1932

Abstract

Understanding the biological basis for human-specific cognitive traits presents both immense challenges and unique opportunities. Although the question of what makes us human has been investigated with several different methods, the rise of comparative genomics, epigenomics, and medical genetics has provided tools to help narrow down and functionally assess the regions of the genome that seem evolutionarily relevant along the human lineage. In this review, we focus on how medical genetic cases have provided compelling functional evidence for genes and loci that appear to have interesting evolutionary signatures in humans. Furthermore, we examine a special class of noncoding regions, human accelerated regions (HARs), that have been suggested to show human-lineage-specific divergence, and how the use of clinical and population data has started to provide functional information to examine these regions. Finally, we outline methods that provide new insights into functional noncoding sequences in evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-062104
2018-07-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-080317-062104.html?itemId=/content/journals/10.1146/annurev-neuro-080317-062104&mimeType=html&fmt=ahah

Literature Cited

  1. Alkan C, Sajjadian S, Eichler EE 2011. Limitations of next-generation genome sequence assembly. Nat. Methods 8:61–65
    [Google Scholar]
  2. Arnold CD, Gerlach D, Stelzer C, Boryn LM, Rath M, Stark A 2013. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339:1074–77
    [Google Scholar]
  3. Ayub Q, Yngvadottir B, Chen Y, Xue Y, Hu M et al. 2013. FOXP2 targets show evidence of positive selection in European populations. Am. J. Hum. Genet. 92:696–706
    [Google Scholar]
  4. Bae BI, Tietjen I, Atabay KD, Evrony GD, Johnson MB et al. 2014. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 343:764–68
    [Google Scholar]
  5. Bahi-Buisson N, Poirier K, Boddaert N, Fallet-Bianco C, Specchio N et al. 2010. GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain 133:3194–209
    [Google Scholar]
  6. Bakewell MA, Shi P, Zhang J 2007. More genes underwent positive selection in chimpanzee evolution than in human evolution. PNAS 104:7489–94
    [Google Scholar]
  7. Beck CR, Garcia-Perez JL, Badge RM, Moran JV 2011. LINE-1 elements in structural variation and disease. Annu. Rev. Genom. Hum. Genet. 12:187–215
    [Google Scholar]
  8. Binse I, Ueberberg B, Sandalcioglu IE, Flitsch J, Luedecke DK et al. 2014. Expression analysis of GADD45γ, MEG3, and p8 in pituitary adenomas. Horm. Metab. Res. 46:644–50
    [Google Scholar]
  9. Bird CP, Stranger BE, Liu M, Thomas DJ, Ingle CE et al. 2007. Fast-evolving noncoding sequences in the human genome. Genome Biol 8:R118
    [Google Scholar]
  10. Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S et al. 2002. ASPM is a major determinant of cerebral cortical size. Nat. Genet. 32:316–20
    [Google Scholar]
  11. Boyd JL, Skove SL, Rouanet JP, Pilaz LJ, Bepler T et al. 2015. Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr. Biol. 25:772–79
    [Google Scholar]
  12. Brunskill EW, Ehrman LA, Williams MT, Klanke J, Hammer D et al. 2005. Abnormal neurodevelopment, neurosignaling and behaviour in Npas3-deficient mice. Eur. J. Neurosci. 22:1265–76
    [Google Scholar]
  13. Brunskill EW, Witte DP, Shreiner AB, Potter SS 1999. Characterization of Npas3, a novel basic helix-loop-helix PAS gene expressed in the developing mouse nervous system. Mech. Dev. 88:237–41
    [Google Scholar]
  14. Bush EC, Lahn BT 2008. A genome-wide screen for noncoding elements important in primate evolution. BMC Evol. Biol. 8:17
    [Google Scholar]
  15. Capra JA, Erwin GD, McKinsey G, Rubenstein JL, Pollard KS 2013. Many human accelerated regions are developmental enhancers. Philos. Trans. R. Soc. B 368:20130025
    [Google Scholar]
  16. Carroll SB 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36
    [Google Scholar]
  17. Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N et al. 2012. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149:923–35
    [Google Scholar]
  18. Cheng Z, Ventura M, She X, Khaitovich P, Graves T et al. 2005. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437:88–93
    [Google Scholar]
  19. Chenn A, Walsh CA 2002. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–69
    [Google Scholar]
  20. Chimpanzee Seq. Anal. Consort. 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87
    [Google Scholar]
  21. Ciccarelli FD, von Mering C, Suyama M, Harrington ED, Izaurralde E, Bork P 2005. Complex genomic rearrangements lead to novel primate gene function. Genome Res 15:343–51
    [Google Scholar]
  22. Crowley EM, Roeder K, Bina M 1997. A statistical model for locating regulatory regions in genomic DNA. J. Mol. Biol. 268:8–14
    [Google Scholar]
  23. Cubelos B, Briz CG, Esteban-Ortega GM, Nieto M 2014. Cux1 and Cux2 selectively target basal and apical dendritic compartments of layer II-III cortical neurons. Dev. Neurobiol. 75:163–72
    [Google Scholar]
  24. Cubelos B, Nieto M 2010. Intrinsic programs regulating dendrites and synapses in the upper layer neurons of the cortex. Commun. Integr. Biol. 3:483–86
    [Google Scholar]
  25. Cubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E et al. 2010. Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 66:523–35
    [Google Scholar]
  26. de la Calle-Mustienes E, Feijóo CG, Manzanares M, Tena JJ, Rodríguez-Seguel E et al. 2005. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res 15:1061–72
    [Google Scholar]
  27. Deaner RO, Isler K, Burkart J, van Schaik C 2007. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70:115–24
    [Google Scholar]
  28. Dennis MY, Eichler EE 2016. Human adaptation and evolution by segmental duplication. Curr. Opin. Genet. Dev. 41:44–52
    [Google Scholar]
  29. Dennis MY, Harshman L, Nelson BJ, Penn O, Cantsilieris S et al. 2017. The evolution and population diversity of human-specific segmental duplications. Nat. Ecol. Evol. 1:0069
    [Google Scholar]
  30. Dennis MY, Nuttle X, Sudmant PH, Antonacci F, Graves TA et al. 2012. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149:912–22
    [Google Scholar]
  31. Devlin B, Scherer SW 2012. Genetic architecture in autism spectrum disorder. Curr. Opin. Genet. Dev. 22:229–37
    [Google Scholar]
  32. Doan RN, Bae BI, Cubelos B, Chang C, Hossain AA et al. 2016. Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167:341–54
    [Google Scholar]
  33. Dumas LJ, O'Bleness MS, Davis JM, Dickens CM, Anderson N et al. 2012. DUF1220-domain copy number implicated in human brain-size pathology and evolution. Am. J. Hum. Genet. 91:444–54
    [Google Scholar]
  34. Enard W, Gehre S, Hammerschmidt K, Holter SM, Blass T et al. 2009. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–71
    [Google Scholar]
  35. Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V et al. 2002. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418:869–72
    [Google Scholar]
  36. ENCODE Proj. Consort. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74
    [Google Scholar]
  37. Epstein DJ 2009. Cis-regulatory mutations in human disease. Brief Funct. Genom. Proteom. 8:310–16
    [Google Scholar]
  38. Erbel-Sieler C, Dudley C, Zhou Y, Wu X, Estill SJ et al. 2004. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. PNAS 101:13648–53
    [Google Scholar]
  39. Faheem M, Naseer MI, Rasool M, Chaudhary AG, Kumosani TA et al. 2015. Molecular genetics of human primary microcephaly: an overview. BMC Med. Genom. 8:Suppl. 1S4
    [Google Scholar]
  40. Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA 2003. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J. Comp. Neurol. 460:266–79
    [Google Scholar]
  41. Ferri AL, Cavallaro M, Braida D, Di Cristofano A, Canta A et al. 2004. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131:3805–19
    [Google Scholar]
  42. Fish JL, Kosodo Y, Enard W, Paabo S, Huttner WB 2006. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. PNAS 103:10438–43
    [Google Scholar]
  43. Fossati M, Pizzarelli R, Schmidt ER, Kupferman JV, Stroebel D et al. 2016. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91:356–69
    [Google Scholar]
  44. Friedli M, Trono D 2015. The developmental control of transposable elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 31:429–51
    [Google Scholar]
  45. Fujita E, Tanabe Y, Shiota A, Ueda M, Suwa K et al. 2008. Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. PNAS 105:3117–22
    [Google Scholar]
  46. Fullwood MJ, Han Y, Wei CL, Ruan X, Ruan Y 2010. Chromatin interaction analysis using paired-end tag sequencing. Curr. Protoc. Mol. Biol. 89:21.15
    [Google Scholar]
  47. Gittelman RM, Hun E, Ay F, Madeoy J, Pennacchio L et al. 2015. Comprehensive identification and analysis of human accelerated regulatory DNA. Genome Res 25:1245–55
    [Google Scholar]
  48. Goh Y, Fullwood MJ, Poh HM, Peh SQ, Ong CT et al. 2012. Chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) for mapping chromatin interactions and understanding transcription regulation. J. Vis. Exp. 62:3770
    [Google Scholar]
  49. Goldman N, Yang Z 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11:725–36
    [Google Scholar]
  50. Gould P, Kamnasaran D 2011. Immunohistochemical analyses of NPAS3 expression in the developing human fetal brain. Anat. Histol. Embryol. 40:196–203
    [Google Scholar]
  51. Guerrier S, Coutinho-Budd J, Sassa T, Gresset A, Jordan NV et al. 2009. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 138:990–1004
    [Google Scholar]
  52. Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C 2007. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLOS Biol 5:e321
    [Google Scholar]
  53. Hammerschmidt K, Schreiweis C, Minge C, Paabo S, Fischer J, Enard W 2015. A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice. Genes Brain Behav 14:583–90
    [Google Scholar]
  54. Haraksingh RR, Snyder MP 2013. Impacts of variation in the human genome on gene regulation. J. Mol. Biol. 425:3970–77
    [Google Scholar]
  55. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD et al. 2004. Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104
    [Google Scholar]
  56. Hauser MD, Chomsky N, Fitch WT 2002. The faculty of language: What is it, who has it, and how did it evolve. Science 298:1569–79
    [Google Scholar]
  57. Heidari N, Phanstiel DH, He C, Grubert F, Jahanbani F et al. 2014. Genome-wide map of regulatory interactions in the human genome. Genome Res 24:1905–17
    [Google Scholar]
  58. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW et al. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39:311–18
    [Google Scholar]
  59. Heldstab SA, Kosonen ZK, Koski SE, Burkart JM, van Schaik CP, Isler K 2016. Manipulation complexity in primates coevolved with brain size and terrestriality. Sci. Rep. 6:24528
    [Google Scholar]
  60. Huang J, Perlis RH, Lee PH, Rush AJ, Fava M et al. 2010. Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. Am. J. Psychiatry 167:1254–63
    [Google Scholar]
  61. Huang N, Lee I, Marcotte EM, Hurles ME 2010. Characterising and predicting haploinsufficiency in the human genome. PLOS Genet 6:e1001154
    [Google Scholar]
  62. Hurst JA, Baraitser M, Auger E, Graham F, Norell S 1990. An extended family with a dominantly inherited speech disorder. Dev. Med. Child Neurol. 32:352–55
    [Google Scholar]
  63. Jayaraman D, Kodani A, Gonzalez DM, Mancias JD, Mochida GH et al. 2016. Microcephaly proteins Wdr62 and Aspm define a mother centriole complex regulating centriole biogenesis, apical complex, and cell fate. Neuron 92:813–28
    [Google Scholar]
  64. Jeong Y, Leskow FC, El-Jaick K, Roessler E, Muenke M et al. 2008. Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein. Nat. Genet. 40:1348–53
    [Google Scholar]
  65. Kamm GB, López-Leal R, Lorenzo JR, Franchini LF 2013a. A fast-evolving human NPAS3 enhancer gained reporter expression in the developing forebrain of transgenic mice. Philos. Trans. R. Soc. B 368:20130019
    [Google Scholar]
  66. Kamm GB, Pisciottano F, Kliger R, Franchini LF 2013b. The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome. Mol. Biol. Evol. 30:1088–102
    [Google Scholar]
  67. Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW 2003. Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J. Med. Genet. 40:325–32
    [Google Scholar]
  68. Keeney JG, Davis JM, Siegenthaler J, Post MD, Nielsen BS et al. 2015. DUF1220 protein domains drive proliferation in human neural stem cells and are associated with increased cortical volume in anthropoid primates. Brain Struct. Funct. 220:3053–60
    [Google Scholar]
  69. Keeney JG, Dumas L, Sikela JM 2014. The case for DUF1220 domain dosage as a primary contributor to anthropoid brain expansion. Front. Hum. Neurosci. 8:427
    [Google Scholar]
  70. Kelberman D, de Castro SC, Huang S, Crolla JA, Palmer R et al. 2008. SOX2 plays a critical role in the pituitary, forebrain, and eye during human embryonic development. J. Clin. Endocrinol. Metab. 93:1865–73
    [Google Scholar]
  71. King M, Wilson A 1975. Evolution at two levels in humans and chimpanzees. Science 188:107–16
    [Google Scholar]
  72. Kodani A, Yu TW, Johnson JR, Jayaraman D, Johnson TL et al. 2015. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. eLife 4:07519
    [Google Scholar]
  73. Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO et al. 2009. Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462:213–17
    [Google Scholar]
  74. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP 2001. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–23
    [Google Scholar]
  75. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  76. Lee TI, Young RA 2013. Transcriptional regulation and its misregulation in disease. Cell 152:1237–51
    [Google Scholar]
  77. Lek M, Karczewski K, Minikel E, Samocha K, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–91
    [Google Scholar]
  78. Lettice LA, Heaney SJH, Purdie LA, Li L, de Beer P et al. 2003. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12:1725–35
    [Google Scholar]
  79. Li G, Fullwood MJ, Xu H, Mulawadi FH, Velkov S et al. 2010. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol 11:R22
    [Google Scholar]
  80. Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M et al. 2012. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148:84–98
    [Google Scholar]
  81. Li G, Wang J, Rossiter SJ, Jones G, Zhang S 2007. Accelerated FoxP2 evolution in echolocating bats. PLOS ONE 2:e900
    [Google Scholar]
  82. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93
    [Google Scholar]
  83. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ et al. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478:476–82
    [Google Scholar]
  84. Makrythanasis P, Gimelli S, Bena F, Dahoun S, Morris MA et al. 2012. Homozygous deletion of a gene-free region of 4p15 in a child with multiple anomalies: Could biallelic loss of conserved, non-coding elements lead to a phenotype. Eur. J. Med. Genet. 55:63–66
    [Google Scholar]
  85. Maston GA, Evans SK, Green MR 2006. Transcriptional regulatory elements in the human genome. Annu. Rev. Genom. Hum. Genet. 7:29–59
    [Google Scholar]
  86. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E et al. 2012. Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–95
    [Google Scholar]
  87. McLean CY, Reno PL, Pollen AA, Bassan AI, Capellini TD et al. 2011. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471:216–19
    [Google Scholar]
  88. Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L et al. 2012. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30:271–77
    [Google Scholar]
  89. Meyer M, Kircher M, Gansauge MT, Li H, Racimo F et al. 2012. A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–26
    [Google Scholar]
  90. Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI 2011. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol. Biol. Evol. 28:625–38
    [Google Scholar]
  91. Montgomery SH, Mundy NI 2012. Evolution of ASPM is associated with both increases and decreases in brain size in primates. Evolution 66:927–32
    [Google Scholar]
  92. Montgomery SH, Mundy NI 2014. Microcephaly genes evolved adaptively throughout the evolution of eutherian mammals. BMC Evol. Biol. 14:120
    [Google Scholar]
  93. Muotri AR 2016. The human model: changing focus on autism research. Biol. Psychiatry 79:642–49
    [Google Scholar]
  94. Nair A, Howard R 2013. ENCODE and a new landscape for psychiatric genetics. Br. J. Psychiatry 203:84–85
    [Google Scholar]
  95. Newman TL, Tuzun E, Morrison VA, Hayden KE, Ventura M et al. 2005. A genome-wide survey of structural variation between human and chimpanzee. Genome Res 15:1344–56
    [Google Scholar]
  96. Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB et al. 2005. A scan for positively selected genes in the genomes of humans and chimpanzees. PLOS Biol 3:e170
    [Google Scholar]
  97. Nobrega MA, Ovcharenko I, Afzal V, Rubin EM 2003. Scanning human gene deserts for long-range enhancers. Science 302:413–14
    [Google Scholar]
  98. Noonan JP, Coop G, Kudaravalli S, Smith D, Krause J et al. 2006. Sequencing and analysis of Neanderthal genomic DNA. Science 314:1113–18
    [Google Scholar]
  99. Nuttle X, Giannuzzi G, Duyzend MH, Schraiber JG, Narvaiza I et al. 2016. Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility. Nature 536:205–9
    [Google Scholar]
  100. Ogbourne S, Antalis TM 1998. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem. J. 331:Pt. 11–14
    [Google Scholar]
  101. Oksenberg N, Ahituv N 2013. The role of AUTS2 in neurodevelopment and human evolution. Trends Genet 29:600–8
    [Google Scholar]
  102. Oksenberg N, Stevison L, Wall JD, Ahituv N 2013. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLOS Genet 9:e1003221
    [Google Scholar]
  103. Olson MV, Varki A 2003. Sequencing the chimpanzee genome: insights into human evolution and disease. Nat. Rev. Genet. 4:20–28
    [Google Scholar]
  104. Paulding CA, Ruvolo M, Haber DA 2003. The Tre2 (USP6) oncogene is a hominoid-specific gene. PNAS 100:2507–11
    [Google Scholar]
  105. Penn DC, Holyoak KJ, Povinelli DJ 2008. Darwin's mistake: explaining the discontinuity between human and nonhuman minds. Behav. Brain Sci. 31:109–30
    [Google Scholar]
  106. Pennacchio LA, Rubin EM 2001. Genomic strategies to identify mammalian regulatory sequences. Nat. Rev. Genet. 2:100–9
    [Google Scholar]
  107. Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L et al. 2004. G protein-coupled receptor-dependent development of human frontal cortex. Science 303:2033–36
    [Google Scholar]
  108. Pickard BS, Christoforou A, Thomson PA, Fawkes A, Evans KL et al. 2008. Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder. Mol. Psychiatry 14:874–84
    [Google Scholar]
  109. Pollard KS, Salama SR, King B, Kern AD, Dreszer T et al. 2006a. Forces shaping the fastest evolving regions in the human genome. PLOS Genet 2:e168
    [Google Scholar]
  110. Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S et al. 2006b. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443:167–72
    [Google Scholar]
  111. Popesco MC, Maclaren EJ, Hopkins J, Dumas L, Cox M et al. 2006. Human lineage-specific amplification, selection, and neuronal expression of DUF1220 domains. Science 313:1304–7
    [Google Scholar]
  112. Prabhakar S, Poulin F, Shoukry M, Afzal V, Rubin EM et al. 2006. Close sequence comparisons are sufficient to identify human cis-regulatory elements. Genome Res 16:855–63
    [Google Scholar]
  113. Prabhakar S, Visel A, Akiyama JA, Shoukry M, Lewis KD et al. 2008. Human-specific gain of function in a developmental enhancer. Science 321:1346–50
    [Google Scholar]
  114. Prescott SL, Srinivasan R, Marchetto MC, Grishina I, Narvaiza I et al. 2015. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 163:68–83
    [Google Scholar]
  115. Reader SM, Laland KN 2002. Social intelligence, innovation, and enhanced brain size in primates. PNAS 99:4436–41
    [Google Scholar]
  116. Reilly SK, Yin J, Ayoub AE, Emera D, Leng J et al. 2015. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347:1155–59
    [Google Scholar]
  117. Reno PL, McLean CY, Hines JE, Capellini TD, Bejerano G, Kingsley DM 2013. A penile spine/vibrissa enhancer sequence is missing in modern and extinct humans but is retained in multiple primates with penile spines and sensory vibrissae. PLOS ONE 8:e84258
    [Google Scholar]
  118. Rhesus Macaque Genome Seq. Anal. Consort. Gibbs RA, Rogers J, Katze MG, Bumgarner R et al. 2007. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222–34
    [Google Scholar]
  119. Roadmap Epigenomics Consort. Kundaje A, Meuleman W, Ernst J, Bilenky M et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature 518:317–30
    [Google Scholar]
  120. Roberts E, Hampshire DJ, Pattison L, Springell K, Jafri H et al. 2002. Autosomal recessive primary microcephaly: an analysis of locus heterogeneity and phenotypic variation. J. Med. Genet. 39:718–21
    [Google Scholar]
  121. Roessler E, Belloni E, Gaudenz K, Jay P, Berta P et al. 1996. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat. Genet. 14:357–60
    [Google Scholar]
  122. Rogers J, Gibbs RA 2014. Comparative primate genomics: emerging patterns of genome content and dynamics. Nat. Rev. Genet. 15:347–59
    [Google Scholar]
  123. Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P et al. 2006. Positive natural selection in the human lineage. Science 312:1614–20
    [Google Scholar]
  124. Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I et al. 2012. Insights into hominid evolution from the gorilla genome sequence. Nature 483:169–75
    [Google Scholar]
  125. Schreiweis C, Bornschein U, Burguiere E, Kerimoglu C, Schreiter S et al. 2014. Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. PNAS 111:14253–58
    [Google Scholar]
  126. Schwartz GG, Rosenblum LA 1981. Allometry of primate hair density and the evolution of human hairlessness. Am. J. Phys. Anthropol. 55:9–12
    [Google Scholar]
  127. Shibata Y, Sheffield NC, Fedrigo O, Babbitt CC, Wortham M et al. 2012. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection. PLOS Genet 8:e1002789
    [Google Scholar]
  128. Shu W, Cho JY, Jiang Y, Zhang M, Weisz D et al. 2005. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. PNAS 102:9643–48
    [Google Scholar]
  129. Siepel A, Arbiza L 2014. Cis-regulatory elements and human evolution. Curr. Opin. Genet. Dev. 29:81–89
    [Google Scholar]
  130. Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N 2016. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89:248–68
    [Google Scholar]
  131. Sockol MD, Raichlen DA, Pontzer H 2007. Chimpanzee locomotor energetics and the origin of human bipedalism. PNAS 104:12265–69
    [Google Scholar]
  132. Stenson PD, Mort M, Ball EV, Evans K, Hayden M et al. 2017. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 136:665–77
    [Google Scholar]
  133. Street SE, Navarrete AF, Reader SM, Laland KN 2017. Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. PNAS 114:7908–14
    [Google Scholar]
  134. Sudmant PH, Huddleston J, Catacchio CR, Malig M, Hillier LW et al. 2013. Evolution and diversity of copy number variation in the great ape lineage. Genome Res 23:1373–82
    [Google Scholar]
  135. Tomasello M, Rakoczy H 2003. What makes human cognition unique? From individual to shared to collective intentionality. Mind Lang 18:121–47
    [Google Scholar]
  136. Vallender EJ, Lahn BT 2004. Positive selection on the human genome. Hum. Mol. Genet. 13:Spec. No. 2R245–54
    [Google Scholar]
  137. Varki A, Altheide TK 2005. Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res 15:1746–58
    [Google Scholar]
  138. Vermunt MW, Tan SC, Castelijns B, Geeven G, Reinink P et al. 2016. Epigenomic annotation of gene regulatory alterations during evolution of the primate brain. Nat. Neurosci. 19:494–503
    [Google Scholar]
  139. Visel A, Prabhakar S, Akiyama JA, Shoukry M, Lewis KD et al. 2008. Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nat. Genet. 40:158–60
    [Google Scholar]
  140. Ward LD, Kellis M 2012. Interpreting noncoding genetic variation in complex traits and human disease. Nat. Biotechnol. 30:1095–106
    [Google Scholar]
  141. Wasserman WW, Sandelin A 2004. Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet. 5:276–87
    [Google Scholar]
  142. Watanabe H, Hattori M 2006. [Chimpanzee genome sequencing and comparative analysis with the human genome]. Tanpakushitsu Kakusan Koso 51:178–87
    [Google Scholar]
  143. Wittkopp PJ, Kalay G 2011. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13:59–69
    [Google Scholar]
  144. Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK et al. 2005. Highly conserved non-coding sequences are associated with vertebrate development. PLOS Biol 3:e7
    [Google Scholar]
  145. Wray GA 2007. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8:206–16
    [Google Scholar]
  146. Wright A, Scadeng M, Stec D, Dubowitz R, Ridgway S, Leger JS 2017. Neuroanatomy of the killer whale (Orcinusorca): a magnetic resonance imaging investigation of structure with insights on function and evolution. Brain Struct. Funct. 222:417–36
    [Google Scholar]
  147. Xu K, Schadt EE, Pollard KS, Roussos P, Dudley JT 2015. Genomic and network patterns of schizophrenia genetic variation in human evolutionary accelerated regions. Mol. Biol. Evol. 32:1148–60
    [Google Scholar]
  148. Zerbini LF, Wang Y, Czibere A, Correa RG, Cho J-Y et al. 2004. NF-κB-mediated repression of growth arrest- and DNA-damage-inducible proteins 45α and γ is essential for cancer cell survival. PNAS 101:13618–23
    [Google Scholar]
  149. Zhang JZ 2003. Evolution by gene duplication: an update. Trends Ecol. Evol. 18:292–98
    [Google Scholar]
  150. Zhang JZ, Webb DM, Podlaha O 2002. Accelerated protein evolution and origins of human-specific features: FOXP2 as an example. Genetics 162:1825–35
    [Google Scholar]
  151. Zhang X, Goodsell J, Norgren RB Jr 2012. Limitations of the rhesus macaque draft genome assembly and annotation. BMC Genom 13:206
    [Google Scholar]
  152. Zhang X, Sun H, Danila DC, Johnson SR, Zhou Y et al. 2002. Loss of expression of GADD45γ, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J. Clin. Endocrinol. Metab. 87:1262–67
    [Google Scholar]
  153. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M et al. 2013. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152:642–54
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-062104
Loading
/content/journals/10.1146/annurev-neuro-080317-062104
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error