1932

Abstract

How the cerebral cortex encodes auditory features of biologically important sounds, including speech and music, is one of the most important questions in auditory neuroscience. The pursuit to understand related neural coding mechanisms in the mammalian auditory cortex can be traced back several decades to the early exploration of the cerebral cortex. Significant progress in this field has been made in the past two decades with new technical and conceptual advances. This article reviews the progress and challenges in this area of research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-072116-031302
2018-07-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-072116-031302.html?itemId=/content/journals/10.1146/annurev-neuro-072116-031302&mimeType=html&fmt=ahah

Literature Cited

  1. Abeles M, Goldstein MH Jr 1970. Functional architecture in cat primary auditory cortex: columnar organization according to depth. J. Neurophysiol. 33:172–87
    [Google Scholar]
  2. Agamaite JA, Chang C-J, Osmanski MS, Wang X 2015. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus). J. Acoust. Soc. Am. 138:2906–28
    [Google Scholar]
  3. Aitkin L, Park V 1993. Audition and the auditory pathway of a vocal New World primate, the common marmoset. Prog. Neurobiol. 41:345–67
    [Google Scholar]
  4. Bartlett EL, Wang X 2007. Neural representations of temporally-modulated signals in the auditory thalamus of awake primates. J. Neurophysiol. 97:1005–17
    [Google Scholar]
  5. Bartlett EL, Wang X 2011. Correlation of neural response properties with auditory thalamus subdivisions in the awake marmoset. J. Neurophysiol. 105:2647–67
    [Google Scholar]
  6. Batra R, Kuwada S, Stanford TR 1989. Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. J. Neurophysiol. 61:257–68
    [Google Scholar]
  7. Bendor D, Osmanski MS, Wang X 2012. Dual pitch processing mechanisms in primate auditory cortex. J. Neurosci. 32:16149–61
    [Google Scholar]
  8. Bendor D, Wang X 2005. The neuronal representation of pitch in primate auditory cortex. Nature 436:1161–65
    [Google Scholar]
  9. Bendor DA, Wang X 2006. Cortical representations of pitch in monkeys and humans. Curr. Opin. Neurobiol. 16:391–99
    [Google Scholar]
  10. Bendor D, Wang X 2007. Differential neural coding of acoustic flutter within primate auditory cortex. Nat. Neurosci. 10:763–71
    [Google Scholar]
  11. Bendor D, Wang X 2008. Neural response properties of core fields AI, R, and RT in the auditory cortex of marmoset monkeys. J. Neurophysiol. 100:888–906
    [Google Scholar]
  12. Bieser A, Müller-Preuss P 1996. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds. Exp. Brain Res. 108:273–84
    [Google Scholar]
  13. Blackburn CC, Sachs MB 1989. Classification of unit types in the anteroventral cochlear nucleus: post-stimulus time histograms and regularity analysis. J. Neurophysiol. 62:1303–29
    [Google Scholar]
  14. Brugge JF, Merzenich MM 1973. Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. J. Neurophysiol. 36:1138–58
    [Google Scholar]
  15. Calford MB, Semple MN 1995. Monaural inhibition in cat auditory cortex. J. Neurophysiol. 73:1876–91
    [Google Scholar]
  16. Cariani PA, Delgutte B 1996a. Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J. Neurophysiol. 76:1698–716
    [Google Scholar]
  17. Cariani PA, Delgutte B 1996b. Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch. J. Neurophysiol. 76:1717–34
    [Google Scholar]
  18. Chait M, Poeppel D, Simon JZ 2006. Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cereb. Cortex 16:835–48
    [Google Scholar]
  19. Chimoto S, Kitama T, Qin L, Sakayori S, Sato Y 2002. Tonal response patterns of primary auditory cortex neurons in alert cats. Brain Res 934:34–42
    [Google Scholar]
  20. Creutzfeldt O, Hellweg F-C, Schreiner C 1980. Thalamocortical transformation of responses to complex auditory stimuli. Exp. Brain Res. 39:87–104
    [Google Scholar]
  21. Cynx J, Shapiro M 1986. Perception of missing fundamental by a species of songbird (Sturnus vulgaris). J. Comp. Psychol. 100:356–60
    [Google Scholar]
  22. Davies PW, Erulker SD, Rose JE 1956. Single unit activity in the auditory cortex of the cat. Bull. Johns Hopkins Hosp. 99:55–86
    [Google Scholar]
  23. de Ribaupierre F, Goldstein MH Jr., Yeni-Komshian G 1972. Cortical coding of repetitive acoustic pulses. Brain Res 48:205–25
    [Google Scholar]
  24. de Ribaupierre F, Rouiller E, Toros A, de Ribaupierre Y 1980. Transmission delay of phase-locked cells in the medial geniculate body. Hear. Res. 3:65–77
    [Google Scholar]
  25. deCharms RC, Merzenich MM 1996. Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381:610–13
    [Google Scholar]
  26. DeWeese MR, Wehr M, Zador AM 2003. Binary spiking in auditory cortex. J. Neurosci. 23:7940–49
    [Google Scholar]
  27. Dong C, Qin L, Liu Y, Zhang X, Sato Y 2011. Neural responses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains. PLOS ONE 6:e25895
    [Google Scholar]
  28. Eggermont JJ 1991. Rate and synchronization measures of periodicity coding in cat primary auditory cortex. Hear. Res. 56:153–67
    [Google Scholar]
  29. Eggermont JJ 1994. Temporal modulation transfer functions for AM and FM stimuli in cat auditory cortex. Effects of carrier type, modulating waveform and intensity. Hear. Res. 74:51–66
    [Google Scholar]
  30. Eggermont JJ 1997. Firing rate and firing synchrony distinguish dynamic from steady state sound. Neuroreport 8:2709–13
    [Google Scholar]
  31. Esser KH, Condon CJ, Suga N, Kanwal JS 1997. Syntax processing by auditory cortical neurons in the FM-FM area of the mustached bat Pteronotus parnellii. PNAS 94:14019–24
    [Google Scholar]
  32. Evans F, Whitfield IC 1964. Classification of unit responses in the auditory cortex of the unanesthetized and unrestrained cat. J. Physiol. 171:476–93
    [Google Scholar]
  33. Feng L, Wang X 2017. Harmonic template neurons in primate auditory cortex underlying complex sound processing. PNAS 114:E840–48
    [Google Scholar]
  34. Fitzpatrick DC, Kanwal JS, Butman JA, Suga N 1993. Combination-sensitive neurons in the primary auditory cortex of the mustached bat. J. Neurosci. 13:931–40
    [Google Scholar]
  35. Frisina RD, Smith RL, Chamberlain SC 1990. Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear. Res. 44:99–122
    [Google Scholar]
  36. Gaese BH, Ostwald J 1995. Temporal coding of amplitude and frequency modulation in the rat auditory cortex. Eur. J. Neurosci. 7:438–50
    [Google Scholar]
  37. Gao L, Kostlan K, Wang Y, Wang X 2016. Distinct subthreshold mechanisms underlying rate-coding principles in primate auditory cortex. Neuron 91:905–19
    [Google Scholar]
  38. Gao X, Wehr M 2015. A coding transformation for temporally structured sounds within auditory cortical neurons. Neuron 86:292–303
    [Google Scholar]
  39. Goldstein JL 1973. An optimum processor theory for the central formation of the pitch of complex tones. J. Acoust. Soc. Am. 54:1496–516
    [Google Scholar]
  40. Goldstein MH Jr, Abeles M 1975. Note on tonotopic organization of primary auditory cortex in the cat. Brain Res 100:188–91
    [Google Scholar]
  41. Goldstein MH Jr, Kiang NY-S, Brown RM 1959. Responses of the auditory cortex to repetitive acoustic stimuli. J. Acoust. Soc. Am. 31:356–64
    [Google Scholar]
  42. Gutschalk A, Patterson RD, Scherg M, Uppenkamp S, Rupp A 2004. Temporal dynamics of pitch in human auditory cortex. Neuroimage 22:755–66
    [Google Scholar]
  43. Hackett TA, Preuss TM, Kaas JH 2001. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J. Comp. Neurol. 441:197–222
    [Google Scholar]
  44. Hall DA, Barrett DJ, Akeroyd MA, Summerfield AQ 2005. Cortical representations of temporal structure in sound. J. Neurophysiol. 94:3181–91
    [Google Scholar]
  45. Hall DA, Edmondson-Jones AM, Fridriksson J 2006. Periodicity and frequency coding in human auditory cortex. Eur. J. Neurosci. 24:3601–10
    [Google Scholar]
  46. Hall DA, Plack CJ 2007. The human ‘pitch center’ responds differently to iterated noise and Huggins pitch. Neuroreport 18:323–27
    [Google Scholar]
  47. Hall DA, Plack CJ 2009. Pitch processing sites in the human auditory brain. Cereb. Cortex 19:576–85
    [Google Scholar]
  48. Heffner H, Whitfield IC 1976. Perception of the missing fundamental by cats. J. Acoust. Soc. Am. 59:915–19
    [Google Scholar]
  49. Heil P 1997. Auditory cortical onset responses revisited. II. Response strength. J. Neurophysiol. 77:2642–60
    [Google Scholar]
  50. Houtgast T, Steeneken HJM 1973. The modulation transfer function in room acoustics as a predictor of speech intelligibility. J. Acoust. Soc. Am. 28:66–73
    [Google Scholar]
  51. Hromadka T, Deweese MR, Zador AM 2008. Sparse representation of sounds in the unanesthetized auditory cortex. PLOS Biol 6:e16
    [Google Scholar]
  52. Hubel DH, Henson CO, Rupert A, Galambos R 1959. Attention units in the auditory cortex. Science 129:1279–80
    [Google Scholar]
  53. Johnson DH 1980. Applicability of white-noise nonlinear system analysis to the peripheral auditory system. J. Acoust. Soc. Am. 68:876–84
    [Google Scholar]
  54. Johnson LA, Della Santina CC, Wang X 2012. Temporal bone characterization and cochlear implant feasibility in the common marmoset (Callithrix jacchus). Hear. Res. 290:37–44
    [Google Scholar]
  55. Joris PX, Schreiner CE, Rees A 2004. Neural processing of amplitude-modulated sounds. Physiol. Rev. 84:541–77
    [Google Scholar]
  56. Joris PX, Yin TCT 1992. Responses to amplitude-modulated tones in the auditory nerve of the cat. J. Acoust. Soc. Am. 91:215–32
    [Google Scholar]
  57. Kaas JH, Hackett TA 2000. Subdivisions of auditory cortex and processing streams in primates. PNAS 97:11793–99
    [Google Scholar]
  58. Kadia SC, Wang X 2003. Spectral integration in A1 of awake primates: neurons with single- and multipeaked tuning characteristics. J. Neurophysiol. 89:1603–22
    [Google Scholar]
  59. Kanwal JS, Fitzpatrick DC, Suga N 1999. Facilitatory and inhibitory frequency tuning of combination-sensitive neurons in the primary auditory cortex of mustached bats. J. Neurophysiol. 82:2327–45
    [Google Scholar]
  60. Kiang NY, Sachs MB, Peake WT 1967. Shapes of tuning curves for single auditory-nerve fibers. J. Acoust. Soc. Am. 42:1341–42
    [Google Scholar]
  61. Kilgard MP, Merzenich MM 1999. Distributed representation of spectral and temporal information in rat primary auditory cortex. Hear. Res. 134:16–28
    [Google Scholar]
  62. Krishna BS, Semple MN 2000. Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. J. Neurophysiol. 84:255–73
    [Google Scholar]
  63. Langner G, Schreiner CE 1988. Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol. 60:1799–822
    [Google Scholar]
  64. Lewicki MS, Konishi M 1995. Mechanisms underlying the sensitivity of songbird forebrain neurons to temporal order. PNAS 92:5582–86
    [Google Scholar]
  65. Linden JF, Liu RC, Sahani M, Schreiner CE, Merzenich MM 2003. Spectrotemporal structure of receptive fields in areas A1 and AAF of mouse auditory cortex. J. Neurophysiol. 90:2660–75
    [Google Scholar]
  66. Liu LF, Palmer AR, Wallace MN 2006. Phase-locked responses to pure tones in the inferior colliculus. J. Neurophysiol. 95:1926–35
    [Google Scholar]
  67. Lu T, Liang L, Wang X 2001. Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat. Neurosci. 4:1131–38
    [Google Scholar]
  68. Lu T, Wang X 2000. Temporal discharge patterns evoked by rapid sequences of wide- and narrow-band clicks in the primary auditory cortex of cat. J. Neurophysiol. 84:236–46
    [Google Scholar]
  69. Lu T, Wang X 2004. Information content of auditory cortical responses to time-varying acoustic stimuli. J. Neurophysiol. 91:301–13
    [Google Scholar]
  70. Malone BJ, Scott BH, Semple MN 2002. Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques. J. Neurosci. 22:4625–38
    [Google Scholar]
  71. Margoliash D 1983. Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. J. Neurosci. 3:1039–57
    [Google Scholar]
  72. Marsh RA, Nataraj K, Gans D, Portfors CV, Wenstrup JJ 2006. Auditory responses in the cochlear nucleus of awake mustached bats: precursors to spectral integration in the auditory midbrain. J. Neurophysiol. 95:88–105
    [Google Scholar]
  73. Merzenich MM, Knight PL, Roth GL 1975. Representation of cochlea within primary auditory cortex in the cat. J. Neurophysiol. 38:231–49
    [Google Scholar]
  74. Mickey BJ, Middlebrooks JC 2003. Representation of auditory space by cortical neurons in awake cats. J. Neurosci. 23:8649–63
    [Google Scholar]
  75. Moshitch D, Las L, Ulanovsky N, Bar-Yosef O, Nelken I 2006. Responses of neurons in primary auditory cortex (A1) to pure tones in the halothane-anesthetized cat. J. Neurophysiol. 95:3756–69
    [Google Scholar]
  76. Müller-Preuss P, Flachskamm C, Bieser A 1994. Neural encoding of amplitude modulation within the auditory midbrain of squirrel monkeys. Hear. Res. 80:197–208
    [Google Scholar]
  77. Norman-Haignere S, Kanwisher N, McDermott JH 2013. Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex. J. Neurosci. 33:19451–69
    [Google Scholar]
  78. O'Neill WE, Suga N 1979. Target range-sensitive neurons in the auditory cortex of the mustache bat. Science 203:69–73
    [Google Scholar]
  79. Osmanski MS, Song X, Wang X 2013. The role of harmonic resolvability in pitch perception in a vocal nonhuman primate, the common marmoset (Callithrix jacchus). J. Neurosci. 33:9161–68
    [Google Scholar]
  80. Osmanski MS, Wang X 2011. Measurement of absolute auditory thresholds in the common marmoset (Callithrix jacchus). Hear. Res. 277:127–33
    [Google Scholar]
  81. Oxenham AJ 2012. Pitch perception. J. Neurosci. 32:13335–38
    [Google Scholar]
  82. Palmer AR 1982. Encoding of rapid amplitude fluctuations by cochlear-nerve fibers in the guinea-pig. Arch. Otorhinolaryngol. 236:197–202
    [Google Scholar]
  83. Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD 2002. The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–76
    [Google Scholar]
  84. Penagos H, Melcher JR, Oxenham AJ 2004. A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. J. Neurosci. 24:6810–15
    [Google Scholar]
  85. Peretz I, Zatorre RJ 2005. Brain organization for music processing. Annu. Rev. Psychol. 56:89–114
    [Google Scholar]
  86. Pfingst BE, O'Connor TA 1981. Characteristics of neurons in auditory cortex of monkeys performing a simple auditory task. J. Neurophysiol. 45:16–34
    [Google Scholar]
  87. Phan ML, Recanzone GH 2007. Single neuron responses to rapidly presented temporal sequences in the primary auditory cortex of the awake macaque monkey. J. Neurophysiol. 97:1726–37
    [Google Scholar]
  88. Philibert B, Beitel RE, Nagarajan SS, Bonham BH, Schreiner CE, Cheung SW 2005. Functional organization and hemispheric comparison of primary auditory cortex in the common marmoset (Callithrix jacchus). J. Comp. Neurol. 487:391–406
    [Google Scholar]
  89. Phillips DP 1985. Temporal response features of cat auditory cortex neurons contributing to sensitivity to tones delivered in the presence of continuous noise. Hear. Res. 19:253–68
    [Google Scholar]
  90. Phillips DP 1993. Neural representation of stimulus times in the primary auditory cortex. Ann. N. Y. Acad. Sci. 682:104–18
    [Google Scholar]
  91. Phillips DP, Irvine DR 1981. Responses of single neurons in physiologically defined primary auditory cortex (A1) of the cat: frequency tuning and responses to intensity. J. Neurophysiol. 45:48–58
    [Google Scholar]
  92. Plack CJ, Oxenham AJ 2005. The psychophysics of pitch. Pitch: Neural Coding and Perception CJ Plack, AJ Oxenham, RR Fay, AN Popper 7–55 New York: Springer
    [Google Scholar]
  93. Plack CJ, Oxenham AJ, Fay RR, Popper AN 2005. Pitch: Neural Coding and Perception New York: Springer
  94. Plomp R 1964. The ear as a frequency analyzer. J. Acoust. Soc. Am. 36:1355–64
    [Google Scholar]
  95. Plomp R, Mimpen AM 1968. The ear as a frequency analyzer II. J. Acoust. Soc. Am. 43:764–67
    [Google Scholar]
  96. Preuss A, Müller-Preuss P 1990. Processing of amplitude modulated sounds in the medial geniculate body of squirrel monkeys. Exp. Brain. Res. 79:207–11
    [Google Scholar]
  97. Puschmann S, Uppenkamp S, Kollmeier B, Thiel CM 2010. Dichotic pitch activates pitch processing centre in Heschl's gyrus. Neuroimage 49:1641–49
    [Google Scholar]
  98. Rauschecker JP, Tian B, Hauser M 1995. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–14
    [Google Scholar]
  99. Rauschecker JP, Tian B, Pons T, Mishkin M 1997. Serial and parallel processing in rhesus monkey auditory cortex. J. Comp. Neurol. 382:89–103
    [Google Scholar]
  100. Razak K, Fuzessery ZM 2008. Facilitatory mechanisms underlying selectivity for the direction and rate of frequency modulated sweeps in the auditory cortex. J. Neurosci. 28:9806–16
    [Google Scholar]
  101. Recanzone GH 2000. Response profiles of auditory cortical neurons to tones and noise in behaving macaque monkeys. Hear. Res. 150:104–18
    [Google Scholar]
  102. Rhode WS, Greenberg S 1994. Encoding of amplitude modulation in the cochlear nucleus of the cat. J. Neurophysiol. 71:1797–825
    [Google Scholar]
  103. Ritter S, Günter Dosch H, Specht HJ, Rupp A 2005. Neuromagnetic responses reflect the temporal pitch change of regular interval sounds. Neuroimage 3:533–43
    [Google Scholar]
  104. Romo R, Salinas E 2003. Flutter discrimination: neural codes, perception, memory and decision making. Nat. Rev. Neurosci. 4:203–18
    [Google Scholar]
  105. Rosen S 1992. Temporal information in speech: acoustic, auditory and linguistic aspects. Philos. Trans. R. Soc. B 336:367–73
    [Google Scholar]
  106. Rouiller E, de Ribaupierre Y, Morel E, de Ribaupierre F 1983. Intensity functions of single unit responses to tone in the medial geniculate body of cat. Hear. Res. 11:235–47
    [Google Scholar]
  107. Rouiller E, de Ribaupierre Y, Toros-Morel A, de Ribaupierre F 1981. Neural coding of repetitive clicks in the medial geniculate body of cat. Hear. Res. 5:81–100
    [Google Scholar]
  108. Sachs MB, Abbas PJ 1974. Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J. Acoust. Soc. Am. 56:1835–47
    [Google Scholar]
  109. Sadagopan S, Wang X 2008. Level invariant representation of sounds by populations of neurons in primary auditory cortex. J. Neurosci. 28:3415–26
    [Google Scholar]
  110. Sadagopan S, Wang X 2009. Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. J. Neurosci. 29:11192–202
    [Google Scholar]
  111. Sadagopan S, Wang X 2010. Contribution of inhibition to stimulus selectivity in primary auditory cortex of awake primates. J. Neurosci. 30:7314–25
    [Google Scholar]
  112. Salinas E, Hernandez A, Zainos A, Romo R 2000. Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J. Neurosci. 20:5503–15
    [Google Scholar]
  113. Schneider P, Sluming V, Roberts N, Scherg M, Goebel R et al. 2005. Structural and functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference. Nat. Neurosci. 8:1241–47
    [Google Scholar]
  114. Schönwiesner M, Zatorre RJ 2008. Depth electrode recordings show double dissociation between pitch processing in lateral Heschl's gyrus and sound onset processing in medial Heschl's gyrus. Exp. Brain Res. 187:97–105
    [Google Scholar]
  115. Schreiner CE, Mendelson JR 1990. Functional topography of cat primary auditory cortex: distribution of integrated excitation. J. Neurophysiol. 64:1442–59
    [Google Scholar]
  116. Schreiner CE, Read HL, Sutter ML 2000. Modular organization of frequency integration in primary auditory cortex. Annu. Rev. Neurosci. 23:501–29
    [Google Scholar]
  117. Schreiner CE, Urbas JV 1988. Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hear. Res. 32:49–63
    [Google Scholar]
  118. Singh NC, Theunissen FE 2003. Modulation spectra of natural sounds and ethological theories of auditory processing. J. Acoust. Soc. Am. 114:6 Pt. 13394–411
    [Google Scholar]
  119. Song X, Osmanski MS, Guo Y, Wang X 2016. Complex pitch perception mechanisms are shared by humans and a New World monkey. PNAS 113:781–86
    [Google Scholar]
  120. Suga N 1977. Amplitude spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustached bat. Science 196:64–67
    [Google Scholar]
  121. Suga N 1989. Principles of auditory information-processing derived from neuropathology. J. Exp. Biol. 146:277–86
    [Google Scholar]
  122. Suga N, O'Neill WE, Kujirai K, Manabe T 1983. Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. J. Neurophysiol. 49:1573–626
    [Google Scholar]
  123. Suga N, O'Neill WE, Manabe T 1978. Cortical neurons sensitive to combinations of information-bearing elements of biosonar signals in the mustache bat. Science 200:778–81
    [Google Scholar]
  124. Sutter ML 2000. Shapes and level tolerances of frequency tuning curves in primary auditory cortex: quantitative measures and population codes. J. Neurophysiol. 84:1012–25
    [Google Scholar]
  125. Sutter ML, Schreiner CE 1991. Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. J. Neurophysiol. 65:1207–26
    [Google Scholar]
  126. Ter-Mikaelian M, Sanes DH, Semple MN 2007. Transformation of temporal properties between auditory midbrain and cortex in the awake Mongolian gerbil. J. Neurosci. 27:6091–102
    [Google Scholar]
  127. Tian B, Reser D, Durham A, Kustov A, Rauschecker JP 2001. Functional specialization in rhesus monkey auditory cortex. Science 292:290–93
    [Google Scholar]
  128. Tomlinson RW, Schwarz DW 1988. Perception of the missing fundamental in nonhuman primates. J. Acoust. Soc. Am. 84:560–65
    [Google Scholar]
  129. Wallace MN, Shackleton TM, Palmer AR 2002. Phase-locked responses to pure tones in the primary auditory cortex. Hear. Res. 172:160–71
    [Google Scholar]
  130. Wang X 2000. On cortical coding of vocal communication sounds in primates. PNAS 97:11843–49
    [Google Scholar]
  131. Wang X 2007. Neural coding strategies in auditory cortex. Hear. Res. 229:81–93
    [Google Scholar]
  132. Wang X 2013. The harmonic organization of auditory cortex. Front. Syst. Neurosci. 7:114
    [Google Scholar]
  133. Wang X, Lu T, Bendor D, Bartlett EL 2008. Neural coding of temporal information in auditory thalamus and cortex. Neuroscience 157:484–93
    [Google Scholar]
  134. Wang X, Lu T, Snider RK, Liang L 2005. Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–46
    [Google Scholar]
  135. Wang X, Sachs MB 1995. Transformation of temporal discharge patterns in a VCN stellate cell model: implications for physiological mechanisms. J. Neurophysiol. 73:1600–16
    [Google Scholar]
  136. Whitfield IC 1980. Auditory cortex and the pitch of complex tones. J. Acoust. Soc. Am. 67:644–47
    [Google Scholar]
  137. Whitfield IC, Evans EF 1965. Responses of auditory cortical neurons to stimuli of changing frequency. J. Neurophysiol. 28:655–72
    [Google Scholar]
  138. Zurita P, Villa AE, de Ribaupierre Y, de Ribaupierre F, Rouiller EM 1994. Changes of single unit activity in the cat's auditory thalamus and cortex associated to different anesthetic conditions. Neurosci. Res. 19:303–16
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-072116-031302
Loading
/content/journals/10.1146/annurev-neuro-072116-031302
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error