1932

Abstract

In 2015, public awareness of Zika virus (ZIKV) rose in response to alarming statistics of infants with microcephaly being born to women who were infected with the virus during pregnancy, triggering global concern over these potentially devastating consequences. Although we have discovered a great deal about the genome and pathogenesis of this reemergent flavivirus since this recent outbreak, we still have much more to learn, including the nature of the virus-host interactions and mechanisms that determine its tropism and pathogenicity in the nervous system, which are in turn shaped by the continual evolution of the virus. Inevitably, we will find out more about the potential long-term effects of ZIKV exposure on the nervous system from ongoing longitudinal studies. Integrating clinical and epidemiological data with a wider range of animal and human cell culture models will be critical to understanding the pathogenetic mechanisms and developing more specific antiviral compounds and vaccines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-062231
2019-07-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-080317-062231.html?itemId=/content/journals/10.1146/annurev-neuro-080317-062231&mimeType=html&fmt=ahah

Literature Cited

  1. Abbink P, Stephenson KE, Barouch DH 2018. Zika virus vaccines. Nat. Rev. Microbiol. 16:594–600
    [Google Scholar]
  2. Acosta-Ampudia Y, Monsalve DM, Castillo-Medina LF, Rodriguez Y, Pacheco Y et al. 2018. Autoimmune neurological conditions associated with Zika virus infection. Front. Mol. Neurosci. 11:116
    [Google Scholar]
  3. Adams Waldorf KM, Olson EM, Nelson BR, Little ME, Rajagopal L 2018. The aftermath of Zika: need for long-term monitoring of exposed children. Trends Microbiol 26:729–32
    [Google Scholar]
  4. Agrawal R, Oo HH, Balne PK, Ng L, Tong L, Leo YS 2018. Zika virus and the eye. Ocul. Immunol. Inflamm. 26:654–59
    [Google Scholar]
  5. Aliota MT, Caine EA, Walker EC, Larkin KE, Camacho E, Osorio JE 2016. Characterization of lethal Zika virus infection in AG129 mice. PLOS Negl. Trop. Dis. 10:e0004682
    [Google Scholar]
  6. Amorim R, Temzi A, Griffin BD, Mouland AJ 2017. Zika virus inhibits eIF2α-dependent stress granule assembly. PLOS Negl. Trop. Dis. 11:e0005775
    [Google Scholar]
  7. Beaver JT, Lelutiu N, Habib R, Skountzou I 2018. Evolution of two major Zika virus lineages: implications for pathology, immune response, and vaccine development. Front. Immunol. 9:1640
    [Google Scholar]
  8. Bido-Medina R, Wirsich J, Rodriguez M, Oviedo J, Miches I et al. 2018. Impact of Zika virus on adult human brain structure and functional organization. Ann. Clin. Transl. Neurol. 5:752–62
    [Google Scholar]
  9. Caires-Junior LC, Goulart E, Melo US, Araujo BHS, Alvizi L et al. 2018. Discordant congenital Zika syndrome twins show differential in vitro viral susceptibility of neural progenitor cells. Nat. Commun. 9:475
    [Google Scholar]
  10. Cao B, Parnell LA, Diamond MS, Mysorekar IU 2017. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J. Exp. Med. 214:2303–13
    [Google Scholar]
  11. Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C et al. 2016. Guillain-Barre syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387:1531–39
    [Google Scholar]
  12. Chavali PL, Stojic L, Meredith LW, Joseph N, Nahorski MS et al. 2017. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science 357:83–88
    [Google Scholar]
  13. Chen J, Yang YF, Yang Y, Zou P, Chen J et al. 2018. AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling. Nat. Microbiol. 3:302–9
    [Google Scholar]
  14. Chimelli L, Melo ASO, Avvad-Portari E, Wiley CA, Camacho AHS et al. 2017. The spectrum of neuropathological changes associated with congenital Zika virus infection. Acta Neuropathol 133:983–99
    [Google Scholar]
  15. Chiramel AI, Best SM. 2017. Role of autophagy in Zika virus infection and pathogenesis. Virus Res 254:34–40
    [Google Scholar]
  16. Chiu CY, Sanchez-San Martin C, Bouquet J, Li T, Yagi S et al. 2017. Experimental Zika virus inoculation in a new world monkey model reproduces key features of the human infection. Sci. Rep. 7:17126
    [Google Scholar]
  17. Cumberworth SL, Barrie JA, Cunningham ME, Gomes de Figueiredo DP, Schultz V et al. 2017. Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected. Acta Neuropathol. Commun. 5:50
    [Google Scholar]
  18. D'Ortenzio E, Matheron S, Yazdanpanah Y, de Lamballerie X, Hubert B et al. 2016. Evidence of sexual transmission of Zika virus. N. Engl. J. Med. 374:2195–98
    [Google Scholar]
  19. Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS et al. 2016. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19:258–65
    [Google Scholar]
  20. Darbellay J, Cox B, Lai K, Delgado-Ortega M, Wheler C et al. 2017. Zika virus causes persistent infection in porcine conceptuses and may impair health in offspring. EBioMedicine 25:73–86
    [Google Scholar]
  21. de Oliveira WK, de Franca GVA, Carmo EH, Duncan BB, de Souza Kuchenbecker R, Schmidt MI 2017. Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis. Lancet 390:861–70
    [Google Scholar]
  22. de Paula Freitas B, Ventura CV, Maia M, Belfort R Jr. 2017. Zika virus and the eye. Curr. Opin. Ophthalmol. 28:595–99
    [Google Scholar]
  23. Dick GW, Kitchen SF, Haddow AJ 1952. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46:509–20
    [Google Scholar]
  24. Dowall SD, Graham VA, Rayner E, Atkinson B, Hall G et al. 2016. A susceptible mouse model for Zika virus infection. PLOS Negl. Trop. Dis. 10:e0004658
    [Google Scholar]
  25. Driggers RW, Ho CY, Korhonen EM, Kuivanen S, Jaaskelainen AJ et al. 2016. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 374:2142–51
    [Google Scholar]
  26. Du H, Zhao Y, He J, Zhang Y, Xi H et al. 2016. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 7:12626
    [Google Scholar]
  27. Elgner F, Sabino C, Basic M, Ploen D, Grunweller A, Hildt E 2018. Inhibition of Zika virus replication by silvestrol. Viruses 10:149
    [Google Scholar]
  28. Emanuel J, Callison J, Dowd KA, Pierson TC, Feldmann H, Marzi A 2018. A VSV-based Zika virus vaccine protects mice from lethal challenge. Sci. Rep. 8:11043
    [Google Scholar]
  29. Fernandez MP, Parra Saad E, Ospina Martinez M, Corchuelo S, Mercado Reyes M et al. 2017. Ocular histopathologic features of congenital Zika syndrome. JAMA Ophthalmol 135:1163–69
    [Google Scholar]
  30. Ferreira AC, Zaverucha-do-Valle C, Reis PA, Barbosa-Lima G, Vieira YR et al. 2017. Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae. Sci. Rep. 7:9409
    [Google Scholar]
  31. Fleming AM, Ding Y, Alenko A, Burrows CJ 2016. Zika virus genomic RNA possesses conserved G-quadruplexes characteristic of the Flaviviridae family. ACS Infect. Dis. 2:674–81
    [Google Scholar]
  32. Gabriel E, Ramani A, Karow U, Gottardo M, Natarajan K et al. 2017. Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell 20:397–406.e5
    [Google Scholar]
  33. Garcez PP, Nascimento JM, de Vasconcelos JM, Madeiro da Costa R, Delvecchio R et al. 2017. Zika virus disrupts molecular fingerprinting of human neurospheres. Sci. Rep. 7:40780
    [Google Scholar]
  34. Garcez PP, Stolp HB, Sravanam S, Christoff RR, Ferreira J et al. 2018. Zika virus impairs the development of blood vessels in a mouse model of congenital infection. Sci. Rep. 8:12774
    [Google Scholar]
  35. Garcia-Blanco MA, Vasudevan SG, Bradrick SS, Nicchitta C 2016. Flavivirus RNA transactions from viral entry to genome replication. Antiviral Res 134:244–49
    [Google Scholar]
  36. Ghouzzi VE, Bianchi FT, Molineris I, Mounce BC, Berto GE et al. 2017. ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53. Cell Death Dis 8:e2567
    [Google Scholar]
  37. Gladwyn-Ng I, Cordon-Barris L, Alfano C, Creppe C, Couderc T et al. 2018. Stress-induced unfolded protein response contributes to Zika virus-associated microcephaly. Nat. Neurosci. 21:63–71
    [Google Scholar]
  38. Goertz GP, Abbo SR, Fros JJ, Pijlman GP 2017. Functional RNA during Zika virus infection. Virus Res 254:41–53
    [Google Scholar]
  39. Goodfellow FT, Tesla B, Simchick G, Zhao Q, Hodge T et al. 2016. Zika virus induced mortality and microcephaly in chicken embryos. Stem Cells Dev 25:1691–97
    [Google Scholar]
  40. Gopinath S, Kim MV, Rakib T, Wong PW, van Zandt M et al. 2018. Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nat. Microbiol. 3:611–21
    [Google Scholar]
  41. Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger-Lucarelli J et al. 2018. An immunocompetent mouse model of Zika virus infection. Cell Host Microbe 23:672–85.e6
    [Google Scholar]
  42. Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L et al. 2016. Zika virus targets human STAT2 to inhibit Type I interferon signaling. Cell Host Microbe 19:882–90
    [Google Scholar]
  43. Gurung S, Preno AN, Dubaut JP, Nadeau H, Hyatt K et al. 2018. Translational model of Zika virus disease in baboons. J. Virol. 92:e00186-18
    [Google Scholar]
  44. Hirsch AJ, Roberts VHJ, Grigsby PL, Haese N, Schabel MC et al. 2018. Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology. Nat. Commun. 9:263
    [Google Scholar]
  45. Ho CY, Ames HM, Tipton A, Vezina G, Liu JS et al. 2017. Differential neuronal susceptibility and apoptosis in congenital Zika virus infection. Ann. Neurol. 82:121–27
    [Google Scholar]
  46. Hou S, Kumar A, Xu Z, Airo AM, Stryapunina I et al. 2017. Zika virus hijacks stress granule proteins and modulates the host stress response. J. Virol. 91:e00474–17
    [Google Scholar]
  47. Hou W, Cruz-Cosme R, Armstrong N, Obwolo LA, Wen F et al. 2017. Molecular cloning and characterization of the genes encoding the proteins of Zika virus. Gene 628:117–28
    [Google Scholar]
  48. Kaarj K, Akarapipad P, Yoon JY 2018. Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Sci. Rep. 8:12438
    [Google Scholar]
  49. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S et al. 2013. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex. PNAS 110:20284–89
    [Google Scholar]
  50. Kleber de Oliveira W, Cortez-Escalante J, De Oliveira WT, do Carmo GM, Henriques CM et al. 2016. Increase in reported prevalence of microcephaly in infants born to women living in areas with confirmed Zika virus transmission during the first trimester of pregnancy—Brazil, 2015. Morb. Mortal. Wkly. Rep. 65:242–47
    [Google Scholar]
  51. Kostyuchenko VA, Lim EX, Zhang S, Fibriansah G, Ng TS et al. 2016. Structure of the thermally stable Zika virus. Nature 533:425–28
    [Google Scholar]
  52. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS et al. 2013. Cerebral organoids model human brain development and microcephaly. Nature 501:373–79
    [Google Scholar]
  53. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ et al. 2008. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 14:1232–39
    [Google Scholar]
  54. Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E et al. 2016. A mouse model of Zika virus pathogenesis. Cell Host Microbe 19:720–30
    [Google Scholar]
  55. Li A, Yu J, Lu M, Ma Y, Attia Z et al. 2018. A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nat. Commun. 9:3067
    [Google Scholar]
  56. Li C, Xu D, Ye Q, Hong S, Jiang Y et al. 2016. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19:120–26
    [Google Scholar]
  57. Li S, Armstrong N, Zhao H, Hou W, Liu J et al. 2018. Zika virus fatally infects wild type neonatal mice and replicates in central nervous system. Viruses 10:49
    [Google Scholar]
  58. Li Z, Brecher M, Deng YQ, Zhang J, Sakamuru S et al. 2017. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res 27:1046–64
    [Google Scholar]
  59. Liang Q, Luo Z, Zeng J, Chen W, Foo SS et al. 2016. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19:663–71
    [Google Scholar]
  60. Lichinchi G, Zhao BS, Wu Y, Lu Z, Qin Y et al. 2016. Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20:666–73
    [Google Scholar]
  61. Lum FM, Low DK, Fan Y, Tan JJ, Lee B et al. 2017. Zika virus infects human fetal brain microglia and induces inflammation. Clin. Infect. Dis. 64:914–20
    [Google Scholar]
  62. Marchette NJ, Garcia R, Rudnick A 1969. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am. J. Trop. Med. Hyg. 18:411–15
    [Google Scholar]
  63. Martinez ARM, Costa MCM, Novaes MAC, Lima HC, Nucci A, Franca MC Jr 2017. A novel phenotype of ZIKV-related neurological disease: sensory neuronopathy. Muscle Nerve 57:E100–1
    [Google Scholar]
  64. Martinot AJ, Abbink P, Afacan O, Prohl AK, Bronson R et al. 2018. Fetal neuropathology in Zika virus–infected pregnant female rhesus monkeys. Cell 173:1111–22.e10
    [Google Scholar]
  65. Mavigner M, Raper J, Kovacs-Balint Z, Gumber S, O'Neal JT et al. 2018. Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Sci. Transl. Med. 10:eaao6975
    [Google Scholar]
  66. McFadden MJ, Mitchell-Dick A, Vazquez C, Roder AE, Labagnara KF et al. 2018. A fluorescent cell-based system for imaging Zika virus infection in real-time. Viruses 10:95
    [Google Scholar]
  67. McGrath EL, Rossi SL, Gao J, Widen SG, Grant AC et al. 2017. Differential responses of human fetal brain neural stem cells to Zika virus infection. Stem Cell Rep 8:715–27
    [Google Scholar]
  68. Mesci P, Macia A, LaRock CN, Tejwani L, Fernandes IR et al. 2018a. Modeling neuro-immune interactions during Zika virus infection. Hum. Mol. Genet. 27:41–52
    [Google Scholar]
  69. Mesci P, Macia A, Moore SM, Shiryaev SA, Pinto A et al. 2018b. Blocking Zika virus vertical transmission. Sci. Rep. 8:1218
    [Google Scholar]
  70. Metsky HC, Matranga CB, Wohl S, Schaffner SF, Freije CA et al. 2017. Zika virus evolution and spread in the Americas. Nature 546:411–15
    [Google Scholar]
  71. Miner JJ, Sene A, Richner JM, Smith AM, Santeford A et al. 2016. Zika virus infection in mice causes panuveitis with shedding of virus in tears. Cell Rep 16:3208–18
    [Google Scholar]
  72. Mitchell PK, Mier-y-Teran-Romero L, Biggerstaff BJ, Delorey MJ, Aubry M et al. 2019. Reassessing serosurvey-based estimates of the symptomatic proportion of Zika virus infections. Am. J. Epidemiol. 188:206–13
    [Google Scholar]
  73. Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M et al. 2016. Zika virus associated with microcephaly. N. Engl. J. Med. 374:951–58
    [Google Scholar]
  74. Morris JH, Knudsen GM, Verschueren E, Johnson JR, Cimermancic P et al. 2014. Affinity purification–mass spectrometry and network analysis to understand protein-protein interactions. Nat. Protocols. 9:2539–54
    [Google Scholar]
  75. Muffat J, Li Y, Omer A, Durbin A, Bosch I et al. 2018. Human induced pluripotent stem cell-derived glial cells and neural progenitors display divergent responses to Zika and dengue infections. PNAS 115:7117–22
    [Google Scholar]
  76. Nambala P, Su WC. 2018. Role of Zika virus prM protein in viral pathogenicity and use in vaccine development. Front. Microbiol. 9:1797
    [Google Scholar]
  77. Nem de Oliveira Souza I, Frost PS, Franca JV, Nascimento-Viana JB, Neris RLS et al. 2018. Acute and chronic neurological consequences of early-life Zika virus infection in mice. Sci. Transl. Med. 10:eaar2749
    [Google Scholar]
  78. Nguyen SM, Antony KM, Dudley DM, Kohn S, Simmons HA et al. 2017. Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLOS Pathog 13:e1006378
    [Google Scholar]
  79. Oh Y, Zhang F, Wang Y, Lee EM, Choi IY et al. 2017. Zika virus directly infects peripheral neurons and induces cell death. Nat. Neurosci. 20:1209–12
    [Google Scholar]
  80. Olmo IG, Carvalho TG, Costa VV, Alves-Silva J, Ferrari CZ et al. 2017. Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front. Immunol. 8:1016
    [Google Scholar]
  81. Peng H, Liu B, Yves TD, He Y, Wang S et al. 2018. Zika virus induces autophagy in human umbilical vein endothelial cells. Viruses 10:259
    [Google Scholar]
  82. Persaud M, Martinez-Lopez A, Buffone C, Porcelli SA, Diaz-Griffero F 2018. Infection by Zika viruses requires the transmembrane protein AXL, endocytosis and low pH. Virology 518:301–12
    [Google Scholar]
  83. Poland GA, Kennedy RB, Ovsyannikova IG, Palacios R, Ho PL, Kalil J 2018. Development of vaccines against Zika virus. Lancet Infect. Dis. 18:E211–19
    [Google Scholar]
  84. Qian X, Nguyen HN, Jacob F, Song H, Ming GL 2017. Using brain organoids to understand Zika virus-induced microcephaly. Development 144:952–57
    [Google Scholar]
  85. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC et al. 2016. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–54
    [Google Scholar]
  86. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR 2016. Zika virus and birth defects–reviewing the evidence for causality. N. Engl. J. Med. 374:1981–87
    [Google Scholar]
  87. Rosenfeld AB, Doobin DJ, Warren AL, Racaniello VR, Vallee RB 2017. Replication of early and recent Zika virus isolates throughout mouse brain development. PNAS 114:12273–78
    [Google Scholar]
  88. Roth H, Magg V, Uch F, Mutz P, Klein P et al. 2017. Flavivirus infection uncouples translation suppression from cellular stress responses. MBio 8:e02150–16
    [Google Scholar]
  89. Ruggiero E, Richter SN. 2018. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res 46:3270–83
    [Google Scholar]
  90. Sacramento CQ, de Melo GR, de Freitas CS, Rocha N, Hoelz LV et al. 2017. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci. Rep. 7:40920
    [Google Scholar]
  91. Saldana MA, Etebari K, Hart CE, Widen SG, Wood TG et al. 2017. Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes. PLOS Negl. Trop. Dis. 11:e0005760
    [Google Scholar]
  92. Sarukhanyan E, Shityakov S, Dandekar T 2018. In silico designed Axl receptor blocking drug candidates against Zika virus infection. ACS Omega 3:5281–90
    [Google Scholar]
  93. Satterfield-Nash A, Kotzky K, Allen J, Bertolli J, Moore CA et al. 2017. Health and development at age 19–24 months of 19 children who were born with microcephaly and laboratory evidence of congenital Zika virus infection during the 2015 Zika virus outbreak—Brazil, 2017. Morb. Mortal. Wkly. Rep. 66:1347–51
    [Google Scholar]
  94. Shah PS, Link N, Jang GM, Sharp PP, Zhu T et al. 2018. Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and Zika virus pathogenesis. Cell 175:71931–45
    [Google Scholar]
  95. Sirohi D, Chen Z, Sun L, Klose T, Pierson TC et al. 2016. The 3.8 Å resolution cryo-EM structure of Zika virus. Science 352:467–70
    [Google Scholar]
  96. Song G, Rho HS, Pan J, Ramos P, Yoon KJ et al. 2018. Multiplexed biomarker panels discriminate Zika and dengue virus infection in humans. Mol. Cell Proteom. 17:349–56
    [Google Scholar]
  97. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–72
    [Google Scholar]
  98. Tang H, Hammack C, Ogden SC, Wen Z, Qian X et al. 2016. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:587–90
    [Google Scholar]
  99. Taracena ML, Bottino-Rojas V, Talyuli OAC, Walter-Nuno AB, Oliveira JHM et al. 2018. Regulation of midgut cell proliferation impacts Aedes aegypti susceptibility to dengue virus. PLOS Negl. Trop. Dis. 12:e0006498
    [Google Scholar]
  100. Teng Y, Liu S, Guo X, Liu S, Jin Y et al. 2017. An integrative analysis reveals a central role of P53 activation via MDM2 in Zika virus infection induced cell death. Front. Cell Infect. Microbiol. 7:327
    [Google Scholar]
  101. Thackray LB, Handley SA, Gorman MJ, Poddar S, Bagadia P et al. 2018. Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell Rep 22:3440–53.e6
    [Google Scholar]
  102. Tripathi S, Balasubramaniam VR, Brown JA, Mena I, Grant A et al. 2017. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLOS Pathog 13:e1006258
    [Google Scholar]
  103. van der Linden V, Pessoa A, Dobyns W, Barkovich AJ, van der Linden H Jr. et al. 2016. Description of 13 infants born during October 2015-January 2016 with congenital Zika virus infection without microcephaly at birth—Brazil. Morb. Mortal. Wkly. Rep. 65:1343–48
    [Google Scholar]
  104. van der Linden V, van der Linden H Jr., Leal MC, Rolim Filho EL, van der Linden A et al. 2017. Discordant clinical outcomes of congenital Zika virus infection in twin pregnancies. Arq. Neuropsiquiatr. 75:381–86
    [Google Scholar]
  105. Volpi VG, Pagani I, Ghezzi S, Iannacone M, D'Antonio M, Vicenzi E 2018. Zika virus replication in dorsal root ganglia explants from interferon receptor1 knockout mice causes myelin degeneration. Sci. Rep. 8:10166
    [Google Scholar]
  106. Walker CL, Little ME, Roby JA, Armistead B, Gale M Jr. et al. 2019. Zika virus and the nonmicrocephalic fetus: why we should still worry. Am. J. Obstet. Gynecol. 220:45–56
    [Google Scholar]
  107. Wang J, Liu J, Zhou R, Ding X, Zhang Q et al. 2018. Zika virus infected primary microglia impairs NPCs proliferation and differentiation. Biochem. Biophys. Res. Commun. 497:619–25
    [Google Scholar]
  108. Wang ZY, Wang Z, Zhen ZD, Feng KH, Guo J et al. 2017. Axl is not an indispensable factor for Zika virus infection in mice. J. Gen. Virol. 98:2061–68
    [Google Scholar]
  109. Watanabe M, Buth JE, Vishlaghi N, de la Torre-Ubieta L, Taxidis J et al. 2017. Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep 21:517–32
    [Google Scholar]
  110. Wichgers Schreur PJ, van Keulen L, Anjema D, Kant J, Kortekaas J 2018. Microencephaly in fetal piglets following in utero inoculation of Zika virus. Emerg. Microbes Infect. 7:42
    [Google Scholar]
  111. Wikan N, Smith DR. 2016. Zika virus: history of a newly emerging arbovirus. Lancet Infect. Dis. 16:e119–26
    [Google Scholar]
  112. Wolf B, Diop F, Ferraris P, Wichit S, Busso C et al. 2017. Zika virus causes supernumerary foci with centriolar proteins and impaired spindle positioning. Open Biol 7:160231
    [Google Scholar]
  113. Xu M, Lee EM, Wen Z, Cheng Y, Huang WK et al. 2016. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 22:1101–7
    [Google Scholar]
  114. Yoon KJ, Song G, Qian X, Pan J, Xu D et al. 2017. Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell 21:349–58.e6
    [Google Scholar]
  115. Yu Y, Deng YQ, Zou P, Wang Q, Dai Y et al. 2017. A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat. Commun. 8:15672
    [Google Scholar]
  116. Yuan L, Huang XY, Liu ZY, Zhang F, Zhu XL et al. 2017. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 358:933–36
    [Google Scholar]
  117. Zhang F, Hammack C, Ogden SC, Cheng Y, Lee EM et al. 2016. Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res 44:8610–20
    [Google Scholar]
  118. Zhao Z, Yang M, Azar SR, Soong L, Weaver SC et al. 2017. Viral retinopathy in experimental models of Zika infection. Investig. Ophthalmol. Vis. Sci. 58:4355–65
    [Google Scholar]
  119. Zhou T, Tan L, Cederquist GY, Fan Y, Hartley BJ et al. 2017. High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 21:274–83.e5
    [Google Scholar]
  120. Zhu S, Luo H, Liu H, Ha Y, Mays ER et al. 2017. p38MAPK plays a critical role in induction of a pro-inflammatory phenotype of retinal Muller cells following Zika virus infection. Antiviral Res 145:70–81
    [Google Scholar]
  121. Zhu Z, Gorman MJ, McKenzie LD, Chai JN, Hubert CG et al. 2017. Zika virus has oncolytic activity against glioblastoma stem cells. J. Exp. Med. 214:2843
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-062231
Loading
/content/journals/10.1146/annurev-neuro-080317-062231
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error