1932

Abstract

The brain contains a relatively simple circuit for forming Pavlovian associations, yet it achieves many operations common across memory systems. Recent advances have established a clear framework for learning and revealed the following key operations: ) pattern separation, whereby dense combinatorial representations of odors are preprocessed to generate highly specific, nonoverlapping odor patterns used for learning; ) convergence, in which sensory information is funneled to a small set of output neurons that guide behavioral actions; ) plasticity, where changing the mapping of sensory input to behavioral output requires a strong reinforcement signal, which is also modulated by internal state and environmental context; and ) modularization, in which a memory consists of multiple parallel traces, which are distinct in stability and flexibility and exist in anatomically well-defined modules within the network. Cross-module interactions allow for higher-order effects where past experience influences future learning. Many of these operations have parallels with processes of memory formation and action selection in more complex brains.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-0621333
2020-07-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/43/1/annurev-neuro-080317-0621333.html?itemId=/content/journals/10.1146/annurev-neuro-080317-0621333&mimeType=html&fmt=ahah

Literature Cited

  1. Albus JS. 1971. A theory of cerebellar function. Math. Biosci. 10:1–225–61
    [Google Scholar]
  2. Alexander GE, DeLong MR, Strick PL 1986. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9:357–81
    [Google Scholar]
  3. Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA et al. 2014a. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3:e04577
    [Google Scholar]
  4. Aso Y, Herb A, Ogueta M, Siwanowicz I, Templier T et al. 2012. Three dopamine pathways induce aversive odor memories with different stability. PLOS Genet 8:7e1002768
    [Google Scholar]
  5. Aso Y, Ray RP, Long X, Bushey D, Cichewicz K et al. 2019. Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. eLife 8:e49257
    [Google Scholar]
  6. Aso Y, Rubin GM. 2016. Dopaminergic neurons write and update memories with cell-type-specific rules. eLife 5:e16135
    [Google Scholar]
  7. Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K et al. 2014b. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. . eLife 4:e04580
    [Google Scholar]
  8. Aso Y, Siwanowicz I, Bräcker L, Ito K, Kitamoto T, Tanimoto H 2010. Specific dopaminergic neurons for the formation of labile aversive memory. Curr. Biol. 20:161445–51
    [Google Scholar]
  9. Badura A, De Zeeuw CI 2017. Cerebellar granule cells: dense, rich and evolving representations. Curr. Biol. 27:11R415–18
    [Google Scholar]
  10. Bar-Gad I, Bergman H. 2001. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr. Opin. Neurobiol. 11:6689–95
    [Google Scholar]
  11. Berke JD. 2018. What does dopamine mean?. Nat. Neurosci. 21:6787–93
    [Google Scholar]
  12. Berry JA, Cervantes-Sandoval I, Chakraborty M, Davis RL 2015. Sleep facilitates memory by blocking dopamine neuron-mediated forgetting. Cell 161:71656–67
    [Google Scholar]
  13. Berry JA, Cervantes-Sandoval I, Nicholas EP, Davis RL 2012. Dopamine is required for learning and forgetting in Drosophila. . Neuron 74:3530–42
    [Google Scholar]
  14. Berry JA, Phan A, Davis RL 2018. Dopamine neurons mediate learning and forgetting through bidirectional modulation of a memory trace. Cell Rep 25:3651–55
    [Google Scholar]
  15. Boto T, Louis T, Jindachomthong K, Jalink K, Tomchik SM 2014. Dopaminergic modulation of cAMP drives nonlinear plasticity across the Drosophila mushroom body lobes. Curr. Biol. 24:8822–31
    [Google Scholar]
  16. Boto T, Stahl A, Zhang X, Louis T, Tomchik SM 2019. Independent contributions of discrete dopaminergic circuits to cellular plasticity, memory strength, and valence in Drosophila. . Cell Rep 27:72014–21.e2
    [Google Scholar]
  17. Bouzaiane E, Trannoy S, Scheunemann L, Plaçais P-Y, Preat T 2015. Two independent mushroom body output circuits retrieve the six discrete components of Drosophila aversive memory. Cell Rep 11:81280–92
    [Google Scholar]
  18. Burke CJ, Waddell S. 2011. Remembering nutrient quality of sugar in Drosophila. Curr. Biol 21:9746–50
    [Google Scholar]
  19. Campbell RAA, Honegger KS, Qin H, Li W, Demir E, Turner GC 2013. Imaging a population code for odor identity in the Drosophila mushroom body. J. Neurosci. 33:2510568–81
    [Google Scholar]
  20. Carey MR, Regehr WG. 2009. Noradrenergic control of associative synaptic plasticity by selective modulation of instructive signals. Neuron 62:1112–22
    [Google Scholar]
  21. Caron SJC, Ruta V, Abbott LF, Axel R 2013. Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497:7447113–17
    [Google Scholar]
  22. Cayco-Gajic NA, Silver RA. 2019. Re-evaluating circuit mechanisms underlying pattern separation. Neuron 101:4584–602
    [Google Scholar]
  23. Cervantes-Sandoval I, Chakraborty M, MacMullen C, Davis RL 2016. Scribble scaffolds a signalosome for active forgetting. Neuron 90:61230–42
    [Google Scholar]
  24. Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H et al. 2009. Writing memories with light-addressable reinforcement circuitry. Cell 139:2405–15
    [Google Scholar]
  25. Cognigni P, Felsenberg J, Waddell S 2018. Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila. Curr. Opin. Neurobiol 49:51–58
    [Google Scholar]
  26. Cohn R, Morantte I, Ruta V 2015. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. . Cell 163:71742–55
    [Google Scholar]
  27. Crocker A, Guan X-J, Murphy CT, Murthy M 2016. Cell-type-specific transcriptome analysis in the Drosophila mushroom body reveals memory-related changes in gene expression. Cell Rep 15:71580–96
    [Google Scholar]
  28. Croset V, Treiber CD, Waddell S 2018. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife 7:e34550
    [Google Scholar]
  29. Dag U, Lei Z, Le JQ, Wong A, Bushey D, Keleman K 2019. Neuronal reactivation during post-learning sleep consolidates long-term memory in Drosophila. . eLife 8:e42786
    [Google Scholar]
  30. Das G, Klappenbach M, Vrontou E, Perisse E, Clark CM et al. 2014. Drosophila learn opposing components of a compound food stimulus. Curr. Biol. 24:151723–30
    [Google Scholar]
  31. Dasgupta S, Sheehan TC, Stevens CF, Navlakha S 2018. A neural data structure for novelty detection. PNAS 115:5113093–98
    [Google Scholar]
  32. Davis RL. 2005. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu. Rev. Neurosci. 28:275–302
    [Google Scholar]
  33. Davis RL, Zhong Y. 2017. The biology of forgetting—a perspective. Neuron 95:3490–503
    [Google Scholar]
  34. Dolan M-J, Frechter S, Bates AS, Dan C, Huoviala P et al. 2019. Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body. eLife 8:e43079
    [Google Scholar]
  35. Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I et al. 2017. The complete connectome of a learning and memory centre in an insect brain. Nature 548:7666175–82
    [Google Scholar]
  36. Felsenberg J, Barnstedt O, Cognigni P, Lin S, Waddell S 2017. Re-evaluation of learned information in Drosophila. . Nature 544:7649240–44
    [Google Scholar]
  37. Felsenberg J, Jacob PF, Walker T, Barnstedt O, Edmondson-Stait AJ et al. 2018. Integration of parallel opposing memories underlies memory extinction. Cell 175:3709–15
    [Google Scholar]
  38. Fujita M, Tanimura T. 2011. Drosophila evaluates and learns the nutritional value of sugars. Curr. Biol. 21:9751–55
    [Google Scholar]
  39. Gerber B, Yarali A, Diegelmann S, Wotjak CT, Pauli P, Fendt M 2014. Pain-relief learning in flies, rats, and man: basic research and applied perspectives. Learn. Mem. 21:4232–52
    [Google Scholar]
  40. Gervasi N, Tchénio P, Preat T 2010. PKA dynamics in a Drosophila learning center: coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase. Neuron 65:4516–29
    [Google Scholar]
  41. Groschner LN, Chan Wah Hak L, Bogacz R, DasGupta S, Miesenböck G 2018. Dendritic integration of sensory evidence in perceptual decision-making. Cell 173:4894–905.e13
    [Google Scholar]
  42. Gruntman E, Turner GC. 2013. Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nat. Neurosci. 16:121821–29
    [Google Scholar]
  43. Grunwald Kadow IC. 2019. State-dependent plasticity of innate behavior in fruit flies. Curr. Opin. Neurobiol. 54:60–65
    [Google Scholar]
  44. Hallem E, Carlson J. 2006. Coding of odors by a receptor repertoire. Cell 125:1143–60
    [Google Scholar]
  45. Handler A, Graham TGW, Cohn R, Morantte I, Siliciano AF et al. 2019. Distinct dopamine receptor pathways underlie the temporal sensitivity of associative learning. Cell 178:160–75.e19
    [Google Scholar]
  46. Hattori D, Aso Y, Swartz KJ, Rubin GM, Abbott LF, Axel R 2017. Representations of novelty and familiarity in a mushroom body compartment. Cell 169:5956–69.e17
    [Google Scholar]
  47. Hedges SB, Marin J, Suleski M, Paymer M, Kumar S 2015. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32:4835–45
    [Google Scholar]
  48. Heisenberg M. 2003. Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4:4266–75
    [Google Scholar]
  49. Hige T, Aso Y, Modi MN, Rubin GM, Turner GC 2015a. Heterosynaptic plasticity underlies aversive olfactory learning in Drosophila. . Neuron 88:5985–98
    [Google Scholar]
  50. Hige T, Aso Y, Rubin GM, Turner GC 2015b. Plasticity-driven individualization of olfactory coding in mushroom body output neurons. Nature 526:7572258–62
    [Google Scholar]
  51. Himmelreich S, Masuho I, Berry JA, MacMullen C, Skamangas NK et al. 2017. Dopamine receptor DAMB signals via Gq to mediate forgetting in Drosophila. . Cell Rep 21:82074–81
    [Google Scholar]
  52. Honegger KS, Campbell RAA, Turner GC 2011. Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J. Neurosci. 31:3311772–85
    [Google Scholar]
  53. Huetteroth W, Perisse E, Lin S, Klappenbach M, Burke C, Waddell S 2015. Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Curr. Biol 25:6751–58
    [Google Scholar]
  54. Ichinose T, Aso Y, Yamagata N, Abe A, Rubin GM, Tanimoto H 2015. Reward signal in a recurrent circuit drives appetitive long-term memory formation. eLife 4:e10719
    [Google Scholar]
  55. Inada K, Tsuchimoto Y, Kazama H 2017. Origins of cell-type-specific olfactory processing in the Drosophila mushroom body circuit. Neuron 95:2357–67.e4
    [Google Scholar]
  56. Ito M. 2013. Error detection and representation in the olivo-cerebellar system. Front. Neural Circuits 7:1
    [Google Scholar]
  57. Jiang L, Litwin-Kumar A. 2019. Models of heterogeneous dopamine signaling in an insect learning and memory center. bioRxiv 737064. https://doi.org/10.1101/737064
    [Crossref]
  58. Joel D, Niv Y, Ruppin E 2002. Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 15:4–6535–47
    [Google Scholar]
  59. Kaun KR, Azanchi R, Maung Z, Hirsh J, Heberlein U 2011. A Drosophila model for alcohol reward. Nat. Neurosci. 14:5612–19
    [Google Scholar]
  60. Keleman K, Vrontou E, Krüttner S, Yu JY, Kurtovic-Kozaric A, Dickson BJ 2012. Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature 489:7414145–49
    [Google Scholar]
  61. Kim Y-C, Lee H-G, Han K-A 2007. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J. . Neurosci 27:297640–47
    [Google Scholar]
  62. Klaus A, Alves da Silva J, Costa RM 2019. What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci. 42:459–83
    [Google Scholar]
  63. Kostadinov D, Beau M, Pozo MB, Häusser M 2019. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat. Neurosci. 22:6950–62
    [Google Scholar]
  64. Krashes MJ, DasGupta S, Vreede A, White B, Armstrong JD, Waddell S 2009. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. . Cell 139:2416–27
    [Google Scholar]
  65. Krüttner S, Traunmüller L, Dag U, Jandrasits K, Stepien B et al. 2015. Synaptic Orb2A bridges memory acquisition and late memory consolidation in Drosophila. . Cell Rep 11:121953–65
    [Google Scholar]
  66. Lawrenson CL, Watson TC, Apps R 2016. Transmission of predictable sensory signals to the cerebellum via climbing fiber pathways is gated during exploratory behavior. J. Neurosci. 36:307841–51
    [Google Scholar]
  67. Lee J. 2008. Memory reconsolidation mediates the strengthening of memories by additional learning. Nat. Neurosci. 11:1264–66
    [Google Scholar]
  68. Lewis LPC, Siju KP, Aso Y, Friedrich AB, Bulteel AJB et al. 2015. A higher brain circuit for immediate integration of conflicting sensory information in Drosophila. Curr. . Biol 25:172203–14
    [Google Scholar]
  69. Li H, Li Y, Lei Z, Wang K, Guo A 2013. Transformation of odor selectivity from projection neurons to single mushroom body neurons mapped with dual-color calcium imaging. PNAS 110:2912084–89
    [Google Scholar]
  70. Lin AC, Bygrave AM, de Calignon A, Lee T, Miesenböck G 2014a. Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat. Neurosci. 17:4559–68
    [Google Scholar]
  71. Lin S, Owald D, Chandra V, Talbot C, Huetteroth W, Waddell S 2014b. Neural correlates of water reward in thirsty Drosophila. Nat. . Neurosci 17:111536–42
    [Google Scholar]
  72. Litwin-Kumar A, Harris KD, Axel R, Sompolinsky H, Abbott LF 2017. Optimal degrees of synaptic connectivity. Neuron 93:51153–57
    [Google Scholar]
  73. Liu C, Plaçais P-Y, Yamagata N, Pfeiffer BD, Aso Y et al. 2012. A subset of dopamine neurons signals reward for odour memory in Drosophila. . Nature 488:7412512–16
    [Google Scholar]
  74. Liu WW, Wilson RI. 2013. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. PNAS 110:10294–99
    [Google Scholar]
  75. Liu X, Davis RL. 2009. The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning. Nat. Neurosci. 12:153–59
    [Google Scholar]
  76. Mao Z, Davis RL. 2009. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front. Neural Circuits 3:5
    [Google Scholar]
  77. Margulies C, Tully T, Dubnau J 2005. Deconstructing memory in Drosophila. Curr. Biol 15:17R700–13
    [Google Scholar]
  78. Marr D. 1969. A theory of cerebellar cortex. J. Physiol. 202:2437–70
    [Google Scholar]
  79. Owald D, Felsenberg J, Talbot CB, Das G, Perisse E et al. 2015. Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. . Neuron 86:2417–27
    [Google Scholar]
  80. Papadopoulou M, Cassenaer S, Nowotny T, Laurent G 2011. Normalization for sparse encoding of odors by a wide-field interneuron. Science 332:6030721–25
    [Google Scholar]
  81. Perisse E, Owald D, Barnstedt O, Talbot CB, Huetteroth W, Waddell S 2016. Aversive learning and appetitive motivation toggle feed-forward inhibition in the Drosophila mushroom body. Neuron 90:51086–99
    [Google Scholar]
  82. Plaçais P-Y, Trannoy S, Friedrich AB, Tanimoto H, Preat T 2013. Two pairs of mushroom body efferent neurons are required for appetitive long-term memory retrieval in Drosophila. . Cell Rep 5:3769–80
    [Google Scholar]
  83. Plaçais P-Y, Trannoy S, Isabel G, Aso Y, Siwanowicz I et al. 2012. Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila. Nat. Neurosci 15:4592–99
    [Google Scholar]
  84. Qin H, Cressy M, Li W, Coravos JS, Izzi SA, Dubnau J 2012. Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila. Curr. Biol 22:7608–14
    [Google Scholar]
  85. Raymond JL, Medina JF. 2018. Computational principles of supervised learning in the cerebellum. Annu. Rev. Neurosci. 41:233–53
    [Google Scholar]
  86. Riemensperger T, Völler T, Stock P, Buchner E, Fiala A 2005. Punishment prediction by dopaminergic neurons in Drosophila. Curr. Biol 15:211953–60
    [Google Scholar]
  87. Scheunemann L, Plaçais P-Y, Dromard Y, Schwärzel M, Preat T 2018. Dunce phosphodiesterase acts as a checkpoint for Drosophila long-term memory in a pair of serotonergic neurons. Neuron 98:2350–55
    [Google Scholar]
  88. Schroll C, Riemensperger T, Bucher D, Ehmer J, Völler T et al. 2006. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16:171741–47
    [Google Scholar]
  89. Séjourné J, Plaçais P-Y, Aso Y, Siwanowicz I, Trannoy S et al. 2011. Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila. Nat. . Neurosci 14:7903–10
    [Google Scholar]
  90. Shuai Y, Hirokawa A, Ai Y, Zhang M, Li W, Zhong Y 2015. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory. PNAS 112:48E6663–72
    [Google Scholar]
  91. Stevens CF. 2015. What the fly's nose tells the fly's brain. PNAS 112:309460–65
    [Google Scholar]
  92. Strausfeld NJ, Sinakevitch I, Vilinsky I 2003. The mushroom bodies of Drosophila melanogaster: an immunocytological and golgi study of Kenyon cell organization in the calyces and lobes. Microsc. Res. Tech. 62:2151–69
    [Google Scholar]
  93. Suh GSB, Wong AM, Hergarden AC, Wang JW, Simon AF et al. 2004. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. . Nature 431:854–59
    [Google Scholar]
  94. Takemura S-Y, Aso Y, Hige T, Wong A, Lu Z et al. 2017. A connectome of a learning and memory center in the adult Drosophila brain. eLife 6:e26975
    [Google Scholar]
  95. Tanaka NK, Tanimoto H, Ito K 2008. Neuronal assemblies of the Drosophila mushroom body. J. Comp. Neurol. 508:5711–55
    [Google Scholar]
  96. Tanimoto H, Heisenberg M, Gerber B 2004. Experimental psychology: Event timing turns punishment to reward. Nature 430:7003983–83
    [Google Scholar]
  97. Tomchik SM, Davis RL. 2009. Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway. Neuron 64:4510–21
    [Google Scholar]
  98. Trannoy S, Redt-Clouet C, Dura J-M, Preat T 2011. Parallel processing of appetitive short- and long-term memories in Drosophila. Curr. Biol 21:191647–53
    [Google Scholar]
  99. Tsao C-H, Chen C-C, Lin C-H, Yang H-Y, Lin S 2018. Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior. eLife 7:e35264
    [Google Scholar]
  100. Tully T, Préat T, Boynton SC, Del Vecchio M 1994. Genetic dissection of consolidated memory in Drosophila. . Cell 79:135–47
    [Google Scholar]
  101. Tully T, Quinn WG. 1985. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol 157:2263–77
    [Google Scholar]
  102. Turner GC, Bazhenov M, Laurent G 2008. Olfactory representations by Drosophila mushroom body neurons. J. Neurophysiol. 99:2734–46
    [Google Scholar]
  103. van Swinderen B. 2007. Attention-like processes in Drosophila require short-term memory genes. Science 315:58181590–93
    [Google Scholar]
  104. Wilson RI. 2013. Early olfactory processing in Drosophila: mechanisms and principles. Annu. Rev. Neurosci. 36:217–41
    [Google Scholar]
  105. Wilson RI, Turner GC, Laurent G 2004. Transformation of olfactory representations in the Drosophila antennal lobe. Science 303:5656366–70
    [Google Scholar]
  106. Yamagata N, Hiroi M, Kondo S, Abe A, Tanimoto H 2016. Suppression of dopamine neurons mediates reward. PLOS Biol 14:12e1002586–16
    [Google Scholar]
  107. Yamagata N, Ichinose T, Aso Y, Plaçais P-Y, Friedrich AB et al. 2015. Distinct dopamine neurons mediate reward signals for short- and long-term memories. PNAS 112:2578–83
    [Google Scholar]
  108. Zhang K, Guo JZ, Peng Y, Xi W, Guo A 2007. Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. . Science 316:58331901–4
    [Google Scholar]
  109. Zhao X, Lenek D, Dag U, Dickson BJ, Keleman K 2018. Persistent activity in a recurrent circuit underlies courtship memory in Drosophila. . eLife 7:e31425
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-0621333
Loading
/content/journals/10.1146/annurev-neuro-080317-0621333
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error