1932

Abstract

When navigating through space, we must maintain a representation of our position in real time; when recalling a past episode, a memory can come back in a flash. Interestingly, the brain's spatial representation system, including the hippocampus, supports these two distinct timescale functions. How are neural representations of space used in the service of both real-world navigation and internal mnemonic processes? Recent progress has identified sequences of hippocampal place cells, evolving at multiple timescales in accordance with either navigational behaviors or internal oscillations, that underlie these functions. We review experimental findings on experience-dependent modulation of these sequential representations and consider how they link real-world navigation to time-compressed memories. We further discuss recent work suggesting the prevalence of these sequences beyond hippocampus and propose that these multiple-timescale mechanisms may represent a general algorithm for organizing cell assemblies, potentially unifying the dual roles of the spatial representation system in memory and navigation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-084824
2022-07-08
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-111020-084824.html?itemId=/content/journals/10.1146/annurev-neuro-111020-084824&mimeType=html&fmt=ahah

Literature Cited

  1. Ambrose RE, Pfeiffer BE, Foster DJ. 2016. Reverse replay of hippocampal place cells is uniquely modulated by changing reward. Neuron 91:1124–36
    [Google Scholar]
  2. Aronov D, Nevers R, Tank DW 2017. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature 543:719–22
    [Google Scholar]
  3. Atherton LA, Dupret D, Mellor JR. 2015. Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci. 38:560–70
    [Google Scholar]
  4. Averkin RG, Szemenyei V, Borde S, Tamas G 2016. Identified cellular correlates of neocortical ripple and high-gamma oscillations during spindles of natural sleep. Neuron 92:916–28
    [Google Scholar]
  5. Berners-Lee A, Wu X, Foster DJ. 2021. Prefrontal cortical neurons are selective for non-local hippocampal representations during replay and behavior. J. Neurosci. 41:5894–908
    [Google Scholar]
  6. Bhattarai B, Lee JW, Jung MW 2020. Distinct effects of reward and navigation history on hippocampal forward and reverse replays. PNAS 117:689–97
    [Google Scholar]
  7. Bi GQ, Poo MM. 1998. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18:10464–72
    [Google Scholar]
  8. Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ et al. 2015. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18:1133–42
    [Google Scholar]
  9. Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC. 2017. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357:1033–36
    [Google Scholar]
  10. Bota A, Goto A, Tsukamoto S, Schmidt A, Wolf F et al. 2021. Shared and unique properties of place cells in anterior cingulate cortex and hippocampus. bioRxiv 2021.03.29.437441. https://doi.org/10.1101/2021.03.29.437441
    [Crossref]
  11. Burgess N, O'Keefe J. 2011. Models of place and grid cell firing and theta rhythmicity. Curr. Opin. Neurobiol. 21:734–44
    [Google Scholar]
  12. Buzsáki G. 1989. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–70
    [Google Scholar]
  13. Buzsáki G. 2010. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68:362–85
    [Google Scholar]
  14. Buzsáki G. 2015. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25:1073–188
    [Google Scholar]
  15. Buzsáki G, Moser EI. 2013. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16:130–38
    [Google Scholar]
  16. Buzsáki G, Peyrache A, Kubie J 2014. Emergence of cognition from action. Cold Spring Harb. Symp. Quant. Biol. 79:41–50
    [Google Scholar]
  17. Buzsáki G, Tingley D. 2018. Space and time: the hippocampus as a sequence generator. Trends Cogn. Sci. 22:853–69
    [Google Scholar]
  18. Cabral HO, Fouquet C, Rondi-Reig L, Pennartz CM, Battaglia FP. 2014a. Single-trial properties of place cells in control and CA1 NMDA receptor subunit 1-KO mice. J. Neurosci. 34:15861–69
    [Google Scholar]
  19. Cabral HO, Vinck M, Fouquet C, Pennartz CM, Rondi-Reig L, Battaglia FP. 2014b. Oscillatory dynamics and place field maps reflect hippocampal ensemble processing of sequence and place memory under NMDA receptor control. Neuron 81:402–15
    [Google Scholar]
  20. Cacucci F, Wills TJ, Lever C, Giese KP, O'Keefe J. 2007. Experience-dependent increase in CA1 place cell spatial information, but not spatial reproducibility, is dependent on the autophosphorylation of the α-isoform of the calcium/calmodulin-dependent protein kinase II. J. Neurosci. 27:7854–59
    [Google Scholar]
  21. Carey AA, Tanaka Y, van der Meer MAA. 2019. Reward revaluation biases hippocampal replay content away from the preferred outcome. Nat. Neurosci. 22:1450–59
    [Google Scholar]
  22. Cei A, Girardeau G, Drieu C, Kanbi KE, Zugaro M. 2014. Reversed theta sequences of hippocampal cell assemblies during backward travel. Nat. Neurosci. 17:719–24
    [Google Scholar]
  23. Cheng S, Frank LM. 2008. New experiences enhance coordinated neural activity in the hippocampus. Neuron 57:303–13
    [Google Scholar]
  24. Chrobak JJ, Buzsáki G. 1996. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J. Neurosci. 16:3056–66
    [Google Scholar]
  25. Chung JE, Joo HR, Fan JL, Liu DF, Barnett AH et al. 2019. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron 101:21–31.e5
    [Google Scholar]
  26. Cohen JD, Bolstad M, Lee AK 2017. Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. eLife 6:e23040
    [Google Scholar]
  27. Colgin LL. 2013. Mechanisms and functions of theta rhythms. Annu. Rev. Neurosci. 36:295–312
    [Google Scholar]
  28. Courellis HS, Nummela SU, Metke M, Diehl GW, Bussell R et al. 2019. Spatial encoding in primate hippocampus during free navigation. PLOS Biol. 17:e3000546
    [Google Scholar]
  29. Daie K, Svoboda K, Druckmann S. 2021. Targeted photostimulation uncovers circuit motifs supporting short-term memory. Nat. Neurosci. 24:259–65
    [Google Scholar]
  30. Davidson TJ, Kloosterman F, Wilson MA 2009. Hippocampal replay of extended experience. Neuron 63:497–507
    [Google Scholar]
  31. Diba K, Buzsáki G. 2007. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10:1241–42
    [Google Scholar]
  32. Dragoi G. 2020. Cell assemblies, sequences and temporal coding in the hippocampus. Curr. Opin. Neurobiol. 64:111–18
    [Google Scholar]
  33. Dragoi G, Tonegawa S 2013. Development of schemas revealed by prior experience and NMDA receptor knock-out. eLife 2:e01326
    [Google Scholar]
  34. Drieu C, Todorova R, Zugaro M. 2018. Nested sequences of hippocampal assemblies during behavior support subsequent sleep replay. Science 362:675–79
    [Google Scholar]
  35. Drieu C, Zugaro M. 2019. Hippocampal sequences during exploration: mechanisms and functions. Front. Cell Neurosci. 13:232
    [Google Scholar]
  36. Dupret D, O'Neill J, Pleydell-Bouverie B, Csicsvari J. 2010. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13:995–1002
    [Google Scholar]
  37. Ego-Stengel V, Wilson MA. 2010. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20:1–10
    [Google Scholar]
  38. Eichenbaum H. 2014. Time cells in the hippocampus: a new dimension for mapping memories. Nat. Rev. Neurosci. 15:732–44
    [Google Scholar]
  39. Eichenbaum H, Cohen NJ. 2004. From Conditioning to Conscious Recollection: Memory Systems of the Brain Oxford, UK: Oxford Univ. Press
  40. Eichenbaum H, Cohen NJ. 2014. Can we reconcile the declarative memory and spatial navigation views on hippocampal function?. Neuron 83:764–70
    [Google Scholar]
  41. Ekstrom AD, Meltzer J, McNaughton BL, Barnes CA. 2001. NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields.”. Neuron 31:631–38
    [Google Scholar]
  42. El-Gaby M, Reeve HM, Lopes-Dos-Santos V, Campo-Urriza N, Perestenko PV et al. 2021. An emergent neural coactivity code for dynamic memory. Nat. Neurosci. 24:694–704
    [Google Scholar]
  43. Epsztein J, Brecht M, Lee AK. 2011. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70:109–20
    [Google Scholar]
  44. Esteves IM, Chang H, Neumann AR, Sun J, Mohajerani MH, McNaughton BL. 2021. Spatial information encoding across multiple neocortical regions depends on an intact hippocampus. J. Neurosci. 41:307–19
    [Google Scholar]
  45. Farooq U, Dragoi G. 2019. Emergence of preconfigured and plastic time-compressed sequences in early postnatal development. Science 363:168–73
    [Google Scholar]
  46. Feng T, Silva D, Foster DJ 2015. Dissociation between the experience-dependent development of hippocampal theta sequences and single-trial phase precession. J. Neurosci. 35:4890–902
    [Google Scholar]
  47. Fernández-Ruiz A, Oliva A, Fermino de Oliveira E, Rocha-Almeida F, Tingley D, Buzsáki G. 2019. Long-duration hippocampal sharp wave ripples improve memory. Science 364:1082–86
    [Google Scholar]
  48. Foster DJ, Wilson MA. 2006. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680–83
    [Google Scholar]
  49. Frank LM, Stanley GB, Brown EN. 2004. Hippocampal plasticity across multiple days of exposure to novel environments. J. Neurosci. 24:7681–89
    [Google Scholar]
  50. Fujisawa S, Amarasingham A, Harrison MT, Buzsáki G. 2008. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat. Neurosci. 11:823–33
    [Google Scholar]
  51. Gillespie AK, Astudillo Maya DA, Denovellis EL, Liu DF, Kastner DB et al. 2021. Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice. Neuron 109:314963
    [Google Scholar]
  52. Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. 2009. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12:1222–23
    [Google Scholar]
  53. Gomperts SN, Kloosterman F, Wilson MA 2015. VTA neurons coordinate with the hippocampal reactivation of spatial experience. eLife 4:e05360
    [Google Scholar]
  54. Grenier F, Timofeev I, Steriade M 2001. Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates. J. Neurophysiol. 86:1884–98
    [Google Scholar]
  55. Gridchyn I, Schoenenberger P, O'Neill J, Csicsvari J. 2020. Assembly-specific disruption of hippocampal replay leads to selective memory deficit. Neuron 106:291–300.e6
    [Google Scholar]
  56. Gupta AS, van der Meer MAA, Touretzky DS, Redish AD. 2010. Hippocampal replay is not a simple function of experience. Neuron 65:695–705
    [Google Scholar]
  57. Gupta AS, van der Meer MAA, Touretzky DS, Redish AD. 2012. Segmentation of spatial experience by hippocampal theta sequences. Nat. Neurosci. 15:1032–39
    [Google Scholar]
  58. Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI. 2008. Hippocampus-independent phase precession in entorhinal grid cells. Nature 453:1248–52
    [Google Scholar]
  59. Harvey CD, Coen P, Tank DW 2012. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484:62–68
    [Google Scholar]
  60. Hasz BM, Redish AD. 2020. Spatial encoding in dorsomedial prefrontal cortex and hippocampus is related during deliberation. Hippocampus 30:1194–208
    [Google Scholar]
  61. Hill AJ. 1978. First occurrence of hippocampal spatial firing in a new environment. Exp. Neurol. 62:282–97
    [Google Scholar]
  62. Huxter J, Burgess N, O'Keefe J. 2003. Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425:828–32
    [Google Scholar]
  63. Igata H, Ikegaya Y, Sasaki T. 2021. Prioritized experience replays on a hippocampal predictive map for learning. PNAS 118:e2011266118
    [Google Scholar]
  64. Imbrosci B, Nitzan N, McKenzie S, Donoso JR, Swaminathan A et al. 2021. Subiculum as a generator of sharp wave-ripples in the rodent hippocampus. Cell Rep. 35:109021
    [Google Scholar]
  65. Ito HT, Zhang SJ, Witter MP, Moser EI, Moser MB. 2015. A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 522:50–55
    [Google Scholar]
  66. Jadhav SP, Kemere C, German PW, Frank LM. 2012. Awake hippocampal sharp-wave ripples support spatial memory. Science 336:1454–58
    [Google Scholar]
  67. Jadhav SP, Rothschild G, Roumis DK, Frank LM. 2016. Coordinated excitation and inhibition of prefrontal ensembles during awake hippocampal sharp-wave ripple events. Neuron 90:113–27
    [Google Scholar]
  68. Jaramillo J, Kempter R. 2017. Phase precession: a neural code underlying episodic memory?. Curr. Opin. Neurobiol. 43:130–38
    [Google Scholar]
  69. Jarzebowski P, Tang CS, Paulsen O, Hay YA 2021. Impaired spatial learning and suppression of sharp wave ripples by cholinergic activation at the goal location. eLife 10:e65998
    [Google Scholar]
  70. Jensen O, Lisman JE. 1996. Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learn. Mem. 3:279–87
    [Google Scholar]
  71. Johnson A, Redish AD 2007. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27:12176–89
    [Google Scholar]
  72. Jones MW, Wilson MA. 2005. Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm. Hippocampus 15:867–73
    [Google Scholar]
  73. Joo HR, Frank LM. 2018. The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19:744–57
    [Google Scholar]
  74. Kaefer K, Nardin M, Blahna K, Csicsvari J. 2020. Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron 106:154–65.e6
    [Google Scholar]
  75. Karlsson MP, Frank LM. 2009. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 12:913–18
    [Google Scholar]
  76. Kay K, Chung JE, Sosa M, Schor JS, Karlsson MP et al. 2020. Constant sub-second cycling between representations of possible futures in the hippocampus. Cell 180:552–67.e25
    [Google Scholar]
  77. Kentros C, Hargreaves E, Hawkins RD, Kandel ER, Shapiro M, Muller RV. 1998. Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280:2121–26
    [Google Scholar]
  78. Khodagholy D, Gelinas JN, Buzsáki G. 2017. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358:369–72
    [Google Scholar]
  79. Kim K, Vöröslakos M, Seymour JP, Wise KD, Buzsáki G, Yoon E. 2020. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat. Commun. 11:2063
    [Google Scholar]
  80. Kim SM, Ganguli S, Frank LM 2012. Spatial information outflow from the hippocampal circuit: distributed spatial coding and phase precession in the subiculum. J. Neurosci. 32:11539–58
    [Google Scholar]
  81. Lee D, Lin BJ, Lee AK 2012. Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337:849–53
    [Google Scholar]
  82. Leutgeb S, Leutgeb JK, Treves A, Moser MB, Moser EI. 2004. Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305:1295–98
    [Google Scholar]
  83. Liu X, Kuzum D. 2019. Hippocampal-cortical memory trace transfer and reactivation through cell-specific stimulus and spontaneous background noise. Front. Comput. Neurosci. 13:67
    [Google Scholar]
  84. Liu X, Ren C, Lu Y, Liu Y, Kim JH et al. 2021. Multimodal neural recordings with Neuro-FITM uncover diverse patterns of cortical-hippocampal interactions. Nat. Neurosci. 24:886–96
    [Google Scholar]
  85. Long X, Zhang SJ 2021. A novel somatosensory spatial navigation system outside the hippocampal formation. Cell Res. 31:649–63
    [Google Scholar]
  86. Magee JC, Grienberger C. 2020. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43:95–117
    [Google Scholar]
  87. Magee JC, Johnston D. 1997. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–13
    [Google Scholar]
  88. Maingret N, Girardeau G, Todorova R, Goutierre M, Zugaro M. 2016. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat. Neurosci. 19:959–64
    [Google Scholar]
  89. Mao D, Avila E, Caziot B, Laurens J, Dickman JD, Angelaki DE 2021. Spatial modulation of hippocampal activity in freely moving macaques. Neuron109352134
    [Google Scholar]
  90. Mao D, Neumann AR, Sun J, Bonin V, Mohajerani MH, McNaughton BL. 2018. Hippocampus-dependent emergence of spatial sequence coding in retrosplenial cortex. PNAS 115:8015–18
    [Google Scholar]
  91. Mattar MG, Daw ND. 2018. Prioritized memory access explains planning and hippocampal replay. Nat. Neurosci. 21:1609–17
    [Google Scholar]
  92. McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA 1996. Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87:1339–49
    [Google Scholar]
  93. McKenzie S, Eichenbaum H 2011. Consolidation and reconsolidation: two lives of memories?. Neuron 71:224–33
    [Google Scholar]
  94. McKenzie S, Huszar R, English DF, Kim K, Christensen F et al. 2021. Preexisting hippocampal network dynamics constrain optogenetically induced place fields. Neuron 109:1040–54.e7
    [Google Scholar]
  95. McKenzie S, Nitzan N, English DF. 2020. Mechanisms of neural organization and rhythmogenesis during hippocampal and cortical ripples. Philos. Trans. R. Soc. B 375:20190237
    [Google Scholar]
  96. McNamee DC, Stachenfeld KL, Botvinick MM, Gershman SJ. 2021. Flexible modulation of sequence generation in the entorhinal-hippocampal system. Nat. Neurosci. 24:851–62
    [Google Scholar]
  97. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. 2006. Path integration and the neural basis of the ‘cognitive map. ’. Nat. Rev. Neurosci. 7:663–78
    [Google Scholar]
  98. Mehta MR, Lee AK, Wilson MA. 2002. Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–46
    [Google Scholar]
  99. Mehta MR, Quirk MC, Wilson MA. 2000. Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25:707–15
    [Google Scholar]
  100. Michon F, Krul E, Sun JJ, Kloosterman F. 2021. Single-trial dynamics of hippocampal spatial representations are modulated by reward value. Curr. Biol. 31:442335.e5
    [Google Scholar]
  101. Michon F, Sun JJ, Kim CY, Ciliberti D, Kloosterman F 2019. Post-learning hippocampal replay selectively reinforces spatial memory for highly rewarded locations. Curr. Biol. 29:1436–44.e5
    [Google Scholar]
  102. Miller EK, Lundqvist M, Bastos AM. 2018. Working memory 2.0. Neuron 100:463–75
    [Google Scholar]
  103. Mishra RK, Kim S, Guzman SJ, Jonas P. 2016. Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks. Nat. Commun. 7:11552
    [Google Scholar]
  104. Mizumori SJ, Perez GM, Alvarado MC, Barnes CA, McNaughton BL. 1990. Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Res. 528:12–20
    [Google Scholar]
  105. Monaco JD, Rao G, Roth ED, Knierim JJ 2014. Attentive scanning behavior drives one-trial potentiation of hippocampal place fields. Nat. Neurosci. 17:725–31
    [Google Scholar]
  106. Moser EI, Kropff E, Moser MB 2008. Place cells, grid cells, and the brain's spatial representation system. Annu. Rev. Neurosci. 31:69–89
    [Google Scholar]
  107. Moser MB, Rowland DC, Moser EI. 2015. Place cells, grid cells, and memory. Cold Spring Harb. Perspect. Biol. 7:a021808
    [Google Scholar]
  108. Muessig L, Lasek M, Varsavsky I, Cacucci F, Wills TJ 2019. Coordinated emergence of hippocampal replay and theta sequences during post-natal development. Curr. Biol. 29:834–40.e4
    [Google Scholar]
  109. Nakazawa K, Sun LD, Quirk MC, Rondi-Reig L, Wilson MA, Tonegawa S 2003. Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 38:305–15
    [Google Scholar]
  110. Navratilova Z, Hoang LT, Schwindel CD, Tatsuno M, McNaughton BL 2012. Experience-dependent firing rate remapping generates directional selectivity in hippocampal place cells. Front. Neural Circuits 6:6
    [Google Scholar]
  111. Newman EL, Venditto SJC, Climer JR, Petter EA, Gillet SN, Levy S. 2017. Precise spike timing dynamics of hippocampal place cell activity sensitive to cholinergic disruption. Hippocampus 27:1069–82
    [Google Scholar]
  112. Nishimura Y, Ikegaya Y, Sasaki T. 2021. Prefrontal synaptic activation during hippocampal memory reactivation. Cell Rep. 34:108885
    [Google Scholar]
  113. O'Keefe J, Dostrovsky J 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–75
    [Google Scholar]
  114. O'Keefe J, Nadel L 1978. The Hippocampus as a Cognitive Map London: Oxford Univ. Press
  115. Ólafsdóttir HF, Carpenter F, Barry C. 2016. Coordinated grid and place cell replay during rest. Nat. Neurosci. 19:792–94
    [Google Scholar]
  116. Ólafsdóttir HF, Carpenter F, Barry C. 2017. Task demands predict a dynamic switch in the content of awake hippocampal replay. Neuron 96:925–35.e6
    [Google Scholar]
  117. O'Neill J, Boccara CN, Stella F, Schoenenberger P, Csicsvari J 2017. Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science 355:184–88
    [Google Scholar]
  118. Panzeri S, Brunel N, Logothetis NK, Kayser C. 2010. Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 33:111–20
    [Google Scholar]
  119. Papale AE, Zielinski MC, Frank LM, Jadhav SP, Redish AD. 2016. Interplay between hippocampal sharp-wave-ripple events and vicarious trial and error behaviors in decision making. Neuron 92:975–82
    [Google Scholar]
  120. Pastalkova E, Itskov V, Amarasingham A, Buzsáki G 2008. Internally generated cell assembly sequences in the rat hippocampus. Science 321:1322–27
    [Google Scholar]
  121. Petersen PC, Buzsáki G. 2020. Cooling of medial septum reveals theta phase lag coordination of hippocampal cell assemblies. Neuron 107:731–44.e3
    [Google Scholar]
  122. Pezzulo G, Donnarumma F, Maisto D, Stoianov I 2019. Planning at decision time and in the background during spatial navigation. Curr. Opin. Behav. Sci. 29:69–76
    [Google Scholar]
  123. Pezzulo G, van der Meer MA, Lansink CS, Pennartz CM. 2014. Internally generated sequences in learning and executing goal-directed behavior. Trends Cogn. Sci. 18:647–57
    [Google Scholar]
  124. Pfeiffer BE. 2020. The content of hippocampal “replay. .” Hippocampus 30:6–18
    [Google Scholar]
  125. Pfeiffer BE, Foster DJ. 2013. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497:74–79
    [Google Scholar]
  126. Qasim SE, Fried I, Jacobs J. 2021. Phase precession in the human hippocampus and entorhinal cortex. Cell 184:3242–55.e10
    [Google Scholar]
  127. Redish AD. 2016. Vicarious trial and error. Nat. Rev. Neurosci. 17:147–59
    [Google Scholar]
  128. Rickgauer JP, Deisseroth K, Tank DW 2014. Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17:1816–24
    [Google Scholar]
  129. Robbe D, Buzsáki G. 2009. Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment. J. Neurosci. 29:12597–605
    [Google Scholar]
  130. Robinson NTM, Descamps LAL, Russell LE, Buchholz MO, Bicknell BA et al. 2020. Targeted activation of hippocampal place cells drives memory-guided spatial behavior. Cell 183:1586–99.e10
    [Google Scholar]
  131. Saleem AB, Diamanti EM, Fournier J, Harris KD, Carandini M 2018. Coherent encoding of subjective spatial position in visual cortex and hippocampus. Nature 562:124–27
    [Google Scholar]
  132. Sheffield MEJ, Adoff MD, Dombeck DA. 2017. Increased prevalence of calcium transients across the dendritic arbor during place field formation. Neuron 96:490–504.e5
    [Google Scholar]
  133. Sheffield MEJ, Dombeck DA. 2019. Dendritic mechanisms of hippocampal place field formation. Curr. Opin. Neurobiol. 54:1–11
    [Google Scholar]
  134. Shimbo A, Izawa EI, Fujisawa S. 2021. Scalable representation of time in the hippocampus. Sci. Adv. 7:eabd7013
    [Google Scholar]
  135. Shin JD, Tang W, Jadhav SP. 2019. Dynamics of awake hippocampal-prefrontal replay for spatial learning and memory-guided decision making. Neuron 104:1110–25.e7
    [Google Scholar]
  136. Silva D, Feng T, Foster DJ. 2015. Trajectory events across hippocampal place cells require previous experience. Nat. Neurosci. 18:1772–79
    [Google Scholar]
  137. Singer AC, Carr MF, Karlsson MP, Frank LM. 2013. Hippocampal SWR activity predicts correct decisions during the initial learning of an alternation task. Neuron 77:1163–73
    [Google Scholar]
  138. Singer AC, Frank LM. 2009. Rewarded outcomes enhance reactivation of experience in the hippocampus. Neuron 64:910–21
    [Google Scholar]
  139. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA 1996. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–72
    [Google Scholar]
  140. Sosa M, Giocomo LM. 2021. Navigating for reward. Nat. Rev. Neurosci. 22:472–87
    [Google Scholar]
  141. Spellman T, Rigotti M, Ahmari SE, Fusi S, Gogos JA, Gordon JA. 2015. Hippocampal-prefrontal input supports spatial encoding in working memory. Nature 522:309–14
    [Google Scholar]
  142. Squire LR. 1992. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99:195–231
    [Google Scholar]
  143. Stark E, Roux L, Eichler R, Senzai Y, Royer S, Buzsáki G. 2014. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron 83:467–80
    [Google Scholar]
  144. Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M et al. 2021. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372:abf4588
    [Google Scholar]
  145. Stella F, Baracskay P, O'Neill J, Csicsvari J. 2019. Hippocampal reactivation of random trajectories resembling Brownian diffusion. Neuron 102:450–61.e7
    [Google Scholar]
  146. Swanson RA, Levenstein D, McClain K, Tingley D, Buzsáki G 2020. Variable specificity of memory trace reactivation during hippocampal sharp wave ripples. Curr. Opin. Behav. Sci. 32:126–35
    [Google Scholar]
  147. Tang W, Jadhav SP. 2019. Sharp-wave ripples as a signature of hippocampal-prefrontal reactivation for memory during sleep and waking states. Neurobiol. Learn. Mem. 160:11–20
    [Google Scholar]
  148. Tang W, Shin JD, Frank LM, Jadhav SP. 2017. Hippocampal-prefrontal reactivation during learning is stronger in awake compared with sleep states. J. Neurosci. 37:11789–805
    [Google Scholar]
  149. Tang W, Shin JD, Jadhav SP 2021. Multiple time-scales of decision-making in the hippocampus and prefrontal cortex. eLife 10:e66227
    [Google Scholar]
  150. Terada S, Sakurai Y, Nakahara H, Fujisawa S. 2017. Temporal and rate coding for discrete event sequences in the hippocampus. Neuron 94:1248–62.e4
    [Google Scholar]
  151. Thompson LT, Best PJ. 1989. Place cells and silent cells in the hippocampus of freely-behaving rats. J. Neurosci. 9:2382–90
    [Google Scholar]
  152. Tingley D, Buzsáki G. 2018. Transformation of a spatial map across the hippocampal-lateral septal circuit. Neuron 98:1229–42.e5
    [Google Scholar]
  153. Tingley D, McClain K, Kaya E, Carpenter J, Buzsáki G. 2021. A metabolic function of the hippocampal sharp wave-ripple. Nature 597:82–86
    [Google Scholar]
  154. Umbach G, Kantak P, Jacobs J, Kahana M, Pfeiffer BE et al. 2020. Time cells in the human hippocampus and entorhinal cortex support episodic memory. PNAS 117:28463–74
    [Google Scholar]
  155. van der Meer MAA, Redish AD. 2011. Theta phase precession in rat ventral striatum links place and reward information. J. Neurosci. 31:2843–54
    [Google Scholar]
  156. Vaz AP, Inati SK, Brunel N, Zaghloul KA. 2019. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science 363:975–78
    [Google Scholar]
  157. Vaz AP, Wittig JH Jr., Inati SK, Zaghloul KA. 2020. Replay of cortical spiking sequences during human memory retrieval. Science 367:1131–34
    [Google Scholar]
  158. Venditto SJC, Le B, Newman EL. 2019. Place cell assemblies remain intact, despite reduced phase precession, after cholinergic disruption. Hippocampus 29:1075–90
    [Google Scholar]
  159. Vöröslakos M, Petersen PC, Vöröslakos B, Buzsáki G 2021. Metal microdrive and head cap system for silicon probe recovery in freely moving rodent. eLife 10:e65859
    [Google Scholar]
  160. Wang M, Foster DJ, Pfeiffer BE. 2020. Alternating sequences of future and past behavior encoded within hippocampal theta oscillations. Science 370:247–50
    [Google Scholar]
  161. Wang Y, Romani S, Lustig B, Leonardo A, Pastalkova E 2015. Theta sequences are essential for internally generated hippocampal firing fields. Nat. Neurosci. 18:282–88
    [Google Scholar]
  162. Wikenheiser AM, Gardner MPH, Mueller LE, Schoenbaum G. 2021. Spatial representations in rat orbitofrontal cortex. J. Neurosci. 41:6933–45
    [Google Scholar]
  163. Wikenheiser AM, Redish AD. 2015. Hippocampal theta sequences reflect current goals. Nat. Neurosci. 18:289–94
    [Google Scholar]
  164. Wilber AA, Skelin I, Wu W, McNaughton BL. 2017. Laminar organization of encoding and memory reactivation in the parietal cortex. Neuron 95:1406–19.e5
    [Google Scholar]
  165. Wilson MA, McNaughton BL. 1993. Dynamics of the hippocampal ensemble code for space. Science 261:1055–58
    [Google Scholar]
  166. Winson J. 1978. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201:160–63
    [Google Scholar]
  167. Wu C-T, Haggerty D, Kemere C, Ji D 2017. Hippocampal awake replay in fear memory retrieval. Nat. Neurosci. 20:571–80
    [Google Scholar]
  168. Wu X, Foster DJ. 2014. Hippocampal replay captures the unique topological structure of a novel environment. J. Neurosci. 34:6459–69
    [Google Scholar]
  169. Xu H, Baracskay P, O'Neill J, Csicsvari J. 2019. Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze. Neuron 101:119–32.e4
    [Google Scholar]
  170. Yamamoto J, Tonegawa S. 2017. Direct medial entorhinal cortex input to hippocampal CA1 is crucial for extended quiet awake replay. Neuron 96:217–27.e4
    [Google Scholar]
  171. Yu JY, Frank LM 2015. Hippocampal-cortical interaction in decision making. Neurobiol. Learn. Mem. 117:34–41
    [Google Scholar]
  172. Yu JY, Liu DF, Loback A, Grossrubatscher I, Frank LM 2018. Specific hippocampal representations are linked to generalized cortical representations in memory. Nat. Commun. 9:2209
    [Google Scholar]
  173. Zhang Y, Cao L, Varga V, Jing M, Karadas M et al. 2021. Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory. PNAS 118:e2016432118
    [Google Scholar]
  174. Zhang Z, Russell LE, Packer AM, Gauld OM, Hausser M. 2018. Closed-loop all-optical interrogation of neural circuits in vivo. Nat. Methods 15:1037–40
    [Google Scholar]
  175. Zheng C, Hwaun E, Loza CA, Colgin LL. 2021. Hippocampal place cell sequences differ during correct and error trials in a spatial memory task. Nat. Commun. 12:3373
    [Google Scholar]
  176. Zielinski MC, Shin JD, Jadhav SP. 2019. Coherent coding of spatial position mediated by theta oscillations in the hippocampus and prefrontal cortex. J. Neurosci. 39:4550–65
    [Google Scholar]
  177. Zielinski MC, Tang W, Jadhav SP. 2020. The role of replay and theta sequences in mediating hippocampal-prefrontal interactions for memory and cognition. Hippocampus 30:60–72
    [Google Scholar]
  178. Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK et al. 2013. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16:264–66
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-084824
Loading
/content/journals/10.1146/annurev-neuro-111020-084824
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error