet. 40:6776–81 [Google Scholar]
  38. Dinday MT, Baraban SC. 2015. Large-scale phenotype-based antiepileptic drug screening in a zebrafish model of Dravet syndrome. eNeuro 2:4e0068–15.2015 [Google Scholar]
  39. Dutton SB, Makinson CD, Papale LA, Shankar A, Balakrishnan B. et al. 2013. Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility. Neurobiol. Dis. 49:1211–20 [Google Scholar]
  40. Endele S, Rosenberger G, Geider K, Popp B, Tamer C. et al. 2010. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat. Genet. 42:111021–26 [Google Scholar]
  41. Epi4K Consort., Epilepsy Phenome/Genome Proj. 2013. De novo mutations in epileptic encephalopathies. Nature 501:7466217–21 [Google Scholar]
  42. Epilepsy Phenome/Genome Proj., Epi4K Consort. 2015. Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy. Ann. Neurol. 78:2323–28 [Google Scholar]
  43. Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G. et al. 2000. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat. Genet. 24:2316–20 [Google Scholar]
  44. EuroEPINOMICS-RES Consort., Epilepsy Phenome/Genome Proj., Epi4K Consort. 2014. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am. J. Hum. Genet. 95:4360–70 [Google Scholar]
  45. Fisher RJ, Pevsner J, Burgoyne RD. 2001. Control of fusion pore dynamics during exocytosis by Munc18. Science 291:5505875–78 [Google Scholar]
  46. Fuchs C, Rimondini R, Viggiano R, Trazzi S, De Franceschi M. et al. 2015. Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder. Neurobiol. Dis. 82:298–310 [Google Scholar]
  47. Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M. et al. 2014. Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3β signaling. Neurobiol. Dis. 70:53–68 [Google Scholar]
  48. Griffin A, Hamling KR, Knupp K, Hong S, Lee LP, Baraban SC. 2017. Clemizole and modulators of serotonin signaling suppress seizures in Dravet syndrome. Brain 140:669–83 [Google Scholar]
  49. Griffin A, Krasniak C, Baraban SC. 2016. Advancing epilepsy treatment through personalized genetic zebrafish models. Prog. Brain Res. 226:195–207 [Google Scholar]
  50. Grone BP, Baraban SC. 2015. Animal models in epilepsy research: legacies and new directions. Nat. Neurosci. 18:3339–43 [Google Scholar]
  51. Grone BP, Marchese M, Hamling KR, Kumar MG, Krasniak CS. et al. 2016. Epilepsy, behavioral abnormalities, and physiological comorbidities in syntaxin-binding protein 1 (STXBP1) mutant zebrafish. PLOS ONE 11:3e0151148 [Google Scholar]
  52. Hadziselimovic N, Vukojevic V, Peter F, Milnik A, Fastenrath M. et al. 2014. Forgetting is regulated via musashi-mediated translational control of the Arp2/3 complex. Cell 156:61153–66 [Google Scholar]
  53. Halbleib JM, Nelson WJ. 2006. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20:233199–214 [Google Scholar]
  54. Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS. et al. 2012. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489:7416385–90 [Google Scholar]
  55. Hannan AJ, Blakemore C, Katsnelson A, Vitalis T, Huber KM. et al. 2001. PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat. Neurosci. 4:3282–88 [Google Scholar]
  56. Hedrich UBS, Liautard C, Kirschenbaum D, Pofahl M, Lavigne J. et al. 2014. Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human NaV1.1 mutation. J. Neurosci. 34:4514874–89 [Google Scholar]
  57. Henshall DC. 2014. MicroRNA and epilepsy: profiling, functions and potential clinical applications. Curr. Opin. Neurol. 27:2199–205 [Google Scholar]
  58. Heron SE, Smith KR, Bahlo M, Nobili L, Kahana E. et al. 2012. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 44:111188–90 [Google Scholar]
  59. Higurashi N, Uchida T, Lossin C, Misumi Y, Okada Y. et al. 2013. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol. Brain 6:19 [Google Scholar]
  60. Howard MA, Rubenstein JLR, Baraban SC. 2014. Bidirectional homeostatic plasticity induced by interneuron cell death and transplantation in vivo. PNAS 111:1492–97 [Google Scholar]
  61. Hunt RF, Baraban SC. 2015. Interneuron transplantation as a treatment for epilepsy. Cold Spring Harb. Perspect. Med. 5:a022376 [Google Scholar]
  62. Hunt RF, Girskis KM, Rubenstein JLR, Alvarez-Buylla A, Baraban SC. 2013. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat. Neurosci. 16:6692–97 [Google Scholar]
  63. Isom LL, De Jongh KS, Patton DE, Reber BFX, Offord J. et al. 1992. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science 256:5058839–42 [Google Scholar]
  64. Ito S, Ogiwara I, Yamada K, Miyamoto H, Hensch TK. et al. 2013. Mouse with NaV1.1 haploinsufficiency, a model for Dravet syndrome, exhibits lowered sociability and learning impairment. Neurobiol. Dis. 49:129–40 [Google Scholar]
  65. Janve VS, Hernandez CC, Verdier KM, Hu N, Macdonald RL. 2016. Epileptic encephalopathy de novo GABRB mutations impair γ-aminobutyric acid type A receptor function. Ann. Neurol. 79:5806–25 [Google Scholar]
  66. Jiao J, Yang Y, Shi Y, Chen J, Gao R. et al. 2013. Modeling Dravet syndrome using induced pluripotent stem cells (iPSCs) and directly converted neurons. Hum. Mol. Genet. 22:214241–52 [Google Scholar]
  67. Jimenez-Mateos EM, Arriba-Blazquez M, Sanz-Rodriguez A, Concannon C, Olivos-Ore LA. et al. 2015. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci. Rep. 5:17486 [Google Scholar]
  68. Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. 2014. On the nature of seizure dynamics. Brain 137:82210–30 [Google Scholar]
  69. Judson MC, Wallace ML, Sidorov MS, Burette AC, Bu B. et al. 2016. GABAergic neuron-specific loss of Ube3a causes Angelman syndrome-like EEG abnormalities and enhances seizure susceptibility. Neuron 90:156–69 [Google Scholar]
  70. Kalappa BI, Soh H, Duignan KM, Furuya T, Edwards S. et al. 2015. Potent KCNQ2/3-specific channel activator suppresses in vivo epileptic activity and prevents the development of tinnitus. J. Neurosci. 35:238829–42 [Google Scholar]
  71. Kalscheuer VM, Tao J, Donnelly A, Hollway G, Schwinder E. et al. 2003. Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am. J. Hum. Genet. 72:61401–11 [Google Scholar]
  72. Kalume F, Westenbroek RE, Cheah CS, Yu FH, Oakley JC. et al. 2013. Sudden unexpected death in a mouse model of Dravet syndrome. J. Clin. Investig. 123:41798–808 [Google Scholar]
  73. Kato M, Yamagata T, Kubota M, Arai H, Yamashita S. et al. 2013. Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia 54:71282–87 [Google Scholar]
  74. Kazen-Gillespie K, Ragsdale DS, D'Andrea MR, Mattei LN, Rogers KE, Isom LL. 2000. Cloning, localization, and functional expression of sodium channel β1A subunits. J. Biol. Chem. 275:21079–88 [Google Scholar]
  75. Kim D, Jun KS, Lee SB, Kang N-G, Min DS. et al. 1997. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389:6648290–93 [Google Scholar]
  76. Kim GE, Kronengold J, Barcia G, Quraishi IH, Martin HC. et al. 2014. Human Slack potassium channel mutations increase positive cooperativity between individual channels. Cell Rep 9:51661–73 [Google Scholar]
  77. Kishino T, Lalande M, Wagstaff J. 1997. UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet. 15:170–73 [Google Scholar]
  78. Kruger LC, O'Malley HA, Hull JM, Kleeman A, Patino GA, Isom LL. 2016. β1-C121W is down but not out: epilepsy-associated Scn1b-C121W results in a deleterious gain-of-function. J. Neurosci. 36:236213–24 [Google Scholar]
  79. Kurian MA, Meyer E, Vassallo G, Morgan NV, Prakash N. et al. 2010. Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy. Brain 133:102964–70 [Google Scholar]
  80. Kwong AKY, Ho AC-C, Fung C-W, Wong VC-N. 2015. Analysis of mutations in 7 genes associated with neuronal excitability and synaptic transmission in a cohort of children with non-syndromic infantile epileptic encephalopathy. PLOS ONE 10:5e0126446 [Google Scholar]
  81. Lemke JR, Lal D, Reinthaler EM, Steiner I, Nothnagal M. et al. 2013. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat. Genet. 45:91067–72 [Google Scholar]
  82. Lemke JR, Hendrickx R, Geider K, Laube B, Schwake M. et al. 2014. GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann. Neurol. 75:1147–54 [Google Scholar]
  83. Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A. et al. 2013. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat. Genet. 45:91061–66 [Google Scholar]
  84. Lin X, O'Malley H, Chen C, Auerbach D, Foster M. et al. 2015. Scn1b deletion leads to increased tetrodotoxin-sensitive sodium current, altered intracellular calcium homeostasis and arrhythmias in murine hearts. J. Physiol. 593:61389–407 [Google Scholar]
  85. Liu Y, Lopez-Santiago LF, Yuan Y, Jones JM, Zhang H. et al. 2013. Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann. Neurol. 74:1128–39 [Google Scholar]
  86. Lossin C, Wang DW, Rhodes TH, Vanoye CG, George AL Jr. 2002. Molecular basis of an inherited epilepsy. Neuron 34:6877–84 [Google Scholar]
  87. Ma C, Su L, Seven A, Xu Y, Rizo J. 2013. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339:6118421–25 [Google Scholar]
  88. Magiorkinis E, Sidiropoulou K, Diamantis A. 2010. Hallmarks in the history of epilepsy: epilepsy in antiquity. Epilepsy Behav 17:1103–8 [Google Scholar]
  89. Marionneau C, Carrasquillo Y, Norris AJ, Townsend RR, Isom LL. et al. 2012. The sodium channel accessory subunit Navβ1 regulates neuronal excitability through modulation of repolarizing voltage-gated K+ channels. J. Neurosci. 32:175716–27 [Google Scholar]
  90. Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M. et al. 2013. Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits. PNAS 110:114386–91 [Google Scholar]
  91. Miceli F, Soldovieri MV, Ambrosino P, De Maria M, Migliore M. et al. 2015. Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits. J. Neurosci. 35:93782–93 [Google Scholar]
  92. Mignot C, von Stülpnagel C, Nava C, Ville D, Sanlaville D. et al. 2016. Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy. J. Med. Gen 53511–22 [Google Scholar]
  93. Mistry AM, Thompson CH, Miller AR, Vanoye CG, George AL Jr., Kearney JA. 2014. Strain- and age-dependent hippocampal neuron sodium currents correlate with epilepsy severity in Dravet syndrome mice. Neurobiol. Dis. 65:1–11 [Google Scholar]
  94. Nava C, Dalle C, Rastetter A, Striano P, de Kovel CGF. et al. 2014. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat. Genet. 46:6640–45 [Google Scholar]
  95. Odawara A, Katoh H, Matsuda N, Suzuki I. 2016. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Sci. Rep. 6:26181 [Google Scholar]
  96. Ohmori I, Ouchida M, Kobayashi K, Jitsumori Y, Mori A. et al. 2013. CACNA1A variants may modify the epileptic phenotype of Dravet syndrome. Neurobiol. Dis. 50:1209–17 [Google Scholar]
  97. Ohmori I, Ouchida M, Miki T, Mimaki N, Kiyonaka S. et al. 2008. A CACNB4 mutation shows that altered Cav2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy. Neurobiol. Dis. 32:3349–54 [Google Scholar]
  98. Oliver KL, Lukic V, Thorne NP, Berkovic SF, Scheffer IE, Bahlo M. 2014. Harnessing gene expression networks to prioritize candidate Epileptic Encephalopathy genes. PLOS ONE 9:7e102079 [Google Scholar]
  99. Olivetti PR, Maheshwari A, Noebels JL. 2014. Neonatal estradiol stimulation prevents epilepsy in Arx model of X-linked infantile spasms syndrome. Sci. Transl. Med. 6:220220ra12 [Google Scholar]
  100. Parent JM, Anderson SA. 2015. Reprogramming patient-derived cells to study the epilepsies. Nat. Neurosci. 18:3360–66 [Google Scholar]
  101. Patino GA, Brackenbury WJ, Bao Y, Lopez-Santiago LF, O'Malley HA. et al. 2011. Voltage-gated Na+ channel β1B: a secreted cell adhesion molecule involved in human epilepsy. J. Neurosci. 31:4114577–91 [Google Scholar]
  102. Patino GA, Claes LRF, Lopez-Santiago LF, Slat EA, Dondeti RSR. et al. 2009. A functional null mutation of SCN1B in a patient with Dravet syndrome. J. Neurosci. 29:3410764–78 [Google Scholar]
  103. Patzke C, Han Y, Covy J, Yi F, Maxeiner S. et al. 2015. Analysis of conditional heterozygous STXBP1 mutations in human neurons. J. Clin. Investig. 125:93560–71 [Google Scholar]
  104. Polling S, Ormsby AR, Wood RJ, Lee K, Shoubridge C. et al. 2015. Polyalanine expansions drive a shift into α-helical clusters without amyloid-fibril formation. Nat. Struct. Mol. Biol. 22:121008–15 [Google Scholar]
  105. Prabhakar S, Zhang X, Goto J, Han S, Lai C. et al. 2015. Survival benefit and phenotypic improvement by hamartin gene therapy in a tuberous sclerosis mouse brain model. Neurobiol. Dis. 82:22–31 [Google Scholar]
  106. Price MG, Yoo JW, Burgess DL, Deng F, Hrachovy RA. et al. 2009. A triplet repeat expansion genetic mouse model of infantile spasms syndrome, Arx(GCG)10+7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment. J. Neurosci. 29:278752–63 [Google Scholar]
  107. Qin N, D'Andrea MR, Lubin M-L, Shafaee N, Codd EE, Correa AM. 2003. Molecular cloning and functional expression of the human sodium channel β1B subunit, a novel splicing variant of the β1 subunit. Eur. J. Biochem. 270:234762–70 [Google Scholar]
  108. Reid CA, Leaw B, Richards KL, Richardson R, Wimmer V. et al. 2014. Reduced dendritic arborization and hyperexcitability of pyramidal neurons in a Scn1b-based model of Dravet syndrome. Brain 137:61701–15 [Google Scholar]
  109. Ricciardi S, Ungaro F, Hambrock M, Rademacher N, Stefanelli G. et al. 2012. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1–PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat. Cell Biol. 14:9911–23 [Google Scholar]
  110. Rubinstein M, Westenbroek RE, Yu FH, Jones CJ, Sheuer T, Catterall WA. 2015. Genetic background modulates impaired excitability of inhibitory neurons in a mouse model of Dravet syndrome. Neurobiol. Dis. 73:106–17 [Google Scholar]
  111. Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H. et al. 2008. De novo mutations in the gene encoding STXBP1 (MUNC18–1) cause early infantile epileptic encephalopathy. Nat. Genet. 40:6782–88 [Google Scholar]
  112. Schroeder BC, Kubisch C, Stein V, Jentsch TJ. 1998. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396:6712687–90 [Google Scholar]
  113. Schubert J, Sierierska A, Langlois M, May P, Huneau C. et al. 2014. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat. Genet. 46:121327–32 [Google Scholar]
  114. Sell GL, Margolis SS. 2015. From UBE3A to Angelman syndrome: a substrate perspective. Front. Neurosci. 9:322 [Google Scholar]
  115. Shen C, Rathore SS, Yu H, Gulbranson DR, Hua R. et al. 2015. The trans-SNARE-regulating function of Munc18–1 is essential to synaptic exocytosis. Nat. Commun. 6:8852 [Google Scholar]
  116. Shoffner JM, Lott MT, Lezza AMS, Seibel P, Ballinger SW, Wallace DC. 1990. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61:6931–37 [Google Scholar]
  117. Simonato M, Bennett J, Boulis NM, Castro MG, Fink DJ. et al. 2014. Progress in gene therapy for neurological disorders. Nat. Rev. Neurol. 9:5277–91 [Google Scholar]
  118. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ. et al. 1998. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet. 18:125–29 [Google Scholar]
  119. Stanco A, Pla R, Vogt D, Chen Y, Mandal S. et al. 2014. NPAS1 represses the generation of specific subtypes of cortical interneurons. Neuron 84:5940–53 [Google Scholar]
  120. Strømme P, Mangelsdorf ME, Shaw MA, Lower KM, Lewis SME. et al. 2002. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat. Genet. 30:4441–45 [Google Scholar]
  121. Sun Y, Pasca SP, Portmann T, Goold C, Worringer KA. et al. 2016. A deleterious NaV1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet syndrome patients. eLife 5:e13073 [Google Scholar]
  122. Tai C, Abe Y, Westenbroed RE, Sheuer T, Catterall WA. 2014. Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. PNAS 111:30E3139–48 [Google Scholar]
  123. Tang B, Sander T, Craven KB, Hempelmann A, Escayg A. 2008. Mutation analysis of the hyperpolarization-activated cyclic nucleotide-gated channels HCN1 and HCN2 in idiopathic generalized epilepsy. Neurobiol. Dis. 29:159–70 [Google Scholar]
  124. Tao J, Van Esch H, Hagedorn-Greiwe M, Hoffmann K, Moser B. et al. 2004. Mutations in the X-linked cyclin-dependent kinase–like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am. J. Hum. Genet. 75:61149–54 [Google Scholar]
  125. Eur. Chromosom. 16 Tuberous Scler. Consort. 1993. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:71305–15 [Google Scholar]
  126. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B. et al. 1997. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:5327805–8 [Google Scholar]
  127. Vogt D, Hunt RF, Mandal S, Sandberg M, Silberberg SN. et al. 2014. Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position. Neuron 82:2350–64 [Google Scholar]
  128. Wallace RH, Wang DW, Singh R, Scheffer IE, George AL Jr. et al. 1998. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel β1 subunit gene. SCN1B. Nat. Genet. 19:4366–70 [Google Scholar]
  129. Wang H-S, Pan Z, Shi W, Brown BS, Wymore RS. et al. 1998. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:53951890–93 [Google Scholar]
  130. Wang I-TJ, Allen M, Goffin D, Zhu X, Fairless AH. et al. 2012. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. PNAS 109:5221516–21 [Google Scholar]
  131. Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie OLD. et al. 2004. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am. J. Hum. Genet. 75:61079–93 [Google Scholar]
  132. Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T. et al. 2012. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann. Neurol. 71:115–25 [Google Scholar]
  133. Wong M, Roper SN. 2016. Genetic animal models of malformations of cortical development and epilepsy. J. Neurosci. Methods 260:73–82 [Google Scholar]
  134. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F. et al. 2006. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 9:91142–49 [Google Scholar]
  135. Yuan H, Hansen KB, Zhang J, Pierson TM, Markello TC. et al. 2014. Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat. Commun. 5:3251 [Google Scholar]
  136. Zhang Y, Kecskés A, Copmans D, Langlois M, Crawford AD. et al. 2015. Pharmacological characterization of an antisense knockdown zebrafish model of Dravet syndrome: inhibition of epileptic seizures by the serotonin agonist fenfluramine. PLOS ONE 10:5e0125898 [Google Scholar]
  137. Zhu Y-C, Li D, Wang L, Lu B, Zheng J. et al. 2013. Palmitoylation-dependent CDKL5–PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. PNAS 110:229118–23 [Google Scholar]
/content/journals/10.1146/annurev-neuro-072116-031250
Loading
/content/journals/10.1146/annurev-neuro-072116-031250
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error