1932

Abstract

Escape is one of the most studied animal behaviors, and there is a rich normative theory that links threat properties to evasive actions and their timing. The behavioral principles of escape are evolutionarily conserved and rely on elementary computational steps such as classifying sensory stimuli and executing appropriate movements. These are common building blocks of general adaptive behaviors. Here we consider the computational challenges required for escape behaviors to be implemented, discuss possible algorithmic solutions, and review some of the underlying neural circuits and mechanisms. We outline shared neural principles that can be implemented by evolutionarily ancient neural systems to generate escape behavior, to which cortical encephalization has been added to allow for increased sophistication and flexibility in responding to threat.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-100219-122527
2020-07-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/neuro/43/1/annurev-neuro-100219-122527.html?itemId=/content/journals/10.1146/annurev-neuro-100219-122527&mimeType=html&fmt=ahah

Literature Cited

  1. Acerbo MJ, Lazareva OF, McInnerney J, Leiker E, Wasserman EA, Poremba A 2012. Figure-ground discrimination in the avian brain: the nucleus rotundus and its inhibitory complex. Vision Res 70:18–26
    [Google Scholar]
  2. Antri M, Fenelon K, Dubuc R 2009. The contribution of synaptic inputs to sustained depolarizations in reticulospinal neurons. J. Neurosci. 29:41140–51
    [Google Scholar]
  3. Assareh N, Sarrami M, Carrive P, McNally GP 2016. The organization of defensive behavior elicited by optogenetic excitation of rat lateral or ventrolateral periaqueductal gray. Behav. Neurosci. 130:4406–14
    [Google Scholar]
  4. Atasoy D, Betley JN, Su HH, Sternson SM 2012. Deconstruction of a neural circuit for hunger. Nature 488:7410172–77
    [Google Scholar]
  5. Balleine BW, Killcross S. 2006. Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci 29:5272–79
    [Google Scholar]
  6. Bandler R, Carrive P. 1988. Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat. Brain Res 439:1–295–106
    [Google Scholar]
  7. Bandler R, Depaulis A, Vergnes M 1985. Identification of midbrain neurones mediating defensive behaviour in the rat by microinjections of excitatory amino acids. Behav. Brain Res. 15:2107–19
    [Google Scholar]
  8. Barker AJ, Baier H. 2015. Sensorimotor decision making in the zebrafish tectum. Curr. Biol. 25:212804–14
    [Google Scholar]
  9. Beltramo R, Scanziani M. 2019. A collicular visual cortex: neocortical space for an ancient midbrain visual structure. Science 363:642264–69
    [Google Scholar]
  10. Benarroch EE. 2012. Periaqueductal gray: an interface for behavioral control. Neurology 78:3210–17
    [Google Scholar]
  11. Betley JN, Xu S, Cao ZFH, Gong R, Magnus CJ et al. 2015. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521:7551180–85
    [Google Scholar]
  12. Bhatt DH, McLean DL, Hale ME, Fetcho JR 2007. Grading movement strength by changes in firing intensity versus recruitment of spinal interneurons. Neuron 53:191–102
    [Google Scholar]
  13. Bickford ME, Hall WC. 1992. The nigral projection to predorsal bundle cells in the superior colliculus of the rat. J. Comp. Neurol. 319:111–33
    [Google Scholar]
  14. Billington J, Wilkie RM, Field DT, Wann JP 2011. Neural processing of imminent collision in humans. Proc. Biol. Sci. 278:17111476–81
    [Google Scholar]
  15. Bittencourt AS, Nakamura-Palacios EM, Mauad H, Tufik S, Schenberg LC 2005. Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience 133:4873–92
    [Google Scholar]
  16. Blanchard DC, Blanchard RJ. 1988. Ethoexperimental approaches to the biology of emotion. Annu. Rev. Psychol. 39:43–68
    [Google Scholar]
  17. Blanchard DC, Litvin Y, Pentkowski NS, Blanchard RJ 2009. Defense and aggression. Handbook of Neuroscience for the Behavioral Sciences, Vol. 2 GG Berntson, JT Cacioppo 958–74 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  18. Blanchard DC, Williams G, Lee EMC, Blanchard RJ 1981. Taming of wild Rattus norvegicus by lesions of the mesencephalic central gray. Physiol. Psychol. 9:2157–63
    [Google Scholar]
  19. Boehnke SE, Munoz DP. 2008. On the importance of the transient visual response in the superior colliculus. Curr. Opin. Neurobiol. 18:6544–51
    [Google Scholar]
  20. Brandão ML, Anseloni VZ, Pandóssio JE, De Araújo JE, Castilho VM 1999. Neurochemical mechanisms of the defensive behavior in the dorsal midbrain. Neurosci. Biobehav. Rev. 23:6863–75
    [Google Scholar]
  21. Brandão ML, Borelli KG, Nobre MJ, Santos JM, Albrechet-Souza L et al. 2005. Gabaergic regulation of the neural organization of fear in the midbrain tectum. Neurosci. Biobehav. Rev. 29:81299–311
    [Google Scholar]
  22. Bruce LL, Neary TJ. 1995. The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav. Evol. 46:4–5224–34
    [Google Scholar]
  23. Bulbert MW, Page RA, Bernal XE 2015. Danger comes from all fronts: predator-dependent escape tactics of túngara frogs. PLOS ONE 10:4e0120546
    [Google Scholar]
  24. Burgess N. 2006. Spatial memory: how egocentric and allocentric combine. Trends Cogn. Sci. 10:12551–57
    [Google Scholar]
  25. Burnett CJ, Li C, Webber E, Tsaousidou E, Xue SY et al. 2016. Hunger-driven motivational state competition. Neuron 92:1187–201
    [Google Scholar]
  26. Butler AB. 2008. Evolution of the thalamus: a morphological and functional review. Thalamus Relat. Syst. 4:135–58
    [Google Scholar]
  27. Capelli P, Pivetta C, Esposito MS, Arber S 2017. Locomotor speed control circuits in the caudal brainstem. Nature 551:7680373–77
    [Google Scholar]
  28. Chevalier G, Deniau JM. 1990. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13:7277–80
    [Google Scholar]
  29. Cools AR, Coolen JM, Smit JC, Ellenbroek BA 1984. The striato-nigro-collicular pathway and explosive running behaviour: functional interaction between neostriatal dopamine and collicular GABA. Eur. J. Pharmacol. 100:171–77
    [Google Scholar]
  30. Cooper WE Jr 1999. Tradeoffs between courtship, fighting, and antipredatory behavior by a lizard. Eumeces laticeps. Behav. Ecol. Sociobiol. 47:1–254–59
    [Google Scholar]
  31. Cooper WE Jr, Blumstein DT 2015. Escaping from Predators: An Integrative View of Escape Decisions Cambridge, UK: Cambridge Univ. Press
  32. Cregg JM, Leiras R, Montalant A, Wickersham IR, Kiehn O 2019. Brainstem neurons that command left/right locomotor asymmetries. bioRxiv 754812. https://doi.org/10.1101/754812
    [Crossref]
  33. Davis M. 1992. The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15:353–75
    [Google Scholar]
  34. De Franceschi G, Vivattanasarn T, Saleem AB, Solomon SG 2016. Vision guides selection of freeze or flight defense strategies in mice. Curr. Biol. 26:162150–54
    [Google Scholar]
  35. Dean P, Mitchell IJ, Redgrave P 1988. Responses resembling defensive behaviour produced by microinjection of glutamate into superior colliculus of rats. Neuroscience 24:2501–10
    [Google Scholar]
  36. Dean P, Redgrave P, Westby GWM 1989. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci 12:4137–47
    [Google Scholar]
  37. De Oca BM, DeCola JP, Maren S, Fanselow MS 1998. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J. Neurosci. 18:93426–32
    [Google Scholar]
  38. Deng H, Xiao X, Wang Z 2016. Periaqueductal gray neuronal activities underlie different aspects of defensive behaviors. J. Neurosci. 36:297580–88
    [Google Scholar]
  39. Depoortere R, Sandner G, Di Scala G 1990. Aversion induced by electrical stimulation of the mesencephalic locomotor region in the intact and freely moving rat. Physiol. Behav. 47:3561–67
    [Google Scholar]
  40. DesJardin JT, Holmes AL, Forcelli PA, Cole CE, Gale JT et al. 2013. Defense-like behaviors evoked by pharmacological disinhibition of the superior colliculus in the primate. J. Neurosci. 33:1150–55
    [Google Scholar]
  41. Domenici P, Blagburn JM, Bacon JP 2011. Animal escapology I: theoretical issues and emerging trends in escape trajectories. J. Exp. Biol. 214:152463–73
    [Google Scholar]
  42. Douglass AD, Kraves S, Deisseroth K, Schier AF, Engert F 2008. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr. Biol. 18:151133–37
    [Google Scholar]
  43. Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB et al. 2016. Neural circuits underlying visually evoked escapes in larval zebrafish. Neuron 89:3613–28
    [Google Scholar]
  44. Eaton RC, Lee RK, Foreman MB 2001. The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog. Neurobiol. 63:4467–85
    [Google Scholar]
  45. Ellard CG, Goodale MA. 1988. A functional analysis of the collicular output pathways: a dissociation of deficits following lesions of the dorsal tegmental decussation and the ipsilateral collicular efferent bundle in the Mongolian gerbil. Exp. Brain Res. 71:2307–19
    [Google Scholar]
  46. Etienne AS, Jeffery KJ. 2004. Path integration in mammals. Hippocampus 14:2180–92
    [Google Scholar]
  47. Evans DA, Stempel AV, Vale R, Ruehle S, Lefler Y, Branco T 2018. A synaptic threshold mechanism for computing escape decisions. Nature 558:7711590–94
    [Google Scholar]
  48. Fadok JP, Krabbe S, Markovic M, Courtin J, Xu C et al. 2017. A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542:763996–100
    [Google Scholar]
  49. Fanselow MS, Decola JP, De Oca BM, Landeira‐Fernandez J 1995. Ventral and dorsolateral regions of the midbrain periaqueductal gray (PAG) control different stages of defensive: Dorsolateral PAG lesions enhance the defensive freezing produced by massed and immediate shock. Aggress. Behav. 21:63–77
    [Google Scholar]
  50. Ferreira-Pinto MJ, Ruder L, Capelli P, Arber S 2018. Connecting circuits for supraspinal control of locomotion. Neuron 100:2361–74
    [Google Scholar]
  51. Filosa A, Barker AJ, Dal Maschio M, Baier H 2016. Feeding state modulates behavioral choice and processing of prey stimuli in the zebrafish tectum. Neuron 90:3596–608
    [Google Scholar]
  52. Fotowat H, Gabbiani F. 2011. Collision detection as a model for sensory-motor integration. Annu. Rev. Neurosci. 34:1–19
    [Google Scholar]
  53. Gahtan E, Sankrithi N, Campos JB, O'Malley DM 2002. Evidence for a widespread brain stem escape network in larval zebrafish. J. Neurophysiol. 87:1608–14
    [Google Scholar]
  54. Gelman S, Grove CL, Faber DS 2011. Atypical properties of release and short-term depression at a specialized nicotinic synapse in the Mauthner cell network. J. Exp. Biol. 214:91560–70
    [Google Scholar]
  55. Gibson JJ. 1974. The Perception of the Visual World Cambridge, MA: Riverside Press
  56. Greenwood AK, Peichel CL, Zottoli SJ 2010. Distinct startle responses are associated with neuroanatomical differences in pufferfishes. J. Exp. Biol. 213:4613–20
    [Google Scholar]
  57. Grillner S, Georgopoulos AP, Jordan LM 1997. Selection and initiation of motor behavior. Neurons, Networks, and Motor Behavior AI Selverston, PSG Stein, DG Stuart 3–19 Cambridge, MA: MIT Press
    [Google Scholar]
  58. Grillner S, Robertson B, Stephenson-Jones M 2013. The evolutionary origin of the vertebrate basal ganglia and its role in action selection. J. Physiol. 591:225425–31
    [Google Scholar]
  59. Grillner S, Wallen P. 1985. Central pattern generators for locomotion, with special reference to vertebrates. Annu. Rev. Neurosci. 8:233–61
    [Google Scholar]
  60. Groenewegen HJ, Berendse HW. 1994. The specificity of the “nonspecific” midline and intralaminar thalamic nuclei. Trends Neurosci 17:252–57
    [Google Scholar]
  61. Gross CT, Canteras NS. 2012. The many paths to fear. Nat. Rev. Neurosci. 13:9651–58
    [Google Scholar]
  62. Hahn JD, Sporns O, Watts AG, Swanson LW 2019. Macroscale intrinsic network architecture of the hypothalamus. PNAS 116:168018–27
    [Google Scholar]
  63. Handel A, Glimcher PW. 1999. Quantitative analysis of substantia nigra pars reticulata activity during a visually guided saccade task. J. Neurophysiol. 82:63458–75
    [Google Scholar]
  64. Heap LAL, Vanwalleghem G, Thompson AW, Favre-Bulle IA, Scott EK 2018. Luminance changes drive directional startle through a thalamic pathway. Neuron 99:2293–301.e4
    [Google Scholar]
  65. Hemmi JM, Tomsic D. 2012. The neuroethology of escape in crabs: from sensory ecology to neurons and back. Curr. Opin. Neurobiol. 22:2194–200
    [Google Scholar]
  66. Henriques PM, Rahman N, Jackson SE, Bianco IH 2019. Nucleus isthmi is required to sustain target pursuit during visually guided prey-catching. Curr. Biol. 29:111771–86.e5
    [Google Scholar]
  67. Herberholz J, Marquart GD. 2012. Decision making and behavioral choice during predator avoidance. Front. Neurosci. 6:125
    [Google Scholar]
  68. Herrero L, Rodríguez F, Salas C, Torres B 1998. Tail and eye movements evoked by electrical microstimulation of the optic tectum in goldfish. Exp. Brain Res. 120:3291–305
    [Google Scholar]
  69. Herzog AG, Van Hoesen GW 1976. Temporal neocortical afferent connections to the amygdala in the rhesus monkey. Brain Res 115:157–69
    [Google Scholar]
  70. Hikosaka O, Takikawa Y, Kawagoe R 2000. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80:3953–78
    [Google Scholar]
  71. Hollén L, Radford AN. 2009. The development of alarm call behaviour in mammals and birds. Anim. Behav. 78:4791–800
    [Google Scholar]
  72. Jikomes N, Ramesh RN, Mandelblat-Cerf Y, Andermann ML 2016. Preemptive stimulation of AgRP neurons in fed mice enables conditioned food seeking under threat. Curr. Biol. 26:182500–7
    [Google Scholar]
  73. Johansen JP, Cain CK, Ostroff LE, LeDoux JE 2011. Molecular mechanisms of fear learning and memory. Cell 147:3509–24
    [Google Scholar]
  74. Jordan LM. 1998. Initiation of locomotion in mammals. Ann. N. Y. Acad. Sci. 860:83–93
    [Google Scholar]
  75. Kaneshige M, Shibata KI, Matsubayashi J, Mitani A, Furuta T 2018. A descending circuit derived from the superior colliculus modulates vibrissal movements. Front. Neural Circuits 12:100
    [Google Scholar]
  76. Kang H-J, Li X-H. 2010. Response properties and receptive field organization of collision-sensitive neurons in the optic tectum of bullfrog. Rana catesbeiana. Neurosci. Bull. 26:4304–16
    [Google Scholar]
  77. Killian KA, Snell LC, Ammarell R, Crist TO 2006. Suppression of escape behaviour during mating in the cricket Acheta domesticus. Anim. . Behav 72:2487–502
    [Google Scholar]
  78. King JR, Comer CM. 1996. Visually elicited turning behavior in Rana pipiens: comparative organization and neural control of escape and prey capture. J. Comp. Physiol. A 178:3293–305
    [Google Scholar]
  79. King SM, Dykeman C, Redgrave P, Dean P 1992. Use of a distracting task to obtain defensive head movements to looming visual stimuli by human adults in a laboratory setting. Perception 21:2245–59
    [Google Scholar]
  80. Knudsen EI, Schwarz JS. 2017. The optic tectum: a structure evolved for stimulus selection. The Evolution of the Nervous Systems in Nonmammalian Vertebrates G Striedter 387–408 New York: Elsevier. , 2nd ed..
    [Google Scholar]
  81. Kohashi T, Oda Y. 2008. Initiation of Mauthner- or non-Mauthner-mediated fast escape evoked by different modes of sensory input. J. Neurosci. 28:4210641–53
    [Google Scholar]
  82. Korn H, Faber DS. 2005. The Mauthner cell half a century later: a neurobiological model for decision-making. ? Neuron 47:113–28
    [Google Scholar]
  83. Koyama M, Minale F, Shum J, Nishimura N, Schaffer CB, Fetcho JR 2016. A circuit motif in the zebrafish hindbrain for a two alternative behavioral choice to turn left or right. eLife 5:e16808
    [Google Scholar]
  84. Krout KE, Loewy AD, Westby GW, Redgrave P 2001. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 431:2198–216
    [Google Scholar]
  85. Kumar S, Hedges SB. 1998. A molecular timescale for vertebrate evolution. Nature 392:6679917–20
    [Google Scholar]
  86. Kunwar PS, Zelikowsky M, Remedios R, Cai H, Yilmaz M et al. 2015. Ventromedial hypothalamic neurons control a defensive emotion state. eLife 4:e06633
    [Google Scholar]
  87. Lacoste AMB, Schoppik D, Robson DN, Haesemeyer M, Portugues R et al. 2015. A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes. Curr. Biol. 25:111526–34
    [Google Scholar]
  88. Lecca S, Meye FJ, Trusel M, Tchenio A, Harris J et al. 2017. Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior. eLife 6:e30697
    [Google Scholar]
  89. Li Y, Zeng J, Zhang J, Yue C, Zhong W et al. 2018. Hypothalamic circuits for predation and evasion. Neuron 97:4911–24.e5
    [Google Scholar]
  90. Liao JC, Fetcho JR. 2008. Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish. J. Neurosci. 28:4812982–92
    [Google Scholar]
  91. Lima SL, Dill LM. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68:4619–40
    [Google Scholar]
  92. Liu KS, Fetcho JR. 1999. Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23:2325–35
    [Google Scholar]
  93. Liu YJ, Wang Q, Li B 2011. Neuronal responses to looming objects in the superior colliculus of the cat. Brain Behav. Evol. 77:3193–205
    [Google Scholar]
  94. Lovett-Barron M, Chen R, Bradbury S, Andalman AS, Wagle M et al. 2019. Multiple overlapping hypothalamus-brainstem circuits drive rapid threat avoidance. bioRxiv 745075. https://doi.org/10.1101/745075
    [Crossref]
  95. Maaswinkel H, Whishaw IQ. 1999. Homing with locale, taxon, and dead reckoning strategies by foraging rats: sensory hierarchy in spatial navigation Behav. . Brain Res 99:2143–52
    [Google Scholar]
  96. Mangieri LR, Jiang Z, Lu Y, Xu Y, Cassidy RM et al. 2019. Defensive behaviors driven by a hypothalamic-ventral midbrain circuit. eNeuro 6:4 ENEURO 0156–19 2019.
    [Google Scholar]
  97. Marchand JE, Hagino N. 1983. Afferents to the periaqueductal gray in the rat. A horseradish peroxidase study. Neuroscience 9:195–106
    [Google Scholar]
  98. Marras S, Batty RS, Domenici P 2012. Information transfer and antipredator maneuvers in schooling herring. Adapt. Behav. 20:144–56
    [Google Scholar]
  99. Martin J, López P. 1999. When to come out from a refuge: risk-sensitive and state-dependent decisions in an alpine lizard. Behav. Ecol. 10:5487–92
    [Google Scholar]
  100. Masullo L, Mariotti L, Alexandre N, Freire-Pritchett P, Boulanger J, Tripodi M 2019. Genetically defined functional modules for spatial orienting in the mouse superior colliculus. Curr. Biol. 29:172892–904
    [Google Scholar]
  101. May PJ. 2006. The mammalian superior colliculus: laminar structure and connections. . Prog. Brain Res 151:321–78
    [Google Scholar]
  102. Mazer JA. 2011. Spatial attention, feature-based attention, and saccades: three sides of one coin. ? Biol. Psychiatry 69:121147–52
    [Google Scholar]
  103. McHaffie J, Stanford TR, Stein BE, Coizet V, Redgrave P 2005. Subcortical loops through the basal ganglia. Trends Neurosci 28:8401–7
    [Google Scholar]
  104. McNally GP, Johansen JP, Blair HT 2011. Placing prediction into the fear circuit. Trends Neurosci 34:6283–92
    [Google Scholar]
  105. Mehler WR. 1980. Subcortical afferent connections of the amygdala in the monkey. J. Comp. Neurol. 190:4733–62
    [Google Scholar]
  106. Mintz I, Gotow T, Triller A, Korn H 1989. Effect of serotonergic afferents on quantal release at central inhibitory synapses. Science 245:4914190–92
    [Google Scholar]
  107. Mirjany M, Preuss T, Faber DS 2011. Role of the lateral line mechanosensory system in directionality of goldfish auditory evoked escape response. J. Exp. Biol. 214:203358–67
    [Google Scholar]
  108. Mitchell IJ, Dean P, Redgrave P 1988. The projection from superior colliculus to cuneiform area in the rat. Exp. Brain Res. 72:3626–39
    [Google Scholar]
  109. Mittelstaedt M-L, Mittelstaedt H. 1980. Homing by path integration in a mammal. Naturwissenschaften 67:11566–67
    [Google Scholar]
  110. Møller AP. 2008. Flight distance of urban birds, predation, and selection for urban life. Behav. Ecol. Sociobiol. 63:163–75
    [Google Scholar]
  111. Motta SC, Goto M, Gouveia FV, Baldo MV, Canteras NS, Swanson LW 2009. Dissecting the brain's fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. PNAS 106:124870–75
    [Google Scholar]
  112. Mu Y, Li XQ, Zhang B, Du JL 2012. Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism. Neuron 75:4688–99
    [Google Scholar]
  113. Northcutt RG. 2002. Understanding vertebrate brain evolution. Integr. Comp. Biol. 42:4743–56
    [Google Scholar]
  114. Northmore DPM, Levine ES, Schneider GE 1988. Behavior evoked by electrical stimulation of the hamster superior colliculus. Exp. Brain Res. 73:3595–605
    [Google Scholar]
  115. O'Keefe J, Nadel L. 1978. The Hippocampus as a Cognitive Map Oxford, UK: Clarendon Press
  116. Paré D, Quirk GJ, Ledoux JE 2004. New vistas on amygdala networks in conditioned fear. J. Neurophysiol. 92:11–9
    [Google Scholar]
  117. Peek MY, Card GM. 2016. Comparative approaches to escape. Curr. Opin. Neurobiol. 41:167–73
    [Google Scholar]
  118. Pérez-Fernández J, Kardamakis AA, Suzuki DG, Robertson B, Grillner S 2017. Direct dopaminergic projections from the SNc modulate visuomotor transformation in the lamprey tectum. Neuron 96:4910–24.e5
    [Google Scholar]
  119. Redgrave P, Dean P, Souki W, Lewis G 1981. Gnawing and changes in reactivity produced by microinjections of picrotoxin into the superior colliculus of rats. Psychopharmacology 75:2198–203
    [Google Scholar]
  120. Redgrave P, Marrow L, Dean P 1992. Topographical organization of the nigrotectal projection in rat: evidence for segregated channels. Neuroscience 50:3571–95
    [Google Scholar]
  121. Redgrave P, Mitchell IJ, Dean P 1987. Descending projections from the superior colliculus in rat: a study using orthograde transport of wheatgerm-agglutinin conjugated horseradish peroxidase. Exp. Brain Res. 68:1147–67
    [Google Scholar]
  122. Redgrave P, Prescott TJ, Gurney K 1999. The basal ganglia: a vertebrate solution to the selection problem. ? Neuroscience 89:41009–23
    [Google Scholar]
  123. Roberts AC, Pearce KC, Choe RC, Alzagatiti JB, Yeung AK et al. 2016. Long-term habituation of the C-start escape response in zebrafish larvae. Neurobiol. Learn. Mem. 134:360–68
    [Google Scholar]
  124. Robertson B, Kardamakis A, Capantini L, Pérez-Fernández J, Suryanarayana SM et al. 2014. The lamprey blueprint of the mammalian nervous system. Prog. Brain Res. 212:337–49
    [Google Scholar]
  125. Ryczko D, Dubuc R. 2013. The multifunctional mesencephalic locomotor region. Curr. Pharm. Des. 19:244448–70
    [Google Scholar]
  126. Sahibzada N, Dean P, Redgrave P 1986. Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci. 6:3723–33
    [Google Scholar]
  127. Sanes JR, Zipursky SL. 2010. Design principles of insect and vertebrate visual systems. Neuron 66:115–36
    [Google Scholar]
  128. Schadegg AC, Herberholz J. 2017. Satiation level affects anti-predatory decisions in foraging juvenile crayfish. J. Comp. Physiol. A 203:3223–32
    [Google Scholar]
  129. Schiff W, Caviness JA, Gibson JJ 1962. Persistent fear responses in rhesus monkeys to the optical stimulus of “looming. .” Science 136:3520982–83
    [Google Scholar]
  130. Seo C, Guru A, Jin M, Ito B, Sleezer BJ et al. 2019. Intense threat switches dorsal raphe serotonin neurons to a paradoxical operational mode. Science 363:6426538–42
    [Google Scholar]
  131. Seyfarth RM, Cheney DL, Marler P 1980. Monkey responses to three different alarm calls: Evidence of predator classification and semantic communication. Science 210:4471801–3
    [Google Scholar]
  132. Shang C, Chen Z, Liu A, Li Y, Zhang J et al. 2018. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun. 9:11232
    [Google Scholar]
  133. Shehab S, Simkins M, Dean P, Redgrave P 1995. The dorsal midbrain anticonvulsant zone—III. Effects of efferent pathway transections on suppression of electroshock seizures and defence-like reactions produced by local injections of bicuculline. Neuroscience 65:3697–708
    [Google Scholar]
  134. Shimazaki T, Tanimoto M, Oda Y, Higashijima S-I 2019. Behavioral role of the reciprocal inhibition between a pair of Mauthner cells during fast escapes in zebrafish. J. Neurosci. 39:71182–94
    [Google Scholar]
  135. Silva BA, Mattucci C, Krzywkowski P, Murana E, Illarionova A et al. 2013. Independent hypothalamic circuits for social and predator fear. Nat. Neurosci. 16:121731–33
    [Google Scholar]
  136. Stankowich T, Blumstein DT. 2005. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272:15812627–34
    [Google Scholar]
  137. Stein BE, Stanford TR, Rowland BA 2014. Development of multisensory integration from the perspective of the individual neuron. Nat. Rev. Neurosci. 15:8520–35
    [Google Scholar]
  138. Sternson SM, Betley JN, Cao ZFH 2013. Neural circuits and motivational processes for hunger. Curr. Opin. Neurobiol. 23:3353–60
    [Google Scholar]
  139. Striedter GF. 1997. The telencephalon of tetrapods in evolution. Brain Behav. Evol. 49:4179–94
    [Google Scholar]
  140. Suzuki DG, Pérez-Fernández J, Wibble T, Kardamakis AA, Grillner S 2019. The role of the optic tectum for visually evoked orienting and evasive movements. PNAS 116:3015272–81
    [Google Scholar]
  141. Swanson LW. 2006. The amygdala and its place in the cerebral hemisphere. Ann. N. Y. Acad. Sci. 985:1174–84
    [Google Scholar]
  142. Temizer I, Donovan JC, Baier H, Semmelhack JL 2015. A visual pathway for looming-evoked escape in larval zebrafish. Curr. Biol. 25:141823–34
    [Google Scholar]
  143. Tovote P, Esposito MS, Botta P, Chaudun F, Fadok JP et al. 2016. Midbrain circuits for defensive behavior. Nature 534:7606206–12
    [Google Scholar]
  144. Tovote P, Fadok JP, Lüthi A 2015. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16:6317–31
    [Google Scholar]
  145. Vale R, Evans DA, Branco T 2017. Rapid spatial learning controls instinctive defensive behavior in mice. Curr. Biol. 27:91342–49
    [Google Scholar]
  146. Van Essen D, Anderson C, Felleman D 1992. Information processing in the primate visual system: an integrated systems perspective. Science 255:5043419–23
    [Google Scholar]
  147. Vianna DML, Brandão ML. 2003. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz. J. Med. Biol. Res. 36:5557–66
    [Google Scholar]
  148. Wallace MT, Meredith MA, Stein BE 1998. Multisensory integration in the superior colliculus of the alert cat. J. Neurophysiol. 80:21006–10
    [Google Scholar]
  149. Wang L, Chen IZ, Lin D 2015. Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron 85:61344–58
    [Google Scholar]
  150. Wang Q, Burkhalter A. 2013. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex. J. Neurosci. 33:41696–705
    [Google Scholar]
  151. Wang X, Chou X, Peng B, Shen L, Huang JJ et al. 2019. A cross-modality enhancement of defensive flight via parvalbumin neurons in zonal incerta. eLife 8:e42728
    [Google Scholar]
  152. Wei P, Liu N, Zhang Z, Liu X, Tang Y et al. 2015. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6:6756
    [Google Scholar]
  153. Westby GW, Keay KA, Redgrave P, Dean P, Bannister M 1990. Output pathways from the rat superior colliculus mediating approach and avoidance have different sensory properties. Exp. Brain Res. 81:3626–38
    [Google Scholar]
  154. Wu L-Q, Niu YQ, Yang J, Wang SR 2005. Tectal neurons signal impending collision of looming objects in the pigeon. Eur. J. Neurosci. 22:92325–31
    [Google Scholar]
  155. Xiong XR, Liang F, Zingg B, Ji XY, Ibrahim LA et al. 2015. Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nat. Commun. 6:7224
    [Google Scholar]
  156. Yao Y, Li X, Zhang B, Yin C, Liu Y et al. 2016. Visual cue-discriminative dopaminergic control of visuomotor transformation and behavior selection. Neuron 89:3598–612
    [Google Scholar]
  157. Ydenberg RC, Dill LM. 1986. The economics of fleeing from predators. Adv. Study Behav. 16:C229–49
    [Google Scholar]
  158. Yilmaz M, Meister M. 2013. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23:202011–15
    [Google Scholar]
  159. Zahar Y, Wagner H, Gutfreund Y 2012. Responses of tectal neurons to contrasting stimuli: an electrophysiological study in the barn owl. PLOS ONE 7:6e39559
    [Google Scholar]
  160. Zemlan FP, Behbehani MM. 1984. Afferent projections to the nucleus cuneiformis in the rat. Neurosci. Lett. 52:103–9
    [Google Scholar]
  161. Zhao X, Liu M, Cang J 2014. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron 84:1202–13
    [Google Scholar]
  162. Zhou H, Schafer RJ, Desimone R 2016. Pulvinar-cortex interactions in vision and attention. Neuron 89:1209–20
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-100219-122527
Loading
/content/journals/10.1146/annurev-neuro-100219-122527
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error