1932

Abstract

The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR inhibitors to improve neurodevelopmental outcomes have been initiated.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-061747
2018-07-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-080317-061747.html?itemId=/content/journals/10.1146/annurev-neuro-080317-061747&mimeType=html&fmt=ahah

Literature Cited

  1. Adviento B, Corbin IL, Widjaja F, Desachy G, Enrique N et al. 2014. Autism traits in the RASopathies. J. Med. Genet. 51:10–20
    [Google Scholar]
  2. Ameis SH, Catani M 2015. Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex 62:158–81
    [Google Scholar]
  3. Auerbach BD, Osterweil EK, Bear MF 2011. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480:63–68
    [Google Scholar]
  4. Bartley CM, O'Keefe RA, Blice-Baum A, Mihailescu MR, Gong X et al. 2016. Mammalian FMRP S499 is phosphorylated by CK2 and promotes secondary phosphorylation of FMRP. eNeuro 3: ENEURO.0092-16 2016
    [Google Scholar]
  5. Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL 2013. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78:510–22
    [Google Scholar]
  6. Bateup HS, Takasaki KT, Saulnier JL, Denefrio CL, Sabatini BL 2011. Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function. J. Neurosci. 31:8862–69
    [Google Scholar]
  7. Baynam G, Overkov A, Davis M, Mina K, Schofield L et al. 2015. A germline MTOR mutation in Aboriginal Australian siblings with intellectual disability, dysmorphism, macrocephaly, and small thoraces. Am. J. Med. Genet. A 167:1659–67
    [Google Scholar]
  8. Bercury KK, Dai J, Sachs HH, Ahrendsen JT, Wood TL, Macklin WB 2014. Conditional ablation of Raptor or Rictor has differential impact on oligodendrocyte differentiation and CNS myelination. J. Neurosci. 34:4466–80
    [Google Scholar]
  9. Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, Murphy JP, Pierre P, Klann E 2012. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76:325–37
    [Google Scholar]
  10. Bhattacharya A, Mamcarz M, Mullins C, Choudhury A, Boyle RG et al. 2016. Targeting translation control with p70 S6 kinase 1 inhibitors to reverse phenotypes in fragile X syndrome mice. Neuropsychopharmacology 41:1991–2000
    [Google Scholar]
  11. Bidinosti M, Botta P, Krüttner S, Proenca CC, Stoehr N et al. 2016. CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science 351:1199–203
    [Google Scholar]
  12. Bruining H, Eijkemans MJC, Kas MJH, Curran SR, Vorstman JAS, Bolton PF 2014. Behavioral signatures related to genetic disorders in autism. Mol. Autism. 5:11
    [Google Scholar]
  13. Buckmaster PS, Ingram EA, Wen X 2009. Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J. Neurosci. 29:8259–69
    [Google Scholar]
  14. Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M et al. 2005. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet. 42:318–21
    [Google Scholar]
  15. Capal JK, Bernardino-Cuesta B, Horn PS, Murray D, Byars AW et al. 2017. Influence of seizures on early development in tuberous sclerosis complex. Epilepsy Behav 70:245–52
    [Google Scholar]
  16. Carson RP, Kelm ND, West KL, Does MD, Fu C et al. 2015. Hypomyelination following deletion of Tsc2 in oligodendrocyte precursors. Ann. Clin. Transl. Neurol. 2:1041–54
    [Google Scholar]
  17. Casanova MF, Buxhoeveden DP, Switala AE, Roy E 2002. Minicolumnar pathology in autism. Neurology 58:428–32
    [Google Scholar]
  18. Choi YJ, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ et al. 2008. Tuberous sclerosis complex proteins control axon formation. Genes Dev 22:2485–95
    [Google Scholar]
  19. Chow DK, Groszer M, Pribadi M, Machniki M, Carmichael ST et al. 2009. Laminar and compartmental regulation of dendritic growth in mature cortex. Nat. Neurosci. 12:116–18
    [Google Scholar]
  20. Christensen DL, Baio J, Van Naarden Braun K, Bilder D, Charles J et al. 2016. Prevalence and characteristics of autism spectrum disorder among children aged 8 years–Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2012.. MMWR Surveill. Summ. 65:1–23
    [Google Scholar]
  21. Cloëtta D, Thomanetz V, Baranek C, Lustenberger RM, Lin S et al. 2013. Inactivation of mTORC1 in the developing brain causes microcephaly and affects gliogenesis. J. Neurosci. 33:7799–810
    [Google Scholar]
  22. Costa V, Aigner S, Vukcevic M, Sauter E, Behr K et al. 2016. mTORC1 inhibition corrects neurodevelopmental and synaptic alterations in a human stem cell model of tuberous sclerosis. Cell Rep 15:86–95
    [Google Scholar]
  23. Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C et al. 2011. Neuron number and size in prefrontal cortex of children with autism. JAMA 306:2001–10
    [Google Scholar]
  24. Crino PB, Aronica E, Baltuch G, Nathanson KL 2010. Biallelic TSC gene inactivation in tuberous sclerosis complex. Neurology 74:1716–23
    [Google Scholar]
  25. Darnell JC, Klann E 2013. The translation of translational control by FMRP: therapeutic targets for FXS. Nat. Neurosci. 16:1530–36
    [Google Scholar]
  26. Di Nardo A, Wertz MH, Kwiatkowski E, Tsai PT, Leech JD et al. 2014. Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. Hum. Mol. Genet. 23:3865–74
    [Google Scholar]
  27. Dibble CC, Elis W, Menon S, Qin W, Klekota J et al. 2012. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 47:535–46
    [Google Scholar]
  28. Ebrahimi-Fakhari D, Saffari A, Wahlster L, DiNardo A, Turner D et al. 2016a. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep 17:1053–70
    [Google Scholar]
  29. Ebrahimi-Fakhari D, Saffari A, Wahlster L, Lu J, Byrne S et al. 2016b. Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain 139:317–37
    [Google Scholar]
  30. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W et al. 2008. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat. Med. 14:843–48
    [Google Scholar]
  31. Ercan E, Han JM, Di Nardo A, Winden K, Han MJ et al. 2017. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J. Exp. Med. 214:681–97
    [Google Scholar]
  32. Estes ML, McAllister AK 2016. Maternal immune activation: implications for neuropsychiatric disorders. Science 353:772–77
    [Google Scholar]
  33. Figlia G, Norrmen C, Pereira JA, Gerber D, Suter U 2017. Dual function of the PI3K-Akt-mTORC1 axis in myelination of the peripheral nervous system. eLife 6:e29241
    [Google Scholar]
  34. Fraser MM, Bayazitov IT, Zakharenko SS, Baker SJ 2008. Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities. Neuroscience 151:476–88
    [Google Scholar]
  35. French JA, Lawson JA, Yapici Z, Ikeda H, Polster T et al. 2016. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388:2153–63
    [Google Scholar]
  36. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T et al. 2006. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 16:1865–70
    [Google Scholar]
  37. Garg S, Brooks A, Burns A, Burkitt-Wright E, Kerr B et al. 2017. Autism spectrum disorder and other neurobehavioural comorbidities in rare disorders of the Ras/MAPK pathway. Dev. Med. Child Neurol. 59:544–49
    [Google Scholar]
  38. Garg S, Plasschaert E, Descheemaeker MJ, Huson S, Borghgraef M et al. 2015. Autism spectrum disorder profile in neurofibromatosis type I. J. Autism. Dev. Disord. 45:1649–57
    [Google Scholar]
  39. Getz SA, DeSpenza T Jr, Li M, Luikart BW 2016. Rapamycin prevents, but does not reverse, aberrant migration in Pten knockout neurons. Neurobiol. Dis. 93:12–20
    [Google Scholar]
  40. Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I et al. 2010. Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J. Neurosci. 30:8953–64
    [Google Scholar]
  41. Grabole N, Zhang JD, Aigner S, Ruderisch N, Costa V et al. 2016. Genomic analysis of the molecular neuropathology of tuberous sclerosis using a human stem cell model. Genome Med 8:94
    [Google Scholar]
  42. Gross C, Nakamoto M, Yao X, Chan CB, Yim SY et al. 2010. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J. Neurosci. 30:10624–38
    [Google Scholar]
  43. Guardiola-Diaz HM, Ishii A, Bansal R 2012. Erk1/2 MAPK and mTOR signaling sequentially regulates progression through distinct stages of oligodendrocyte differentiation. Glia 60:476–86
    [Google Scholar]
  44. Han K, Holder JL Jr, Schaaf CP, Lu H, Chen H et al. 2013. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature 503:72–77
    [Google Scholar]
  45. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J 1998. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273:14484–94
    [Google Scholar]
  46. Hartman NW, Lin TV, Zhang L, Paquelet GE, Feliciano DM, Bordey A 2013. mTORC1 targets the translational repressor 4E-BP2, but not S6 kinase 1/2, to regulate neural stem cell self-renewal in vivo. Cell Rep 5:433–44
    [Google Scholar]
  47. Haws ME, Jaramillo TC, Espinosa F, Widman AJ, Stuber GD et al. 2014. PTEN knockdown alters dendritic spine/protrusion morphology, not density. J. Comp. Neurol. 522:1171–90
    [Google Scholar]
  48. Hentges KE, Sirry B, Gingeras AC, Sarbassov D, Sonenberg N et al. 2001. FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. PNAS 98:13796–801
    [Google Scholar]
  49. Hernandez D, Torres CA, Setlik W, Cebrian C, Mosharov EV et al. 2012. Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74:277–84
    [Google Scholar]
  50. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A et al. 2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20:1981–91
    [Google Scholar]
  51. Hou L, Klann E 2004. Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 24:6352–61
    [Google Scholar]
  52. Huang J, Dibble CC, Matsuzaki M, Manning BD 2008. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol. Cell Biol. 28:4104–15
    [Google Scholar]
  53. Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L et al. 2013. mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat. Neurosci. 16:441–48
    [Google Scholar]
  54. Hutsler JJ, Love T, Zhang H 2007. Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol. Psychiatry 61:449–57
    [Google Scholar]
  55. Hutsler JJ, Zhang H 2010. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94
    [Google Scholar]
  56. Inoki K, Li Y, Xu T, Guan KL 2003a. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829–34
    [Google Scholar]
  57. Inoki K, Li Y, Zhu T, Wu J, Guan KL 2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4:648–57
    [Google Scholar]
  58. Inoki K, Zhu T, Guan KL 2003b. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–90
    [Google Scholar]
  59. Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA et al. 2004. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6:1122–28
    [Google Scholar]
  60. Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M 2005. Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J. Neurosci. 25:11300–12
    [Google Scholar]
  61. Jeste SS, Sahin M, Bolton P, Ploubidis GB, Humphrey A 2008. Characterization of autism in young children with tuberous sclerosis complex. J. Child Neurol. 23:520–25
    [Google Scholar]
  62. Jeste SS, Varcin KJ, Hellemann GS, Gulsrud AC, Bhatt R et al. 2016. Symptom profiles of autism spectrum disorder in tuberous sclerosis complex. Neurology 87:766–72
    [Google Scholar]
  63. Johannessen CM, Johnson BW, Williams SMG, Chan AW, Reczek EE et al. 2008. TORC1 is essential for NF1-associated malignancies. Curr. Biol. 18:56–62
    [Google Scholar]
  64. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM et al. 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20:1992–2003
    [Google Scholar]
  65. Jung NH, Janzarik WG, Delvendahl I, Munchau A, Biscaldi M et al. 2013. Impaired induction of long-term potentiation-like plasticity in patients with high-functioning autism and Asperger syndrome. Dev. Med. Child Neurol. 55:83–89
    [Google Scholar]
  66. Ka M, Condorelli G, Woodgett JR, Kim WY 2014. mTOR regulates brain morphogenesis by mediating GSK3 signaling. Development 141:4076–86
    [Google Scholar]
  67. Karbowniczek M, Cash T, Cheung M, Robertson GP, Astrinidis A, Henske EP 2004. Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. J. Biol. Chem. 279:29930–37
    [Google Scholar]
  68. Kassai H, Sugaya Y, Noda S, Nakao K, Maeda T et al. 2014. Selective activation of mTORC1 signaling recapitulates microcephaly, tuberous sclerosis, and neurodegenerative diseases. Cell Rep 7:1626–39
    [Google Scholar]
  69. Kim HJ, Cho MH, Shim WH, Kim JK, Jeon EY et al. 2016. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol. Psychiatry 22:1576–84
    [Google Scholar]
  70. Krueger DA, Sadhwani A, Byars AW, de Vries PJ, Franz DN et al. 2017. Everolimus for treatment of tuberous sclerosis complex-associated neuropsychiatric disorders. Ann. Clin. Transl. Neurol. 4:877–87
    [Google Scholar]
  71. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA et al. 2006. Pten regulates neuronal arborization and social interaction in mice. Neuron 50:377–88
    [Google Scholar]
  72. Lamb RF, Roy C, Diefenbach TJ, Vinters HV, Johnson MW et al. 2000. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat. Cell Biol. 2:281–87
    [Google Scholar]
  73. Lebrun-Julien F, Bachmann L, Norrmen C, Trotzmuller M, Kofeler H et al. 2014. Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination. J. Neurosci. 34:8432–48
    [Google Scholar]
  74. Lee Y, Kim SG, Lee B, Zhang Y, Kim Y et al. 2017. Striatal transcriptome and interactome analysis of Shank3-overexpressing mice reveals the connectivity between Shank3 and mTORC1 signaling. Front. Mol. Neurosci. 10:201
    [Google Scholar]
  75. Li Y, Wang H, Muffat J, Cheng AW, Orlando DA et al. 2013. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 13:446–58
    [Google Scholar]
  76. Li YH, Werner H, Puschel AW 2008. Rheb and mTOR regulate neuronal polarity through Rap1B. J. Biol. Chem. 283:33784–92
    [Google Scholar]
  77. Lozovaya N, Gataullina S, Tsintsadze T, Tsintsadze V, Pallesi-Pocachard E et al. 2014. Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nat. Commun. 5:4563
    [Google Scholar]
  78. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP 2005. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179–93
    [Google Scholar]
  79. Magnuson B, Ekim B, Fingar DC 2012. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 441:1–21
    [Google Scholar]
  80. Magri L, Cambiaghi M, Cominelli M, Alfaro-Cervello C, Cursi M et al. 2011. Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell 9:447–62
    [Google Scholar]
  81. Malagelada C, Lopez-Toledano MA, Willett RT, Jin ZH, Shelanski ML, Greene LA 2011. RTP801/REDD1 regulates the timing of cortical neurogenesis and neuron migration. J. Neurosci. 31:3186–96
    [Google Scholar]
  82. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC 2002. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 10:151–62
    [Google Scholar]
  83. Marino S, Krimpenfort P, Leung C, van der Korput HA, Trapman J et al. 2002. PTEN is essential for cell migration but not for fate determination and tumourigenesis in the cerebellum. Development 129:3513–22
    [Google Scholar]
  84. Martin KR, Zhou W, Bowman MJ, Shih J, Au KS et al. 2017. The genomic landscape of tuberous sclerosis complex. Nat. Commun. 8:15816
    [Google Scholar]
  85. McMahon J, Huang X, Yang J, Komatsu M, Yue Z et al. 2012. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J. Neurosci. 32:15704–14
    [Google Scholar]
  86. Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H et al. 2008. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J. Neurosci. 28:5422–32
    [Google Scholar]
  87. Meikle L, Talos DM, Onda H, Pollizzi K, Rotenberg A et al. 2007. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J. Neurosci. 27:5546–58
    [Google Scholar]
  88. Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C et al. 2013. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 17:719–30
    [Google Scholar]
  89. Mirzaa GM, Campbell CD, Solovieff N, Goold C, Jansen LA et al. 2016. Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol 73:836–45
    [Google Scholar]
  90. Mitra I, Lavillaureix A, Yeh E, Traglia M, Tsang K et al. 2017. Reverse pathway genetic approach identifies epistasis in autism spectrum disorders. PLOS Genet 13:e1006516
    [Google Scholar]
  91. Moller RS, Weckhuysen S, Chipaux M, Marsan E, Taly V et al. 2016. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy. Neurol. Genet. 2:e118
    [Google Scholar]
  92. Moon UY, Park JY, Park R, Cho JY, Hughes LJ et al. 2015. Impaired Reelin-Dab1 signaling contributes to neuronal migration deficits of tuberous sclerosis complex. Cell Rep 12:965–78
    [Google Scholar]
  93. Morita T, Sobue K 2009. Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway. J. Biol. Chem. 284:27734–45
    [Google Scholar]
  94. Mroske C, Rasmussen K, Shinde DN, Huether R, Powis Z et al. 2015. Germline activating MTOR mutation arising through gonadal mosaicism in two brothers with megalencephaly and neurodevelopmental abnormalities. BMC Med. Genet. 16:102
    [Google Scholar]
  95. Narayanan U, Nalavadi V, Nakamoto M, Thomas G, Ceman S et al. 2008. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J. Biol. Chem. 283:18478–82
    [Google Scholar]
  96. Nicolini C, Ahn Y, Michalski B, Rho JM, Fahnestock M 2015. Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta Neuropathol. Commun. 3:3
    [Google Scholar]
  97. Nie D, Chen Z, Ebrahimi-Fakhari D, Di Nardo A, Julich K et al. 2015. The stress-induced Atf3-gelsolin cascade underlies dendritic spine deficits in neuronal models of tuberous sclerosis complex. J. Neurosci. 35:10762–72
    [Google Scholar]
  98. Nie D, Di Nardo A, Han JM, Baharanyi H, Kramvis I et al. 2010. Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat. Neurosci. 13:163–72
    [Google Scholar]
  99. Nikolaeva I, Kazdoba TM, Crowell B, D'Arcangelo G 2017. Differential roles for Akt and mTORC1 in the hypertrophy of Pten mutant neurons, a cellular model of brain overgrowth disorders. Neuroscience 354:196–207
    [Google Scholar]
  100. Oberman L, Ifert-Miller F, Najib U, Bashir S, Woollacott I et al. 2010. Transcranial magnetic stimulation provides means to assess cortical plasticity and excitability in humans with fragile X syndrome and autism spectrum disorder. Front. Synaptic Neurosci. 2:26
    [Google Scholar]
  101. Onore C, Yang H, Van de Water J, Ashwood P 2017. Dynamic Akt/mTOR signaling in children with autism spectrum disorder. Front. Pediatr. 5:43
    [Google Scholar]
  102. O'Reilly C, Lewis JD, Elsabbagh M 2017. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLOS ONE 12:e0175870
    [Google Scholar]
  103. Palmieri M, Pal R, Nelvagal HR, Lotfi P, Stinnett GR et al. 2017. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat. Commun. 8:14338
    [Google Scholar]
  104. Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA et al. 1994. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–67
    [Google Scholar]
  105. Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S et al. 2007. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem. J. 405:513–22
    [Google Scholar]
  106. Peña-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, Wolff NC, Tran TAT et al. 2011. Regulation of TFEB and V-ATPases by mTORC1. EMBO J 30:3242–58
    [Google Scholar]
  107. Percy AK 2011. Rett syndrome: exploring the autism link. Arch. Neurol. 68:985–89
    [Google Scholar]
  108. Peters JM, Taquet M, Vega C, Jeste SS, Fernandez IS et al. 2013. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med 11:54
    [Google Scholar]
  109. Pilarski R, Burt R, Kohlman W, Pho L, Shannon KM, Swisher E 2013. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J. Natl. Cancer Inst. 105:1607–16
    [Google Scholar]
  110. Piven J, Berthier ML, Starkstein SE, Nehme E, Pearlson G, Folstein S 1990. Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. Am. J. Psychiatry 147:734–39
    [Google Scholar]
  111. Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhim R et al. 2012. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74:41–48
    [Google Scholar]
  112. Pohodich AE, Zoghbi HY 2015. Rett syndrome: disruption of epigenetic control of postnatal neurological functions. Hum. Mol. Genet. 24:R10–16
    [Google Scholar]
  113. Potter CJ, Pedraza LG, Xu T 2002. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4:658–65
    [Google Scholar]
  114. Poultney CS, Goldberg AP, Drapeau E, Kou Y, Harony-Nicolas H et al. 2013. Identification of small exonic CNV from whole-exome sequence data and application to autism spectrum disorder. Am. J. Hum. Genet. 93:607–19
    [Google Scholar]
  115. Qin M, Kang J, Burlin TV, Jiang C, Smith CB 2005. Postadolescent changes in regional cerebral protein synthesis: an in vivo study in the FMR1 null mouse. J. Neurosci. 25:5087–95
    [Google Scholar]
  116. Qin W, Chan JA, Vinters HV, Mathern GW, Franz DN et al. 2010. Analysis of TSC cortical tubers by deep sequencing of TSC1, TSC2 and KRAS demonstrates that small second-hit mutations in these genes are rare events. Brain Pathol 20:1096–105
    [Google Scholar]
  117. Redcay E, Courchesne E 2005. When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol. Psychiatry 58:1–9
    [Google Scholar]
  118. Ricciardi S, Boggio EM, Grosso S, Lonetti G, Forlani G et al. 2011. Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Hum. Mol. Genet. 20:1182–96
    [Google Scholar]
  119. Richards C, Jones C, Groves L, Moss J, Oliver C 2015. Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis. Lancet Psychiatry 2:909–16
    [Google Scholar]
  120. Ridler K, Suckling J, Higgins N, Bolton P, Bullmore E 2004. Standardized whole brain mapping of tubers and subependymal nodules in tuberous sclerosis complex. J. Child Neurol. 19:658–65
    [Google Scholar]
  121. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH 1994. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78:35–43
    [Google Scholar]
  122. Sahin M, Sur M 2015. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 350:aab3897
    [Google Scholar]
  123. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR et al. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14:1296–302
    [Google Scholar]
  124. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP et al. 2006. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22:159–68
    [Google Scholar]
  125. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–101
    [Google Scholar]
  126. Saxton RA, Sabatini DM 2017. mTOR signaling in growth, metabolism, and disease. Cell 168:960–76
    [Google Scholar]
  127. Schratt GM, Nigh EA, Chen WG, Hu L, Greenberg ME 2004. BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development. J. Neurosci. 24:7366–77
    [Google Scholar]
  128. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429–33
    [Google Scholar]
  129. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:1095–108
    [Google Scholar]
  130. Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM et al. 2010. Dysregulation of mTOR signaling in fragile X syndrome. J. Neurosci. 30:694–702
    [Google Scholar]
  131. Shcheglovitov A, Shcheglovitova O, Yazawa M, Portmann T, Shu R et al. 2013. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 503:267–71
    [Google Scholar]
  132. Skalecka A, Liszewska E, Bilinski R, Gkogkas C, Khoutorsky A et al. 2016. mTOR kinase is needed for the development and stabilization of dendritic arbors in newly born olfactory bulb neurons. Dev. Neurobiol. 76:1308–27
    [Google Scholar]
  133. Smith L, Saunders C, Dinwiddie D, Atherton A, Miller N et al. 2013. Exome sequencing reveals de novo germline mutation of the mammalian target of rapamycin (MTOR) in a patient with megalencephaly and intractable seizures. J. Genomes Exomes 2013:63–72
    [Google Scholar]
  134. Song MS, Salmena L, Pandolfi PP 2012. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 13:283–96
    [Google Scholar]
  135. Soorya L, Kolevzon A, Zweifach J, Lim T, Dobry Y et al. 2013. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol. Autism. 4:18
    [Google Scholar]
  136. Sosanya NM, Cacheaux LP, Workman ER, Niere F, Perrone-Bizzozero NI, Raab-Graham KF 2015. Mammalian target of rapamycin (mTOR) tagging promotes dendritic branch variability through the capture of Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) mRNAs by the RNA-binding protein HuD. J. Biol. Chem. 290:16357–71
    [Google Scholar]
  137. Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR et al. 2014. Patches of disorganization in the neocortex of children with autism. N. Engl. J. Med. 370:1209–19
    [Google Scholar]
  138. Sugiura H, Yasuda S, Katsurabayashi S, Kawano H, Endo K et al. 2015. Rheb activation disrupts spine synapse formation through accumulation of syntenin in tuberous sclerosis complex. Nat. Commun. 6:6842
    [Google Scholar]
  139. Sun J, Liu Y, Moreno S, Baudry M, Bi X 2015. Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of Angelman syndrome mice impairs motor function. J. Neurosci. 35:4706–18
    [Google Scholar]
  140. Sun J, Liu Y, Tran J, O'Neal P, Baudry M, Bi X 2016. mTORC1-S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice. Cell Mol. Life Sci. 73:4303–14
    [Google Scholar]
  141. Takeuchi K, Gertner MJ, Zhou J, Parada LF, Bennett MVL, Zukin RS 2013. Dysregulation of synaptic plasticity precedes appearance of morphological defects in a Pten conditional knockout mouse model of autism. PNAS 110:4738–43
    [Google Scholar]
  142. Talos DM, Sun H, Zhou X, Fitzgerald EC, Jackson MC et al. 2012. The interaction between early life epilepsy and autistic-like behavioral consequences: a role for the mammalian target of rapamycin (mTOR) pathway. PLOS ONE 7:e35885
    [Google Scholar]
  143. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G et al. 2014. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–43
    [Google Scholar]
  144. Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM 2002. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. PNAS 99:467–72
    [Google Scholar]
  145. Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL 2005. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 8:1727–34
    [Google Scholar]
  146. Thomanetz V, Angliker N, Cloëtta D, Lustenberger RM, Schweighauser M et al. 2013. Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J. Cell Biol. 201:293–308
    [Google Scholar]
  147. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C et al. 2009. Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. PNAS 106:2029–34
    [Google Scholar]
  148. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR et al. 2012. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–51
    [Google Scholar]
  149. Tsokas P, Grace EA, Chan P, Ma T, Sealfon SC et al. 2005. Local protein synthesis mediates a rapid increase in dendritic elongation factor 1A after induction of late long-term potentiation. J. Neurosci. 25:5833–43
    [Google Scholar]
  150. Turner TN, Hormozdiari F, Duyzend MH, McClymont SA, Hook PW et al. 2016. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am. J. Hum. Genet. 98:58–74
    [Google Scholar]
  151. Tyagi R, Shahani N, Gorgen L, Ferretti M, Pryor W et al. 2015. Rheb inhibits protein synthesis by activating the PERK-eIF2α signaling cascade. Cell Rep 10:684–93
    [Google Scholar]
  152. Tylee DS, Espinoza AJ, Hess JL, Tahir MA, McCoy SY et al. 2017a. RNA sequencing of transformed lymphoblastoid cells from siblings discordant for autism spectrum disorders reveals transcriptomic and functional alterations: evidence for sex-specific effects. Autism Res 10:439–55
    [Google Scholar]
  153. Tylee DS, Hess JL, Quinn TP, Barve R, Huang H et al. 2017b. Blood transcriptomic comparison of individuals with and without autism spectrum disorder: a combined-samples mega-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 174:181–201
    [Google Scholar]
  154. Tyler WA, Gangoli N, Gokina P, Kim HA, Covey M et al. 2009. Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. J. Neurosci. 29:6367–78
    [Google Scholar]
  155. Tyler WA, Jain MR, Cifelli SE, Li Q, Ku L et al. 2011. Proteomic identification of novel targets regulated by the mammalian target of rapamycin pathway during oligodendrocyte differentiation. Glia 59:1754–69
    [Google Scholar]
  156. Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H et al. 2002. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann. Neurol. 52:285–96
    [Google Scholar]
  157. van Slegtenhorst M, Nellist M, Nagelkerken B, Cheadle J, Snell R et al. 1998. Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum. Mol. Genet. 7:1053–57
    [Google Scholar]
  158. Vega-Rubin-de-Celis S, Peña-Llopis S, Konda M, Brugarolas J 2017. Multistep regulation of TFEB by MTORC1. Autophagy 13:464–72
    [Google Scholar]
  159. Vickers CA, Dickson KS, Wyllie DJ 2005. Induction and maintenance of late-phase long-term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurones. J. Physiol. 568:803–13
    [Google Scholar]
  160. von der Brelie C, Waltereit R, Zhang L, Beck H, Kirschstein T 2006. Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur. J. Neurosci. 23:686–92
    [Google Scholar]
  161. Wahl SE, McLane LE, Bercury KK, Macklin WB, Wood TL 2014. Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination. J. Neurosci. 34:4453–65
    [Google Scholar]
  162. Walsh KS, Velez JI, Kardel PG, Imas DM, Muenke M et al. 2013. Symptomatology of autism spectrum disorder in a population with neurofibromatosis type 1. Dev. Med. Child Neurol. 55:131–38
    [Google Scholar]
  163. Wang ITJ, Allen M, Goffin D, Zhu X, Fairless AH et al. 2012. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. PNAS 109:21516–21
    [Google Scholar]
  164. Wang Y, Greenwood JSF, Calcagnotto ME, Kirsch HE, Barbaro NM, Baraban SC 2007. Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1. Ann. Neurol. 61:139–52
    [Google Scholar]
  165. Wass S 2011. Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn 75:18–28
    [Google Scholar]
  166. Weiner DJ, Wigdor EM, Ripke S, Walters RK, Kosmicki JA et al. 2017. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat. Genet. 49:978–85
    [Google Scholar]
  167. Weiss B, Widemann BC, Wolters P, Dombi E, Vinks A et al. 2015. Sirolimus for progressive neurofibromatosis type 1–associated plexiform neurofibromas: a neurofibromatosis Clinical Trials Consortium phase II study. Neuro Oncol 17:596–603
    [Google Scholar]
  168. Williams MR, DeSpenza T Jr, Li M, Gulledge AT, Luikart BW 2015. Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive. J. Neurosci. 35:943–59
    [Google Scholar]
  169. Wink LK, Fitzpatrick S, Shaffer R, Melnyk S, Begtrup AH et al. 2015. The neurobehavioral and molecular phenotype of Angelman syndrome. Am. J. Med. Genet. A 167A:2623–28
    [Google Scholar]
  170. Wolff JJ, Jacob S, Elison JT 2017. The journey to autism: insights from neuroimaging studies of infants and toddlers. Dev. Psychopathol. 20:1–17
    [Google Scholar]
  171. Wong V, Khong PL 2006. Tuberous sclerosis complex: correlation of magnetic resonance imaging (MRI) findings with comorbidities. J. Child Neurol. 21:99–105
    [Google Scholar]
  172. Xiong Q, Oviedo HV, Trotman LC, Zador AM 2012. PTEN regulation of local and long-range connections in mouse auditory cortex. J. Neurosci. 32:1643–52
    [Google Scholar]
  173. Yasin SA, Ali AM, Tata M, Picker SR, Anderson GW et al. 2013. mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous sclerosis. Acta Neuropathol 126:207–18
    [Google Scholar]
  174. Zeng LH, Xu L, Gutmann DH, Wong M 2008. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 63:444–53
    [Google Scholar]
  175. Zhang B, Wong M 2012. Pentylenetetrazole-induced seizures cause acute, but not chronic, mTOR pathway activation in rat. Epilepsia 53:506–11
    [Google Scholar]
  176. Zheng L, Ding H, Lu Z, Li Y, Pan Y et al. 2008. E3 ubiquitin ligase E6AP-mediated TSC2 turnover in the presence and absence of HPV16 E6. Genes Cells 13:285–94
    [Google Scholar]
  177. Zhou J, Blundell J, Ogawa S, Kwon CH, Zhang W et al. 2009. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J. Neurosci. 29:1773–83
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-061747
Loading
/content/journals/10.1146/annurev-neuro-080317-061747
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error