1932

Abstract

An enduring problem in neuroscience is determining whether cases of amnesia result from eradication of the memory trace (storage impairment) or if the trace is present but inaccessible (retrieval impairment). The most direct approach to resolving this question is to quantify changes in the brain mechanisms of long-term memory (BM-LTM). This approach argues that if the amnesia is due to a retrieval failure, BM-LTM should remain at levels comparable to trained, unimpaired animals. Conversely, if memories are erased, BM-LTM should be reduced to resemble untrained levels. Here we review the use of BM-LTM in a number of studies that induced amnesia by targeting memory maintenance or reconsolidation. The literature strongly suggests that such amnesia is due to storage rather than retrieval impairments. We also describe the shortcomings of the purely behavioral protocol that purports to show recovery from amnesia as a method of understanding the nature of amnesia.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-091319-024636
2020-07-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/neuro/43/1/annurev-neuro-091319-024636.html?itemId=/content/journals/10.1146/annurev-neuro-091319-024636&mimeType=html&fmt=ahah

Literature Cited

  1. Agren T, Engman J, Frick A, Bjorkstrand J, Larsson EM et al. 2012. Disruption of reconsolidation erases a fear memory trace in the human amygdala. Science 337:1550–52
    [Google Scholar]
  2. Alaghband Y, O'Dell SJ, Azarnia S, Khalaj AJ, Guzowski JF, Marshall JF 2014. Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory. Neurobiol. Learn. Mem. 116:79–89
    [Google Scholar]
  3. An K, Zhen C, Liu ZH, Zhao Q, Liu HP et al. 2015. Spinal protein kinase Mζ contributes to the maintenance of peripheral inflammation-primed persistent nociceptive sensitization after plantar incision. Eur. J. Pain 19:39–47
    [Google Scholar]
  4. Angeles-Duran S, Ramos-Languren LE, Escobar ML 2012. PKMζ inhibition prevents the metaplastic change induced by conditioned taste aversion on insular cortex long-term potentiation in vivo. Rev. Neurosci. 23:473–80
    [Google Scholar]
  5. Anokhin KV, Tiunova AA, Rose SP 2002. Reminder effects—reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur. J. Neurosci. 15:1759–65
    [Google Scholar]
  6. Arguello AA, Ye X, Bozdagi O, Pollonini G, Tronel S et al. 2013. CCAAT enhancer binding protein δ plays an essential role in memory consolidation and reconsolidation. J. Neurosci. 33:3646–58
    [Google Scholar]
  7. Bailey CH, Bartsch D, Kandel ER 1996. Toward a molecular definition of long-term memory storage. PNAS 93:13445–52
    [Google Scholar]
  8. Bailey CH, Chen M. 1983. Morphological basis of long-term habituation and sensitization in Aplysia. . Science 220:91–93
    [Google Scholar]
  9. Bailey CH, Kandel ER. 1993. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55:397–426
    [Google Scholar]
  10. Bannerman DM, Good MA, Butcher SP, Ramsay M, Morris RG 1995. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378:182–86
    [Google Scholar]
  11. Barak S, Liu F, Ben Hamida S, Yowell QV, Neasta J et al. 2013. Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nat. Neurosci. 16:1111–17
    [Google Scholar]
  12. Barnes P, Kirtley A, Thomas KL 2012. Quantitatively and qualitatively different cellular processes are engaged in CA1 during the consolidation and reconsolidation of contextual fear memory. Hippocampus 22:149–71
    [Google Scholar]
  13. Barry JM, Rivard B, Fox SE, Fenton AA, Sacktor TC, Muller RU 2012. Inhibition of protein kinase Mζ disrupts the stable spatial discharge of hippocampal place cells in a familiar environment. J. Neurosci. 32:13753–62
    [Google Scholar]
  14. Bartlett FC. 1932. Remembering: A Study in Experimental and Social Psychology New York: Cambridge Univ. Press
  15. Bedecarrats A, Chen S, Pearce K, Cai D, Glanzman DL 2018. RNA from trained Aplysia can induce an epigenetic engram for long-term sensitization in untrained Aplysia. . eNeuro 5:ENEURO.0038–18.2018
    [Google Scholar]
  16. Bergstrom HC, McDonald CG, Dey S, Fernandez GM, Johnson LR 2013. Neurons activated during fear memory consolidation and reconsolidation are mapped to a common and new topography in the lateral amygdala. Brain Topogr 26:468–78
    [Google Scholar]
  17. Bjorkstrand J, Agren T, Frick A, Engman J, Larsson EM et al. 2015. Disruption of memory reconsolidation erases a fear memory trace in the human amygdala: an 18-month follow-up. PLOS ONE 10:e0129393
    [Google Scholar]
  18. Bliss TVP, Lomo T. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232:331–56
    [Google Scholar]
  19. Braud WG, Broussard WJ. 1973. Effects of puromycin on memory for shuttle box extinction in goldfish and barpress extinction in rats. Pharmacol. Biochem. Behav. 1:651–56
    [Google Scholar]
  20. Cai D, Pearce K, Chen S, Glanzman DL 2012. Reconsolidation of long-term memory in Aplysia. Curr. Biol 22:1783–88
    [Google Scholar]
  21. Censor N, Dayan E, Cohen LG 2014. Cortico-subcortical neuronal circuitry associated with reconsolidation of human procedural memories. Cortex 58:281–88
    [Google Scholar]
  22. Chan D, Baker KD, Richardson R 2015. Relearning a context-shock association after forgetting is an NMDAR-independent process. Physiol. Behav. 148:29–35
    [Google Scholar]
  23. Chen A, Bao C, Tang Y, Luo X, Guo L et al. 2015. Involvement of protein kinase ζ in the maintenance of hippocampal long-term potentiation in rats with chronic visceral hypersensitivity. J. Neurophysiol. 113:3047–55
    [Google Scholar]
  24. Chen S, Cai D, Pearce K, Sun PY, Roberts AC, Glanzman DL 2014. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. . eLife 3:e03896
    [Google Scholar]
  25. Cherkin A. 1972. Retrograde amnesia in the chick: resistance to the reminder effect. Physiol. Behav. 8:949–55
    [Google Scholar]
  26. Cipolotti L, Shallice T, Chan D, Fox N, Scahill R et al. 2001. Long-term retrograde amnesia…the crucial role of the hippocampus. Neuropsychologia 39:151–72
    [Google Scholar]
  27. Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-Garcia JM 2010. Plastic modifications induced by object recognition memory processing. PNAS 107:2652–57
    [Google Scholar]
  28. Contreras M, Billeke P, Vicencio S, Madrid C, Perdomo G et al. 2012. A role for the insular cortex in long-term memory for context-evoked drug craving in rats. Neuropsychopharmacology 37:2101–8
    [Google Scholar]
  29. de Quervain DJ-F, Henke K, Aerni A, Treyer V, McGaugh JL et al. 2003. Glucocorticoid-induced impairment of declarative memory retrieval is associated with reduced blood flow in the medial temporal lobe. Eur. J. Neurosci. 17:1296–302
    [Google Scholar]
  30. Debiec J, Diaz-Mataix L, Bush DE, Doyere V, LeDoux JE 2013. The selectivity of aversive memory reconsolidation and extinction processes depends on the initial encoding of the Pavlovian association. Learn. Mem. 20:695–99
    [Google Scholar]
  31. Descalzi G, Li XY, Chen T, Mercaldo V, Koga K, Zhuo M 2012. Rapid synaptic potentiation within the anterior cingulate cortex mediates trace fear learning. Mol. Brain 5:6
    [Google Scholar]
  32. Diaz-Mataix L, Debiec J, LeDoux JE, Doyere V 2011. Sensory-specific associations stored in the lateral amygdala allow for selective alteration of fear memories. J. Neurosci. 31:9538–43
    [Google Scholar]
  33. Doyere V, Debiec J, Monfils MH, Schafe GE, LeDoux JE 2007. Synapse-specific reconsolidation of distinct fear memories in the lateral amygdala. Nat. Neurosci. 10:414–16
    [Google Scholar]
  34. Drier EA, Tello MK, Cowan M, Wu P, Blace N et al. 2002. Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster. Nat. Neurosci 5:316–24
    [Google Scholar]
  35. Evuarherhe O, Barker GR, Savalli G, Warburton EC, Brown MW 2014. Early memory formation disrupted by atypical PKC inhibitor ZIP in the medial prefrontal cortex but not hippocampus. Hippocampus 24:934–42
    [Google Scholar]
  36. Fukushima H, Zhang Y, Archbold G, Ishikawa R, Nader K, Kida S 2014. Enhancement of fear memory by retrieval through reconsolidation. eLife 3:e02736
    [Google Scholar]
  37. Gafford GM, Parsons RG, Helmstetter FJ 2011. Consolidation and reconsolidation of contextual fear memory requires mammalian target of rapamycin-dependent translation in the dorsal hippocampus. Neuroscience 182:98–104
    [Google Scholar]
  38. Giese KP, Fedorov NB, Filipkowski RK, Silva AJ 1998. Autophosphorylation at Thr286 of the α calcium-calmodulin kinase II in LTP and learning. Science 279:870–73
    [Google Scholar]
  39. Gisquet-Verrier P, Riccio DC. 2018. Memory integration: an alternative to the consolidation/reconsolidation hypothesis. Prog. Neurobiol. 171:15–31
    [Google Scholar]
  40. Gold PE, Haycock JW, Macri J, McGaugh JL 1973. Retrograde amnesia and the “reminder effect”: an alternative interpretation. Science 180:1199–201
    [Google Scholar]
  41. Gold PE, King R. 1974. Retrograde amnesia: storage failure versus retrieval failure. Psychol. Rev. 81:465–69
    [Google Scholar]
  42. Gordon WC, Spear NE. 1973. Effect of reactivation of a previously acquired memory on the interaction between memories in the rat. J. Exp. Psychol. 99:349–55
    [Google Scholar]
  43. Graff J, Joseph NF, Horn ME, Samiei A, Meng J et al. 2014. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 156:261–76
    [Google Scholar]
  44. Guzowski JF, McNaughton BL, Barnes CA, Worley PF 1999. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2:1120–24
    [Google Scholar]
  45. Hall J, Thomas KL, Everitt BJ 2001. Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories. J. Neurosci. 21:2186–93
    [Google Scholar]
  46. Hardt O, Nader K, Nadel L 2013. Decay happens: the role of active forgetting in memory. Trends Cogn. Sci. 17:111–20
    [Google Scholar]
  47. Hardt O, Wang SH, Nader K 2009. Storage or retrieval deficit: the yin and yang of amnesia. Learn. Mem. 16:224–30
    [Google Scholar]
  48. Haubrich J, Crestani AP, Cassini LF, Santana F, Sierra RO et al. 2015. Reconsolidation allows fear memory to be updated to a less aversive level through the incorporation of appetitive information. Neuropsychopharmacology 40:315–26
    [Google Scholar]
  49. Haubrich J, Machado A, Boos FZ, Crestani AP, Sierra RO et al. 2017. Enhancement of extinction memory by pharmacological and behavioral interventions targeted to its reactivation. Sci. Rep. 7:10960
    [Google Scholar]
  50. Hebb DO. 1949. The Organization of Behavior New York: Wiley
  51. Hellemans KG, Everitt BJ, Lee JL 2006. Disrupting reconsolidation of conditioned withdrawal memories in the basolateral amygdala reduces suppression of heroin seeking in rats. J. Neurosci. 26:12694–99
    [Google Scholar]
  52. Hernandez AI, Oxberry WC, Crary JF, Mirra SS, Sacktor TC 2014. Cellular and subcellular localization of PKMζ. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130140
    [Google Scholar]
  53. Ho SY, Chen CH, Liu TH, Chang HF, Liou JC 2012. Protein kinase Mζ is necessary for cocaine-induced synaptic potentiation in the ventral tegmental area. Biol. Psychiatry 71:706–13
    [Google Scholar]
  54. Hong I, Kim J, Kim J, Lee S, Ko HG et al. 2013. AMPA receptor exchange underlies transient memory destabilization on retrieval. PNAS 110:8218–23
    [Google Scholar]
  55. Howell KK, Monk BR, Carmack SA, Mrowczynski OD, Clark RE, Anagnostaras SG 2014. Inhibition of PKC disrupts addiction-related memory. Front. Behav. Neurosci. 8:70
    [Google Scholar]
  56. Jalil SJ, Sacktor TC, Shouval HZ 2015. Atypical PKCs in memory maintenance: the roles of feedback and redundancy. Learn. Mem. 22:344–53
    [Google Scholar]
  57. Jarome TJ, Ferrara NC, Kwapis JL, Helmstetter FJ 2015. Contextual information drives the reconsolidation-dependent updating of retrieved fear memories. Neuropsychopharmacology 40:3044–52
    [Google Scholar]
  58. Jarome TJ, Kwapis JL, Werner CT, Parsons RG, Gafford GM, Helmstetter FJ 2012. The timing of multiple retrieval events can alter GluR1 phosphorylation and the requirement for protein synthesis in fear memory reconsolidation. Learn. Mem. 19:300–6
    [Google Scholar]
  59. Johansen JP, Cain CK, Ostroff LE, LeDoux JE 2011. Molecular mechanisms of fear learning and memory. Cell 147:509–24
    [Google Scholar]
  60. Kandel ER. 2001. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–38
    [Google Scholar]
  61. Kelly A, Laroche S, Davis S 2003. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J. Neurosci. 23:5354–60
    [Google Scholar]
  62. Kemenes G, Kemenes I, Michel M, Papp A, Muller U 2006. Phase-dependent molecular requirements for memory reconsolidation: differential roles for protein synthesis and protein kinase A activity. J. Neurosci. 26:6298–302
    [Google Scholar]
  63. Kim J, Song B, Hong I, Kim J, Lee J et al. 2010. Reactivation of fear memory renders consolidated amygdala synapses labile. J. Neurosci. 30:9631–40
    [Google Scholar]
  64. Krawczyk MC, Blake MG, Baratti CM, Romano A, Boccia MM, Feld M 2015. Memory reconsolidation of an inhibitory avoidance task in mice involves cytosolic ERK2 bidirectional modulation. Neuroscience 294:227–37
    [Google Scholar]
  65. Kwak C, Choi JH, Bakes JT, Lee K, Kaang BK 2012. Effect of intensity of unconditional stimulus on reconsolidation of contextual fear memory. Korean J. Physiol. Pharmacol. 16:293–96
    [Google Scholar]
  66. Lee JL. 2008. Memory reconsolidation mediates the strengthening of memories by additional learning. Nat. Neurosci. 11:1264–66
    [Google Scholar]
  67. Lee JL. 2009. Reconsolidation: maintaining memory relevance. Trends Neurosci 32:413–20
    [Google Scholar]
  68. Lee JL, Everitt BJ, Thomas KL 2004. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–43
    [Google Scholar]
  69. Lee JLC, Nader K, Schiller D 2017. An update on memory reconsolidation updating. Trends Cogn. Sci. 21:531–45
    [Google Scholar]
  70. Lee M-C, Yasuda R, Ehlers M 2010. Metaplasticity at single glutamatergic synapses. Neuron 66:859–70
    [Google Scholar]
  71. Lee S, Kim J, Choi S 2011. In vitro synaptic reconsolidation in amygdala slices prepared from rat brains. Biochem. Biophys. Res. Commun. 407:339–42
    [Google Scholar]
  72. Lee SH, Kwak C, Shim J, Kim JE, Choi SL et al. 2012. A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia. . PNAS 109:14200–5
    [Google Scholar]
  73. Li G, Amano T, Paré D, Nair SS 2011. Impact of infralimbic inputs on intercalated amygdala neurons: a biophysical modeling study. Learn. Mem. 18:226–40
    [Google Scholar]
  74. Li SSY, McNally GP. 2014. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning. Neurobiol. Learn. Mem. 108:14–21
    [Google Scholar]
  75. Li XY, Ko HG, Chen T, Descalzi G, Koga K et al. 2010. Alleviating neuropathic pain hypersensitivity by inhibiting PKMζ in the anterior cingulate cortex. Science 330:1400–4
    [Google Scholar]
  76. Li Y, Meloni EG, Carlezon WA Jr, Milad MR, Pitman RK et al. 2013. Learning and reconsolidation implicate different synaptic mechanisms. PNAS 110:4798–803
    [Google Scholar]
  77. Ling DS, Benardo LS, Serrano PA, Blace N, Kelly MT et al. 2002. Protein kinase Mζ is necessary and sufficient for LTP maintenance. Nat. Neurosci. 5:295–96
    [Google Scholar]
  78. Liu X, Ma L, Li HH, Huang B, Li YX et al. 2015. β-Arrestin–biased signaling mediates memory reconsolidation. PNAS 112:4483–88 Erratum. 2015 PNAS 112:E2847
    [Google Scholar]
  79. Liu XF, Tari PK, Haas K 2009. PKMζ restricts dendritic arbor growth by filopodial and branch stabilization within the intact and awake developing brain. J. Neurosci. 29:12229–35
    [Google Scholar]
  80. Lopez J, Gamache K, Schneider R, Nader K 2015. Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking. J. Neurosci. 35:2465–75
    [Google Scholar]
  81. Lubin FD, Sweatt JD. 2007. The IκB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron 55:942–57
    [Google Scholar]
  82. Machado I, Gonzalez PV, Vilcaes A, Carniglia L, Schioth HB et al. 2015. Interleukin-1β-induced memory reconsolidation impairment is mediated by a reduction in glutamate release and zif268 expression and α-melanocyte-stimulating hormone prevented these effects. Brain Behav. Immun. 46:137–46
    [Google Scholar]
  83. Maddox SA, Watts CS, Doyere V, Schafe GE 2013. A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories. PLOS ONE 8:1e54463
    [Google Scholar]
  84. Maddox SA, Watts CS, Schafe GE 2014. DNA methyltransferase activity is required for memory-related neural plasticity in the lateral amygdala. Neurobiol. Learn. Mem. 107:93–100
    [Google Scholar]
  85. Madronal N, Gruart A, Sacktor TC, Delgado-Garcia JM 2010. PKMζ inhibition reverses learning-induced increases in hippocampal synaptic strength and memory during trace eyeblink conditioning. PLOS ONE 5:e10400
    [Google Scholar]
  86. Malinow R, Malenka RC. 2002. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25:103–26
    [Google Scholar]
  87. Mamiya N, Fukushima H, Suzuki A, Matsuyama Z, Homma S et al. 2009. Brain region–specific gene expression activation required for reconsolidation and extinction of contextual fear memory. J. Neurosci. 29:402–13
    [Google Scholar]
  88. Marchand F, D'Mello R, Yip PK, Calvo M, Muller E et al. 2011. Specific involvement of atypical PKCζ/PKMζ in spinal persistent nociceptive processing following peripheral inflammation in rat. Mol. Pain 7:86
    [Google Scholar]
  89. Markowitsch HJ, Staniloiu A. 2012. Amnesic disorders. Lancet 380:1429–40
    [Google Scholar]
  90. Maroteaux M, Valjent E, Longueville S, Topilko P, Girault JA, Herve D 2014. Role of the plasticity-associated transcription factor Zif268 in the early phase of instrumental learning. PLOS ONE 9:e81868
    [Google Scholar]
  91. Martin SJ, Grimwood PD, Morris RG 2000. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23:649–711
    [Google Scholar]
  92. McGaugh JL. 1966. Time-dependent processes in memory storage. Science 153:1351–58
    [Google Scholar]
  93. McGaugh JL, Krivanek JA. 1970. Strychnine effects on discrimination learning in mice: effects of dose and time of administration. Physiol. Behav. 5:1437–42
    [Google Scholar]
  94. Mei F, Nagappan G, Ke Y, Sacktor TC, Lu B 2011. BDNF facilitates L-LTP maintenance in the absence of protein synthesis through PKMζ. PLOS ONE 6:e21568
    [Google Scholar]
  95. Merlo E, Freudenthal R, Maldonado H, Romano A 2005. Activation of the transcription factor NF-κB by retrieval is required for long-term memory reconsolidation. Learn. Mem. 12:23–29
    [Google Scholar]
  96. Migues PV, Hardt O, Wu DC, Gamache K, Sacktor TC et al. 2010. PKMζ maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat. Neurosci. 13:630–34
    [Google Scholar]
  97. Miller P, Zhabotinsky AM, Lisman JE, Wang X-J 2005. The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. PLOS Biol 3:e107
    [Google Scholar]
  98. Miller RR, Matzel LD. 2000. Memory involves far more than ‘consolidation’. Nat. Rev. Neurosci. 1:214–16
    [Google Scholar]
  99. Miller RR, Springer AD. 1973. Amnesia, consolidation, and retrieval. Psychol. Rev. 80:169–79
    [Google Scholar]
  100. Milton AL, Merlo E, Ratano P, Gregory BL, Dumbreck JK, Everitt BJ 2013. Double dissociation of the requirement for GluN2B- and GluN2A-containing NMDA receptors in the destabilization and restabilization of a reconsolidating memory. J. Neurosci. 33:1109–15
    [Google Scholar]
  101. Monfils MH, Cowansage KK, Klann E, LeDoux JE 2009. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324:951–55
    [Google Scholar]
  102. Monti MC, Gabach LA, Perez MF, Ramirez OA 2012. Impact of contextual cues in the expression of the memory associated with diazepam withdrawal: involvement of hippocampal PKMζ in vivo, and Arc expression and LTP in vitro. Eur. J. Neurosci. 36:3118–25
    [Google Scholar]
  103. Nader K, Hardt O. 2009. A single standard for memory: the case for reconsolidation. Nat. Rev. Neurosci. 10:224–34
    [Google Scholar]
  104. Nader K, Schafe GE, Le Doux JE 2000. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–26
    [Google Scholar]
  105. Narayanan RT, Seidenbecher T, Kluge C, Bergado J, Stork O, Pape HC 2007. Dissociated theta phase synchronization in amygdalo-hippocampal circuits during various stages of fear memory. Eur. J. Neurosci. 25:1823–31
    [Google Scholar]
  106. Navakkode S, Sajikumar S, Sacktor TC, Frey JU 2010. Protein kinase Mζ is essential for the induction and maintenance of dopamine-induced long-term potentiation in apical CA1 dendrites. Learn. Mem. 17:605–11
    [Google Scholar]
  107. Orsini CA, Maren S. 2012. Neural and cellular mechanisms of fear and extinction memory formation. Neurosci. Biobehav. Rev. 36:1773–802
    [Google Scholar]
  108. Panaccione I, King R, Molinaro G, Riozzi B, Battaglia G et al. 2013. Constitutively active group I mGlu receptors and PKMζ regulate synaptic transmission in developing perirhinal cortex. Neuropharmacology 66:143–50
    [Google Scholar]
  109. Parvez S, Ramachandran B, Frey JU 2010. Functional differences between and across different regions of the apical branch of hippocampal CA1 dendrites with respect to long-term depression induction and synaptic cross-tagging. J. Neurosci. 30:5118–23
    [Google Scholar]
  110. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC 2006. Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–44
    [Google Scholar]
  111. Pauli WM, Clark AD, Guenther HJ, O'Reilly RC, Rudy JW 2012. Inhibiting PKMζ reveals dorsal lateral and dorsal medial striatum store the different memories needed to support adaptive behavior. Learn. Mem. 19:307–14
    [Google Scholar]
  112. Pickens CL, Golden SA, Adams-Deutsch T, Nair SG, Shaham Y 2009. Long-lasting incubation of conditioned fear in rats. Biol. Psychiatry 65:881–86
    [Google Scholar]
  113. Pignatelli M, Ryan TJ, Roy DS, Lovett C, Smith LM et al. 2019. Engram cell excitability state determines the efficacy of memory retrieval. Neuron 101:274–84.e5
    [Google Scholar]
  114. Pinel JPJ, Cooper RM. 1966. Incubation and its implications for the interpretation of the ECS gradient effect. Psychon. Sci 6:123–24
    [Google Scholar]
  115. Radiske A, Rossato JI, Kohler CA, Gonzalez MC, Medina JH, Cammarota M 2015. Requirement for BDNF in the reconsolidation of fear extinction. J. Neurosci. 35:6570–74
    [Google Scholar]
  116. Rehberg K, Bergado-Acosta JR, Koch JC, Stork O 2010. Disruption of fear memory consolidation and reconsolidation by actin filament arrest in the basolateral amygdala. Neurobiol. Learn. Mem. 94:117–26
    [Google Scholar]
  117. Ren Z-Y, Liu M-M, Xue Y-X, Ding Z-B, Xue L-F et al. 2013. A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory. Neuropsychopharmacology 38:778–90
    [Google Scholar]
  118. Romero-Granados R, Fontan-Lozano A, Delgado-Garcia JM, Carrion AM 2010. From learning to forgetting: Behavioral, circuitry, and molecular properties define the different functional states of the recognition memory trace. Hippocampus 20:584–95
    [Google Scholar]
  119. Ron S, Dudai Y, Segal M 2012. Overexpression of PKMζ alters morphology and function of dendritic spines in cultured cortical neurons. Cereb. Cortex 22:2519–28
    [Google Scholar]
  120. Rose JK, Rankin CH. 2006. Blocking memory reconsolidation reverses memory-associated changes in glutamate receptor expression. J. Neurosci. 26:11582–87
    [Google Scholar]
  121. Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S 2015. Engram cells retain memory under retrograde amnesia. Science 348:1007–13
    [Google Scholar]
  122. Sacktor TC. 2011. How does PKMζ maintain long-term memory. ? Nat. Rev. Neurosci. 12:9–15
    [Google Scholar]
  123. Sajikumar S, Korte M. 2011. Metaplasticity governs compartmentalization of synaptic tagging and capture through brain-derived neurotrophic factor (BDNF) and protein kinase Mζ (PKMζ). PNAS 108:2551–56
    [Google Scholar]
  124. Sajikumar S, Li Q, Abraham WC, Xiao ZC 2009. Priming of short-term potentiation and synaptic tagging/capture mechanisms by ryanodine receptor activation in rat hippocampal CA1. Learn. Mem. 16:178–86
    [Google Scholar]
  125. Sajikumar S, Navakkode S, Sacktor TC, Frey JU 2005. Synaptic tagging and cross-tagging: the role of protein kinase Mζ in maintaining long-term potentiation but not long-term depression. J. Neurosci. 25:5750–56
    [Google Scholar]
  126. Salinska E. 2006. The role of group I metabotropic glutamate receptors in memory consolidation and reconsolidation in the passive avoidance task in 1-day-old chicks. Neurochem. Int. 48:447–52
    [Google Scholar]
  127. Sanders MJ, Fanselow MS. 2003. Pre-training prevents context fear conditioning deficits produced by hippocampal NMDA receptor blockade. Neurobiol. Learn. Mem. 80:123–29
    [Google Scholar]
  128. Sangha S, Scheibenstock A, Lukowiak K 2003. Reconsolidation of a long-term memory in lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1. J. Neurosci. 23:8034–40
    [Google Scholar]
  129. Santini E, Quirk GJ, Porter JT 2008. Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons. J. Neurosci. 28:4028–36
    [Google Scholar]
  130. Schiller D, Kanen JW, LeDoux JE, Monfils M-H, Phelps EA 2013. Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. PNAS 110:20040–45
    [Google Scholar]
  131. Schiller D, Monfils MH, Raio CM, Johnson DC, LeDoux JE, Phelps EA 2010. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463:49–53
    [Google Scholar]
  132. Schwabe L, Nader K, Wolf OT, Beaudry T, Pruessner JC 2012. Neural signature of reconsolidation impairments by propranolol in humans. Biol. Psychiatry 71:380–86
    [Google Scholar]
  133. Serota RG. 1971. Acetoxycycloheximide and transient amnesia in the rat. PNAS 68:1249–50
    [Google Scholar]
  134. Shabashov D, Shohami E, Yaka R 2012. Inactivation of PKMζ in the NAc shell abolished cocaine-conditioned reward. J. Mol. Neurosci. 47:546–53
    [Google Scholar]
  135. Shema R, Haramati S, Ron S, Hazvi S, Chen A et al. 2011. Enhancement of consolidated long-term memory by overexpression of protein kinase Mζ in the neocortex. Science 331:1207–10
    [Google Scholar]
  136. Shi X, Miller JS, Harper LJ, Poole RL, Gould TJ, Unterwald EM 2014. Reactivation of cocaine reward memory engages the Akt/GSK3/mTOR signaling pathway and can be disrupted by GSK3 inhibition. Psychopharmacology 231:3109–18
    [Google Scholar]
  137. Slaker M, Churchill L, Todd RP, Blacktop JM, Zuloaga DG et al. 2015. Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J. Neurosci 35:4190–202 Erratum. 2015 J. Neurosci 35:8376
    [Google Scholar]
  138. Solntseva S, Storozheva Z, Nikitin V, Sherstnev V 2015. Spontaneous enhancement of the reproduction of long-term memory over a period of several days after training of animals. Neurosci. Behav. Physiol. 45:223–28
    [Google Scholar]
  139. Squire LR. 2006. Lost forever or temporarily misplaced? The long debate about the nature of memory impairment. Learn. Mem. 13:522–29
    [Google Scholar]
  140. Tedesco V, Roquet RF, DeMis J, Chiamulera C, Monfils M-H 2014. Extinction, applied after retrieval of auditory fear memory, selectively increases zinc-finger protein 268 and phosphorylated ribosomal protein S6 expression in prefrontal cortex and lateral amygdala. Neurobiol. Learn. Mem. 115:78–85
    [Google Scholar]
  141. Thomas KL, Arroyo M, Everitt BJ 2003. Induction of the learning and plasticity-associated gene Zif268 following exposure to a discrete cocaine-associated stimulus. Eur. J. Neurosci. 17:1964–72
    [Google Scholar]
  142. Thomas KL, Hall J, Everitt BJ 2002. Cellular imaging with zif268 expression in the rat nucleus accumbens and frontal cortex further dissociates the neural pathways activated following the retrieval of contextual and cued fear memory. Eur. J. Neurosci. 16:1789–96
    [Google Scholar]
  143. Thomas KL, Laroche S, Errington ML, Bliss TV, Hunt SP 1994. Spatial and temporal changes in signal transduction pathways during LTP. Neuron 13:737–45
    [Google Scholar]
  144. Trent S, Barnes P, Hall J, Thomas KL 2015. Rescue of long-term memory after reconsolidation blockade. Nat. Commun. 6:7897
    [Google Scholar]
  145. Tronel S, Sara SJ. 2002. Mapping of olfactory memory circuits: region-specific c-fos activation after odor-reward associative learning or after its retrieval. Learn. Mem. 9:105–11
    [Google Scholar]
  146. Tronson N, Wiseman S, Olausson P, Taylor JR 2006. Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nat. Neurosci. 9:167–69
    [Google Scholar]
  147. Velez-Hernandez ME, Vazquez-Torres R, Velasquez-Martinez MC, Jimenez L, Baez F et al. 2013. Inhibition of protein kinase Mζ (PKMζ) in the mesolimbic system alters cocaine sensitization in rats. J. Drug Alcohol Res. 2:235669
    [Google Scholar]
  148. von Hertzen LS, Giese KP 2005. Memory reconsolidation engages only a subset of immediate-early genes induced during consolidation. J. Neurosci. 25:1935–42
    [Google Scholar]
  149. Wang S-H, de Oliveira Alvares L, Nader K 2009. Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nat. Neurosci. 12:905–12
    [Google Scholar]
  150. Wells AM, Arguello AA, Xie X, Blanton MA, Lasseter HC et al. 2013. Extracellular signal-regulated kinase in the basolateral amygdala, but not the nucleus accumbens core, is critical for context-response-cocaine memory reconsolidation in rats. Neuropsychopharmacology 38:753–62
    [Google Scholar]
  151. Wells AM, Xie X, Higginbotham JA, Arguello AA, Healey KL et al. 2016. Contribution of an SFK-mediated signaling pathway in the dorsal hippocampus to cocaine-memory reconsolidation in rats. Neuropsychopharmacology 41:675–85
    [Google Scholar]
  152. Wirkner J, Low A, Hamm AO, Weymar M 2015. New learning following reactivation in the human brain: targeting emotional memories through rapid serial visual presentation. Neurobiol. Learn. Mem. 119:63–68
    [Google Scholar]
  153. Yin JCP, Del Vecchio M, Zhou H, Tully T 1995. CREB as a memory modulator: Induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. . Cell 81:107–15
    [Google Scholar]
  154. Yoshii A, Murata Y, Kim J, Zhang C, Shokat KM, Constantine-Paton M 2011. TrkB and protein kinase M regulate synaptic localization of PSD-95 in developing cortex. J. Neurosci. 31:11894–904
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-091319-024636
Loading
/content/journals/10.1146/annurev-neuro-091319-024636
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error