1932

Abstract

In mammals, the accessory olfactory system is a distinct circuit that has received attention for its role in detecting and responding to pheromones. While the neuroscientific investigation of this system is comparatively new, recent advances and its compact size have made it an attractive model for developing an end-to-end understanding of such questions as regulation of essential behaviors, plasticity, and individual recognition. Recent discoveries have indicated a need to reevaluate our conception of this system, suggesting that () physical principles—rather than biological necessity—play an underappreciated role in its raison d'être and that () the anatomy of downstream projections is not dominated by unique specializations but instead consists of an abbreviated cortical/basal ganglia motif reminiscent of other sensorimotor systems. These observations suggest that the accessory olfactory system distinguishes itself primarily by the physicochemical properties of its ligands, but its architecture is otherwise a microcosm of mammalian neurocircuitry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-061916
2018-07-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-080317-061916.html?itemId=/content/journals/10.1146/annurev-neuro-080317-061916&mimeType=html&fmt=ahah

Literature Cited

  1. Allen Inst. Brain Sci. 2011. Allen mouse brain connectivity atlas. Retrieved Sept. 2017. http://connectivity.brain-map.org/
  2. Baxi KN, Dorries KM, Eisthen HL 2006. Is the vomeronasal system really specialized for detecting pheromones. Trends Neurosci 29:1–7
    [Google Scholar]
  3. Belluscio L, Koentges G, Axel R, Dulac C 1999. A map of pheromone receptor activation in the mammalian brain. Cell 97:209–20
    [Google Scholar]
  4. Ben-Shaul Y, Katz LC, Mooney R, Dulac C 2010. In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. PNAS 107:5172–77
    [Google Scholar]
  5. Beny Y, Kimchi T 2014. Innate and learned aspects of pheromone-mediated social behaviours. Anim. Behav. 97:301–311
    [Google Scholar]
  6. Bergan JF, Ben-Shaul Y, Dulac C 2014. Sex-specific processing of social cues in the medial amygdala. eLife 3:e02743
    [Google Scholar]
  7. Berghard A, Buck L, Liman E 1996. Evidence for distinct signaling mechanisms in two mammalian olfactory sense organs. PNAS 93:2365–69
    [Google Scholar]
  8. Bian X, Yanagawa Y, Chen WR, Luo M 2008. Cortical-like functional organization of the pheromone-processing circuits in the medial amygdala. J. Neurophysiol. 99:77–86
    [Google Scholar]
  9. Brennan PA 2009. Outstanding issues surrounding vomeronasal mechanisms of pregnancy block and individual recognition in mice. Behav. Brain Res. 200:287–94
    [Google Scholar]
  10. Brignall AC, Cloutier JF 2015. Neural map formation and sensory coding in the vomeronasal system. Cell. Mol. Life Sci. 72:4697–709
    [Google Scholar]
  11. Bruce HM 1959. An exteroceptive block to pregnancy in the mouse. Nature 184:105
    [Google Scholar]
  12. Cádiz-Moretti B, Otero-García M, Martínez-García F, Lanuza E 2016. Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse. Brain Struct. Funct. 221:1033–65
    [Google Scholar]
  13. Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR 2016. The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochim. Biophys. Acta Rev. Cancer 1866:339–49
    [Google Scholar]
  14. Cansler HL, Maksimova MA, Meeks JP 2017. Experience-dependent plasticity in accessory olfactory bulb interneurons following male–male social interaction. J. Neurosci. 37:7240–52
    [Google Scholar]
  15. Canteras NS 2002. The medial hypothalamic defensive system: hodological organization and functional implications. Pharmacol. Biochem. Behav. 71:481–91
    [Google Scholar]
  16. Carson KA, Burd GD 1980. Localization of acetylcholinesterase in the main and accessory olfactory bulbs of the mouse by light and electron microscopic histochemistry. J. Comp. Neurol. 191:353–71
    [Google Scholar]
  17. Cavaliere RM, Ghirardi F, Tirindelli R 2014. Lacrimal gland removal impairs sexual behavior in mice. Front. Neuroanat. 8:101
    [Google Scholar]
  18. Celsi F, D'Errico A, Menini A 2012. Responses to sulfated steroids of female mouse vomeronasal sensory neurons. Chem. Senses 37:849–58
    [Google Scholar]
  19. Cenquizca LA, Swanson LW 2007. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res. Rev. 56:1–26
    [Google Scholar]
  20. Chamero P, Marton T, Logan D, Flanagan K, Cruz J et al. 2007. Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902
    [Google Scholar]
  21. Cherian S, Lam YW, McDaniels I, Struziak M, Delay RJ 2014. Estradiol rapidly modulates odor responses in mouse vomeronasal sensory neurons. Neuroscience 269:43–58
    [Google Scholar]
  22. Craig A, Bushnell M 1994. The thermal grill illusion: unmasking the burn of cold pain. Science 265:252–56
    [Google Scholar]
  23. Dalton RP, Lomvardas S 2015. Chemosensory receptor specificity and regulation. Annu. Rev. Neurosci. 38:331–49
    [Google Scholar]
  24. Davis BJ, Macrides F, Youngs WM, Schneider SP, Rosene DL 1978. Efferents and centrifugal afferents of the main and accessory olfactory bulbs in the hamster. Brain Res. Bull. 3:59–72
    [Google Scholar]
  25. de la Rosa-Prieto C, Ubeda-Banon I, Mohedano-Moriano A, Pro-Sistiaga P, Saiz-Sanchez D et al. 2009. Subicular and CA1 hippocampal projections to the accessory olfactory bulb. Hippocampus 19:124–29
    [Google Scholar]
  26. de Olmos J Hardy H, Heimer L 1978. The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J. Comp. Neurol. 181:213–44
    [Google Scholar]
  27. Del Punta K, Puche A, Adams N, Rodriguez I, Mombaerts P 2002. A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron 35:1057–66
    [Google Scholar]
  28. Dey S, Chamero P, Pru JK, Chien MS, Ibarra-Soria X et al. 2015. Cyclic regulation of sensory perception by a female hormone alters behavior. Cell 161:1334–44
    [Google Scholar]
  29. Dixon A, Mackintosh J 1971. Effects of female urine upon the social behaviour of adult male mice. Anim. Behav. 19:138–40
    [Google Scholar]
  30. Dong HW, Swanson LW 2004. Projections from bed nuclei of the stria terminalis, posterior division: implications for cerebral hemisphere regulation of defensive and reproductive behaviors. J. Comp. Neurol. 471:396–433
    [Google Scholar]
  31. Dorries KM, Adkins-Regan E, Halpern BP 1997. Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pigs. Brain Behav. Evol. 49:53–62
    [Google Scholar]
  32. Doyle WI, Dinser JA, Cansler HL, Zhang X, Dinh DD et al. 2016. Faecal bile acids are natural ligands of the mouse accessory olfactory system. Nat. Commun. 7:11936
    [Google Scholar]
  33. Doyle WI, Meeks JP 2017. Heterogeneous effects of norepinephrine on spontaneous and stimulus-driven activity in the male accessory olfactory bulb. J. Neurophysiol. 117:1342–51
    [Google Scholar]
  34. Dulac C, Axel R 1995. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206
    [Google Scholar]
  35. Dulac C, Torello A 2003. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4:551–62
    [Google Scholar]
  36. Ennis M, Holy TE 2015. Anatomy and neurobiology of the main and accessory olfactory bulbs. Handbook of Olfaction and Gustation RL Doty 157–82 Hoboken, NJ: Wiley
    [Google Scholar]
  37. Fan S, Luo M 2009. The organization of feedback projections in a pathway important for processing pheromonal signals. Neuroscience 161:489–500
    [Google Scholar]
  38. Ferrero DM, Moeller LM, Osakada T, Horio N, Li Q et al. 2013. A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature 502:368–71
    [Google Scholar]
  39. Flanagan KA, Webb W, Stowers L 2011. Analysis of male pheromones that accelerate female reproductive organ development. PLOS ONE 6:e16660
    [Google Scholar]
  40. Francia S, Pifferi S, Menini A, Tirindelli R 2014. Vomeronasal receptors and signal transduction in the vomeronasal organ of mammals. Neurobiology of Chemical Communication C Mucignat-Caretta 297–323 Boca Raton, FL: CRC
    [Google Scholar]
  41. Fu X, Yan Y, Xu PS, Geerlof-Vidavsky I, Chong W et al. 2015. A molecular code for identity in the vomeronasal system. Cell 163:313–23
    [Google Scholar]
  42. Gao Y, Budlong C, Durlacher E, Davison IG 2017. Neural mechanisms of social learning in the female mouse. eLife 6:e25421
    [Google Scholar]
  43. Gorin M, Tsitoura C, Kahan A, Watznauer K, Drose DR et al. 2016. Interdependent conductances drive infraslow intrinsic rhythmogenesis in a subset of accessory olfactory bulb projection neurons. J. Neurosci. 36:3127–44
    [Google Scholar]
  44. Grus WE, Zhang J 2008. Origin of the genetic components of the vomeronasal system in the common ancestor of all extant vertebrates. Mol. Biol. Evol. 26:407–19
    [Google Scholar]
  45. Gutiérrez-Castellanos N, Pardo-Bellver C, Martínez-García F, Lanuza E 2014. The vomeronasal cortex—afferent and efferent projections of the posteromedial cortical nucleus of the amygdala in mice. Eur. J. Neurosci. 39:141–58
    [Google Scholar]
  46. Haga S, Hattori T, Sato T, Sato K, Matsuda S et al. 2010. The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466:118–22
    [Google Scholar]
  47. Haga-Yamanaka S, Ma L, He J, Qiu Q, Lavis LD et al. 2014. Integrated action of pheromone signals in promoting courtship behavior in male mice. eLife 3:e03025
    [Google Scholar]
  48. Haga-Yamanaka S, Ma L, Yu CR 2015. Tuning properties and dynamic range of type 1 vomeronasal receptors. Front. Neurosci. 9:244
    [Google Scholar]
  49. Hagey LR, Krasowski MD 2013. Microbial biotransformations of bile acids as detected by electrospray mass spectrometry. Adv. Nutr. 4:29–35
    [Google Scholar]
  50. Halpern M, Martínez-Marcos A 2003. Structure and function of the vomeronasal system: an update. Prog. Neurobiol. 70:245–318
    [Google Scholar]
  51. Hammen GF, Turaga D, Holy TE, Meeks JP 2014. Functional organization of glomerular maps in the mouse accessory olfactory bulb. Nat. Neuro. 17:953–61
    [Google Scholar]
  52. Hashiguchi Y, Nishida M 2005. Evolution of vomeronasal-type odorant receptor genes in the zebrafish genome. Gene 362:19–28
    [Google Scholar]
  53. Hattori T, Osakada T, Matsumoto A, Matsuo N, Haga-Yamanaka S et al. 2016. Self-exposure to the male pheromone ESP1 enhances male aggressiveness in mice. Curr. Biol. 26:1229–34
    [Google Scholar]
  54. Hendrickson R, Krauthamer S, Essenberg J, Holy TE 2008. Inhibition shapes sex-selectivity in the mouse accessory olfactory bulb. J. Neurosci. 28:12523–34
    [Google Scholar]
  55. Herrada G, Dulac C 1997. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:763–73
    [Google Scholar]
  56. Holekamp TF, Turaga D, Holy TE 2008. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57:661–72
    [Google Scholar]
  57. Holy TE, Dulac C, Meister M 2000. Responses of vomeronasal neurons to natural stimuli. Science 289:1569–72
    [Google Scholar]
  58. Hu R, Ferguson KA, Whiteus CB, Meijer DH, Araneda RC 2016. Hyperpolarization-activated currents and subthreshold resonance in granule cells of the olfactory bulb. eNeuro 3:e019–16.2016
    [Google Scholar]
  59. Huang Z, Thiebaud N, Fadool DA 2017. Differential serotonergic modulation across the main and accessory olfactory bulbs. J. Physiol. 595:3515–33
    [Google Scholar]
  60. Hudson R, Distel H 1986. Pheromonal release of suckling in rabbits does not depend on the vomeronasal organ. Phys. Behav. 37:123–28
    [Google Scholar]
  61. Hudspeth A 2014. Integrating the active process of hair cells with cochlear function. Nat. Rev. Neurosci. 15:600–14
    [Google Scholar]
  62. Huilgol D, Tole S 2016. Cell migration in the developing rodent olfactory system. Cell. Mol. Life Sci. 73:2467–90
    [Google Scholar]
  63. Hurst JL, Beynon RJ, Armstrong SD, Davidson AJ, Roberts SA et al. 2017. Molecular heterogeneity in major urinary proteins of Mus musculus subspecies: potential candidates involved in speciation. Sci. Rep. 7:44992
    [Google Scholar]
  64. Hurst JL, Payne CE, Nevison CM, Marie AD, Humphries RE et al. 2001. Individual recognition in mice mediated by major urinary proteins. Nature 414:631–34
    [Google Scholar]
  65. Hurst JL, Robertson DHL, Tolladay U, Beynon RJ 1998. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55:1289–97
    [Google Scholar]
  66. Ibarra-Soria X, Levitin MO, Logan DW 2014. The genomic basis of vomeronasal-mediated behaviour. Mamm. Genome 25:75–86
    [Google Scholar]
  67. Ishii KK, Osakada T, Mori H, Miyasaka N, Yoshihara Y et al. 2017. A labeled-line neural circuit for pheromone-mediated sexual behaviors in mice. Neuron 95:123–37
    [Google Scholar]
  68. Ishii T, Mombaerts P 2008. Expression of nonclassical class I major histocompatibility genes defines a tripartite organization of the mouse vomeronasal system. J. Neurosci. 28:2332–41
    [Google Scholar]
  69. Ishii T, Mombaerts P 2011. Coordinated coexpression of two vomeronasal receptor V2R genes per neuron in the mouse. Mol. Cell. Neurosci. 46:397–408
    [Google Scholar]
  70. Isogai Y, Si S, Pont-Lezica L, Tan T, Kapoor V et al. 2011. Molecular organization of vomeronasal chemoreception. Nature 478:241–45
    [Google Scholar]
  71. Jia C, Halpern M 1996. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Giα2 and Goα) and segregated projections to the accessory olfactory bulb. Brain Res 719:117–28
    [Google Scholar]
  72. Kang N, Baum MJ, Cherry JA 2009. A direct main olfactory bulb projection to the ‘vomeronasal’ amygdala in female mice selectively responds to volatile pheromones from males. Eur. J. Neurosci. 29:624–34
    [Google Scholar]
  73. Kaur AW, Ackels T, Kuo TH, Cichy A, Dey S et al. 2014. Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell 157:676–88
    [Google Scholar]
  74. Kimoto H, Haga S, Sato K, Touhara K 2005. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437:898–901
    [Google Scholar]
  75. Kimoto H, Sato K, Nodari F, Haga S, Holy TE, Touhara K 2007. Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr. Biol. 17:1879–84
    [Google Scholar]
  76. Kirschenbaum DM, Schulman N, Halpern M 1986. Earthworms produce a collagen-like substance detected by the garter snake vomeronasal system. PNAS 83:1213–16
    [Google Scholar]
  77. Kudwa A, Rissman E 2003. Double oestrogen receptor α and β knockout mice reveal differences in neural oestrogen-mediated progestin receptor induction and female sexual behaviour. J. Neuroendocrinol. 15:978–83
    [Google Scholar]
  78. Kurzweil VC, Getman M, Green ED, Lane RP 2009. Dynamic evolution of V1R putative pheromone receptors between Mus musculus and Mus spretus. BMC Genom 10:74
    [Google Scholar]
  79. Larriva-Sahd J 2008. The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system. J. Comp. Neurol. 510:309–50
    [Google Scholar]
  80. Larsen PR, Kronenberg HM, Melmed S, Polonsky KS 2003. Williams Textbook of Endocrinology Philadelphia: Saunders, 10th ed..
  81. Leinders-Zufall T, Lane A, Puche A, Ma W, Novotny M et al. 2000. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405:792–96
    [Google Scholar]
  82. Leszkowicz E, Khan S, Ng S, Ved N, Swallow DL, Brennan PA 2012. Noradrenaline-induced enhancement of oscillatory local field potentials in the mouse accessory olfactory bulb does not depend on disinhibition of mitral cells. Eur. J. Neurosci. 35:1433–45
    [Google Scholar]
  83. Libants S, Carr K, Wu H, Teeter JH, Chung-Davidson YW et al. 2009. The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage. BMC Evol. Biol. 9:180
    [Google Scholar]
  84. Liberles SD 2014. Mammalian pheromones. Annu. Rev. Physiol. 76:151–75
    [Google Scholar]
  85. Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL et al. 2009. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. PNAS 106:9842–47
    [Google Scholar]
  86. Luo M, Fee M, Katz L 2003. Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science 299:1196–201
    [Google Scholar]
  87. Ma M 2007. Encoding olfactory signals via multiple chemosensory systems. Crit. Rev. Biochem. Mol. Biol. 42:463–80
    [Google Scholar]
  88. Marín O, Rubenstein JL 2003. Cell migration in the forebrain. Annu. Rev. Neurosci. 26:441–83
    [Google Scholar]
  89. Martel KL, Baum MJ 2009. A centrifugal pathway to the mouse accessory olfactory bulb from the medial amygdala conveys gender-specific volatile pheromonal signals. Eur. J. Neurosci. 29:368–76
    [Google Scholar]
  90. Martínez-García F, Martínez-Ricós J, Agustín-Pavón C, Martínez-Hernández J, Novejarque A, Lanuza E 2009. Refining the dual olfactory hypothesis: pheromone reward and odour experience. Behav. Brain Res. 200:277–86
    [Google Scholar]
  91. Martínez-Marcos A 2009. On the organization of olfactory and vomeronasal cortices. Prog. Neurobiol. 87:21–30
    [Google Scholar]
  92. Martínez-Marcos A, Halpern M 1999. Differential projections from the anterior and posterior divisions of the accessory olfactory bulb to the medial amygdala in the opossum, Monodelphis domestica. Eur. J. Neurosci. 11:3789–99
    [Google Scholar]
  93. Martini S, Silvotti L, Shirazi A, Ryba N, Tirindelli R 2001. Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J. Neurosci. 21:843–48
    [Google Scholar]
  94. Matsunami H, Buck L 1997. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:775–84
    [Google Scholar]
  95. McCarthy EA, Kunkhyen T, Korzan WJ, Naik A, Maqsudlu A et al. 2017a. A comparison of the effects of male pheromone priming and optogenetic inhibition of accessory olfactory bulb forebrain inputs on the sexual behavior of estrous female mice. Horm. Behav. 89:104–12
    [Google Scholar]
  96. McCarthy EA, Maqsudlu A, Bass M, Georghiou S, Cherry JA, Baum MJ 2017b. DREADD-induced silencing of the medial amygdala reduces the preference for male pheromones and the expression of lordosis in estrous female mice. Eur. J. Neurosci. 46:2035–46
    [Google Scholar]
  97. McLean JH, Shipley MT, Nickell WT, Aston-Jones G, Reyher CK 1989. Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. J. Comp. Neurol. 285:339–49
    [Google Scholar]
  98. Meeks JP, Arnson HA, Holy TE 2010. Representation and transformation of sensory information in the mouse accessory olfactory system. Nat. Neurosci. 13:723–30
    [Google Scholar]
  99. Meredith M, O'Connell R 1979. Efferent control of stimulus access to the hamster vomeronasal organ. J. Physiol. 286:301–16
    [Google Scholar]
  100. Meredith M, Westberry JM 2004. Distinctive responses in the medial amygdala to same-species and different-species pheromones. J. Neurosci. 24:5719–25
    [Google Scholar]
  101. Mohedano-Moriano A, de la Rosa-Prieto C, Saiz-Sanchez D, Úbeda-Bañón I, Pro-Sistiaga P et al. 2012. Centrifugal telencephalic afferent connections to the main and accessory olfactory bulbs. Front. Neuroanat. 6:19
    [Google Scholar]
  102. Mohedano-Moriano A, Pro-Sistiaga P, Úbeda-Bañón I, Crespo C, Insausti R, Martínez-Marcos A 2007. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. Eur. J. Neurosci. 25:2065–80
    [Google Scholar]
  103. Moir HM, Jackson JC, Windmill JF 2013. Extremely high frequency sensitivity in a simple ear. Biol. Lett. 9:20130241
    [Google Scholar]
  104. Moncho-Bogani J, Martínez-García F, Novejarque A, Lanuza E 2005. Attraction to sexual pheromones and associated odorants in female mice involves activation of the reward system and basolateral amygdala. Eur. J. Neurosci. 21:2186–98
    [Google Scholar]
  105. Nei M, Niimura Y, Nozawa M 2008. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat. Rev. Genet. 9:951–63
    [Google Scholar]
  106. Niimura Y, Nei M 2005. Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. PNAS 102:6039–44
    [Google Scholar]
  107. Nodari F, Hsu F, Fu X, Holekamp T, Kao L et al. 2008. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J. Neurosci. 28:6407–18
    [Google Scholar]
  108. Noguchi T, Sasajima H, Miyazono S, Kashiwayanagi M 2014. Similar rate of information transfer on stimulus intensity in accessory and main olfactory bulb output neurons. Neurosci. Lett. 576:56–61
    [Google Scholar]
  109. Novejarque A, Gutiérrez-Castellanos N, Lanuza E, Martínez-García F 2011. Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system. Front. Neuroanat. 5:54
    [Google Scholar]
  110. O'Connell RJ, Meredith M 1984. Effects of volatile and nonvolatile chemical signals on male sex behaviors mediated by the main and accessory olfactory systems. Behav. Neurosci. 98:1083
    [Google Scholar]
  111. Papes F, Logan DW, Stowers L 2010. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141:692–703
    [Google Scholar]
  112. Pardo-Bellver C, Cádiz-Moretti B, Novejarque A, Martínez-García F, Lanuza E 2012. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front. Neuroanat. 6:33
    [Google Scholar]
  113. Park SH, Podlaha O, Grus WE, Zhang J 2011. The microevolution of V1r vomeronasal receptor genes in mice. Genome Biol. Evol. 3:401–12
    [Google Scholar]
  114. Pérez-Gómez A, Stein B, Leinders-Zufall T, Chamero P 2014. Signaling mechanisms and behavioral function of the mouse basal vomeronasal neuroepithelium. Front. Neuroanat. 8:135
    [Google Scholar]
  115. Pfister P, Rodriguez I 2005. Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. PNAS 102:5489–94
    [Google Scholar]
  116. Phelan MM, McLean L, Hurst JL, Beynon RJ, Lian LY 2014. Comparative study of the molecular variation between ‘central’ and ‘peripheral’ MUPs and significance for behavioural signalling. Biochem. Soc. Trans. 42:866–72
    [Google Scholar]
  117. Powers JB, Winans SS 1975. Vomeronasal organ: critical role in mediating sexual behavior of the male hamster. Science 187:961–63
    [Google Scholar]
  118. Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I 2009. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459:574–77
    [Google Scholar]
  119. Roberts SA, Simpson DM, Armstrong SD, Davidson AJ, Robertson DH et al. 2010. Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male's odour. BMC Biol 8:75
    [Google Scholar]
  120. Rodriguez I, Feinstein P, Mombaerts P 1999. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97:199–208
    [Google Scholar]
  121. Roper SD, Chaudhari N 2017. Taste buds: cells, signals and synapses. Nat. Rev. Neurosci. 18:485–97
    [Google Scholar]
  122. Ryba N, Tirindelli R 1997. A new multigene family of putative pheromone receptors. Neuron 19:371–79
    [Google Scholar]
  123. Sam M, Vora S, Malnic B, Ma W, Novotny M, Buck L 2001. Odorants may arouse instinctive behaviours. Nature 412:142
    [Google Scholar]
  124. Saraiva LR, Korsching SI 2007. A novel olfactory receptor gene family in teleost fish. Genome Res 17:1448–57
    [Google Scholar]
  125. Scalia F, Winans S 1975. The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J. Comp. Neurol. 161:31–55
    [Google Scholar]
  126. Schaal B, Coureaud G, Langlois D, Ginies C, Semon E, Perrier G 2003. Chemical and behavioural characterization of the rabbit mammary pheromone. Nature 424:68–72
    [Google Scholar]
  127. Schmidt TM, Chen SK, Hattar S 2011. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–80
    [Google Scholar]
  128. Schroll H, Hamker FH 2013. Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy. Front. Syst. Neurosci. 7:122
    [Google Scholar]
  129. Shi P, Zhang J 2007. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res 17:166–74
    [Google Scholar]
  130. Smith RS, Weitz CJ, Araneda RC 2009. Excitatory actions of noradrenaline and metabotropic glutamate receptor activation in granule cells of the accessory olfactory bulb. J. Neurophysiol. 102:1103–14
    [Google Scholar]
  131. Spehr M, Kelliher KR, Li XH, Boehm T, Leinders-Zufall T, Zufall F 2006. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci. 26:1961–70
    [Google Scholar]
  132. Swanson LW 2005. Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors. J. Comp. Neurol. 493:122–31
    [Google Scholar]
  133. Swanson LW, Petrovich GD 1998. What is the amygdala. Trends Neurosci 21:323–31
    [Google Scholar]
  134. Takahashi Y, Kaba H 2010. Muscarinic receptor type 1 (M1) stimulation, probably through KCNQ/Kv7 channel closure, increases spontaneous GABA release at the dendrodendritic synapse in the mouse accessory olfactory bulb. Brain Res 1339:26–40
    [Google Scholar]
  135. Thompson ML, Edwards DA 1971. Experiential and strain determinants of the estrogen-progesterone induction of sexual receptivity in spayed female mice. Horm. Behav. 2:299–305
    [Google Scholar]
  136. Tolokh II, Fu X, Holy TE 2013. Reliable sex and strain discrimination in the mouse vomeronasal organ and accessory olfactory bulb. J. Neurosci. 33:13903–13
    [Google Scholar]
  137. Trinh K, Storm D 2003. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat. Neurosci. 6:519–25
    [Google Scholar]
  138. Turaga D, Holy TE 2012. Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging. J. Neurosci. 32:1612–21
    [Google Scholar]
  139. Vargas-Barroso V, Ordaz-Sánchez B, Peña-Ortega F, Larriva-Sahd JA 2015. Electrophysiological evidence for a direct link between the main and accessory olfactory bulbs in the adult rat. Front. Neurosci. 9:518
    [Google Scholar]
  140. Wagner S, Gresser AL, Torello AT, Dulac C 2006. A multireceptor genetic approach uncovers an ordered integration of VNO sensory inputs in the accessory olfactory bulb. Neuron 50:697–709
    [Google Scholar]
  141. Winans S, Scalia F 1970. Amygdaloid nucleus: new afferent input from the vomeronasal organ. Science 170:330–32
    [Google Scholar]
  142. Wynn EH, Sánchez-Andrade G, Carss KJ, Logan DW 2012. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice. BMC Genom 13:415
    [Google Scholar]
  143. Wysocki C, Wellington J, Beauchamp G 1980. Access of urinary nonvolatiles to the mammalian vomeronasal organ. Science 207:781–83
    [Google Scholar]
  144. Xu PS, Lee D, Holy TE 2016. Experience-dependent plasticity drives individual differences in pheromone-sensing neurons. Neuron 91:878–92
    [Google Scholar]
  145. Yang CF, Chiang MC, Gray DC, Prabhakaran M, Alvarado M et al. 2013. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153:896–909
    [Google Scholar]
  146. Yang H, Shi P, Zhang Y-P, Zhang J 2005. Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics 86:306–15
    [Google Scholar]
  147. Yokosuka M 2012. Histological properties of the glomerular layer in the mouse accessory olfactory bulb. Exp. Anim. 61:13–24
    [Google Scholar]
  148. Yonekura J, Yokoi M 2008. Conditional genetic labeling of mitral cells of the mouse accessory olfactory bulb to visualize the organization of their apical dendritic tufts. Mol. Cell. Neurosci. 37:708–18
    [Google Scholar]
  149. Yoshinaga S, Sato T, Hirakane M, Esaki K, Hamaguchi T et al. 2013. Structure of the mouse sex peptide pheromone ESP1 reveals a molecular basis for specific binding to the class C G-protein-coupled vomeronasal receptor. J. Biol. Chem. 288:16064–72
    [Google Scholar]
  150. Young JM, Massa HF, Hsu L, Trask BJ 2010. Extreme variability among mammalian V1R gene families. Genome Res 20:10–18
    [Google Scholar]
  151. Young JM, Trask BJ 2007. V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet 23:212–15
    [Google Scholar]
  152. Zapilko V, Korsching SI 2016. Tetrapod V1R-like ora genes in an early-diverging ray-finned fish species: The canonical six ora gene repertoire of teleost fish resulted from gene loss in a larger ancestral repertoire. BMC Genom 17:83
    [Google Scholar]
  153. Zhou Y, Rui L 2010. Major urinary protein regulation of chemical communication and nutrient metabolism. Vitam. Horm. 83:151–63
    [Google Scholar]
  154. Zylbertal A, Yarom Y, Wagner S 2017. Synchronous infra-slow bursting in the mouse accessory olfactory bulb emerge from interplay between intrinsic neuronal dynamics and network connectivity. J. Neurosci. 37:2656–72
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-061916
Loading
/content/journals/10.1146/annurev-neuro-080317-061916
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error