1932

Abstract

Organoids are 3D cell culture systems derived from human pluripotent stem cells that contain tissue resident cell types and reflect features of early tissue organization. Neural organoids are a particularly innovative scientific advance given the lack of accessibility of developing human brain tissue and intractability of neurological diseases. Neural organoids have become an invaluable approach to model features of human brain development that are not well reflected in animal models. Organoids also hold promise for the study of atypical cellular, molecular, and genetic features that underscore neurological diseases. Additionally, organoids may provide a platform for testing therapeutics in human cells and are a potential source for cell replacement approaches to brain injury or disease. Despite the promising features of organoids, their broad utility is tempered by a variety of limitations yet to be overcome, including lack of high-fidelity cell types, limited maturation, atypical physiology, and lack of arealization, features that may limit their reliability for certain applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-090812
2022-07-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-111020-090812.html?itemId=/content/journals/10.1146/annurev-neuro-111020-090812&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott NJ, Rönnbäck L, Hansson E 2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7:141–53
    [Google Scholar]
  2. Allison TF, Lowry WE. 2017. The reprogramming method matters. Nat. Biomed. Eng. 1:10779–81
    [Google Scholar]
  3. Amiri A, Coppola G, Scuderi S, Wu F, Roychowdhury T et al. 2018. Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362:6420aat6720
    [Google Scholar]
  4. Andersen J, Revah O, Miura Y, Thom N, Amin ND et al. 2020. Generation of functional human 3D cortico-motor assembloids. Cell 183:71913–29.e26
    [Google Scholar]
  5. Andrews MG, Mukhtar T, Eze UC, Simoneau CR, Perez Y et al. 2021. Tropism of SARS-CoV-2 for developing human cortical astrocytes. bioRxiv 2021.01.17.427024. https://doi.org/10.1101/2021.01.17.427024
    [Crossref]
  6. Andrews MG, Subramanian L, Kriegstein AR 2020. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. eLife 9:e58737
    [Google Scholar]
  7. Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M et al. 2018. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front. Cell Neurosci. 12:488
    [Google Scholar]
  8. Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA. 2017. Fused cerebral organoids model interactions between brain regions. Nat. Methods 14:7743–51
    [Google Scholar]
  9. Bano D, Zanetti F, Mende Y, Nicotera P. 2011. Neurodegenerative processes in Huntington's disease. Cell Death Dis. 2:e228
    [Google Scholar]
  10. Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D et al. 2020. Huntington's disease alters human neurodevelopment. Science 369:6505787–93
    [Google Scholar]
  11. Benito-Kwiecinski S, Giandomenico SL, Sutcliffe M, Riis ES, Freire-Pritchett P et al. 2021. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 184:2084102.e19
    [Google Scholar]
  12. Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A et al. 2017. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20:4435–49.e4
    [Google Scholar]
  13. Bhaduri A, Andrews MG, Kriegstein AR, Nowakowski TJ. 2020a. Are organoids ready for prime time?. Cell Stem Cell 27:361–65
    [Google Scholar]
  14. Bhaduri A, Andrews MG, Mancia Leon W, Jung D, Shin D et al. 2020b. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578:7793142–48
    [Google Scholar]
  15. Birey F, Andersen J, Makinson CD, Islam S, Wei W et al. 2017. Assembly of functionally integrated human forebrain spheroids. Nature 545:765254–59
    [Google Scholar]
  16. Cadwell CR, Bhaduri A, Mostajo-Radji MA, Keefe MG, Nowakowski TJ 2019. Development and arealization of the cerebral cortex. Neuron 103:6980–1004
    [Google Scholar]
  17. Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M et al. 2019. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16:111169–75
    [Google Scholar]
  18. Camp JG, Badsha F, Florio M, Kanton S, Gerber T et al. 2015. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. PNAS 112:5115672–77
    [Google Scholar]
  19. Cederquist GY, Asciolla JJ, Tchieu J, Walsh RM, Cornacchia D et al. 2019. Specification of positional identity in forebrain organoids. Nat. Biotechnol. 37:4436–44
    [Google Scholar]
  20. Chen S, Han Y, Yang L, Kim T, Nair M et al. 2021. SARS-CoV-2 infection causes dopaminergic neuron senescence. Res. Sq. 513461. https://www.researchsquare.com/article/rs-513461/v1
  21. Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S et al. 2014. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 515:7526274–78
    [Google Scholar]
  22. Chung W-S, Allen NJ, Eroglu C. 2015. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol. 7:9a020370
    [Google Scholar]
  23. Conforti P, Besusso D, Bocchi VD, Faedo A, Cesana E et al. 2018. Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. PNAS 115:4E762–71
    [Google Scholar]
  24. Cowan CM, Raymond LA. 2006. Selective neuronal degeneration in Huntington's disease. Curr. Top. Dev. Biol. 75:25–71
    [Google Scholar]
  25. Dauer W, Przedborski S. 2003. Parkinson's disease: mechanisms and models. Neuron 39:6889–909
    [Google Scholar]
  26. D'Gama AM, Woodworth MB, Hossain AA, Bizzotto S, Hatem NE et al. 2017. Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. Cell Rep. 21:133754–66
    [Google Scholar]
  27. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E et al. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:734151–56
    [Google Scholar]
  28. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S et al. 2008. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:5519–32
    [Google Scholar]
  29. Esk C, Lindenhofer D, Haendeler S, Wester RA, Pflug F et al. 2020. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science 370:6519935–41
    [Google Scholar]
  30. Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. 2020. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. bioRxiv 2020.03.06.981423. https://doi.org/10.1101/2020.03.06.981423
    [Crossref]
  31. Giandomenico SL, Mierau SB, Gibbons GM, Wenger LMD, Masullo L et al. 2019. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22:4669–79
    [Google Scholar]
  32. Gordon A, Yoon S-J, Tran SS, Makinson CD, Park JY et al. 2021. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24:3331–42
    [Google Scholar]
  33. Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H et al. 2019. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun. 10:15816
    [Google Scholar]
  34. Jacob F, Pather SR, Huang W-K, Zhang F, Wong SZH et al. 2020. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell 27:6937–50.e9
    [Google Scholar]
  35. Javaherian A, Kriegstein A. 2009. A stem cell niche for intermediate progenitor cells of the embryonic cortex. Cereb. Cortex 19:Suppl. 1i70–77
    [Google Scholar]
  36. Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran H-D et al. 2016. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19:2248–57
    [Google Scholar]
  37. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S et al. 2013. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. PNAS 110:5020284–89
    [Google Scholar]
  38. Kelava I, Lancaster MA. 2016. Stem cell models of human brain development. Cell Stem Cell 18:6736–48
    [Google Scholar]
  39. Kim TW, Piao J, Koo SY, Kriks S, Chung SY et al. 2021. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use. Cell Stem Cell 28:2343–55.e5
    [Google Scholar]
  40. Kwon HS, Koh S-H. 2020. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9:142
    [Google Scholar]
  41. Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C et al. 2016. Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Rep. 6:2200–12
    [Google Scholar]
  42. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS et al. 2013. Cerebral organoids model human brain development and microcephaly. Nature 501:7467373–79
    [Google Scholar]
  43. Li Y, Muffat J, Omer A, Bosch I, Lancaster MA et al. 2017. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20:3385–96.e3
    [Google Scholar]
  44. Lin Y-T, Seo J, Gao F, Feldman HM, Wen H-L et al. 2018. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types. Neuron 98:61141–54.e7
    [Google Scholar]
  45. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L et al. 2015. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162:2375–90
    [Google Scholar]
  46. Mariani J, Simonini MV, Palejev D, Tomasini L, Coppola G et al. 2012. Modeling human cortical development in vitro using induced pluripotent stem cells. PNAS 109:3112770–75
    [Google Scholar]
  47. Marton RM, Miura Y, Sloan SA, Li Q, Revah O et al. 2019. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat. Neurosci. 22:3484–91
    [Google Scholar]
  48. McGeer PL, McGeer EG. 1998. Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis. Assoc. Disord. 12:Suppl. 2S1–6
    [Google Scholar]
  49. McMahon CL, Staples H, Gazi M, Carrion R, Hsieh J. 2021. SARS-CoV-2 targets glial cells in human cortical organoids. Stem Cell Rep 16:51156–64
    [Google Scholar]
  50. Mirzaa GM, Campbell CD, Solovieff N, Goold C, Jansen LA et al. 2016. Association of MTOR mutations with developmental brain disorders, including megalencephaly, focal cortical dysplasia, and pigmentary mosaicism. JAMA Neurol. 73:7836–45
    [Google Scholar]
  51. Muffat J, Li Y, Yuan B, Mitalipova M, Omer A et al. 2016. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22:111358–67
    [Google Scholar]
  52. Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. 2015. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10:4537–50
    [Google Scholar]
  53. Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR 2016. Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell 18:5591–96
    [Google Scholar]
  54. Ormel PR, Vieira de Sá R, van Bodegraven EJ, Karst H, Harschnitz O et al. 2018. Microglia innately develop within cerebral organoids. Nat. Commun. 9:14167
    [Google Scholar]
  55. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333:60481456–58
    [Google Scholar]
  56. Paşca AM, Park J-Y, Shin H-W, Qi Q, Revah O et al. 2019. Human 3D cellular model of hypoxic brain injury of prematurity. Nat. Med. 25:5784–91
    [Google Scholar]
  57. Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD et al. 2015. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12:7671–78
    [Google Scholar]
  58. Pellegrini L, Albecka A, Mallery DL, Kellner MJ, Paul D et al. 2020a. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell 27:6951–61.e5
    [Google Scholar]
  59. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster MA. 2020b. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 369:6500eaaz5626
    [Google Scholar]
  60. Piao J, Zabierowski S, Dubose BN, Hill EJ, Navare M et al. 2021. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell 28:2217–29.e7
    [Google Scholar]
  61. Pollen AA, Bhaduri A, Andrews MG, Nowakowski TJ, Meyerson OS et al. 2019. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176:4743–56.e17
    [Google Scholar]
  62. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC et al. 2016. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:51238–54
    [Google Scholar]
  63. Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR et al. 2020. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26:5766–81.e9
    [Google Scholar]
  64. Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Yang SM et al. 2017. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545:765248–53
    [Google Scholar]
  65. Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT et al. 2016. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. PNAS 113:5014408–13
    [Google Scholar]
  66. Rojas P, Ramírez AI, Fernández-Albarral JA, López-Cuenca I, Salobrar-García E et al. 2020. Amyotrophic lateral sclerosis: a neurodegenerative motor neuron disease with ocular involvement. Front. Neurosci. 14:566858
    [Google Scholar]
  67. Rowland LP, Shneider NA. 2001. Amyotrophic lateral sclerosis. N. Engl. J. Med. 344:221688–700
    [Google Scholar]
  68. Sasai Y, Eiraku M, Suga H. 2012. In vitro organogenesis in three dimensions: self-organising stem cells. Development 139:224111–21
    [Google Scholar]
  69. Shah K, Bedi R, Rogozhnikov A, Ramkumar P, Tong Z et al. 2020. Optimization and scaling of patient-derived brain organoids uncovers deep phenotypes of disease. bioRxiv 2020.08.26.251611. https://doi.org/10.1101/2020.08.26.251611
    [Crossref]
  70. Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM et al. 2010. Dysregulation of mTOR signaling in fragile X syndrome. J. Neurosci. 30:2694–702
    [Google Scholar]
  71. Shi Y, Sun L, Wang M, Liu J, Zhong S et al. 2020. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLOS Biol. 18:5e3000705
    [Google Scholar]
  72. Sloan SA, Darmanis S, Huber N, Khan TA, Birey F et al. 2017. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95:4779–90.e6
    [Google Scholar]
  73. Stubbs D, DeProto J, Nie K, Englund C, Mahmud I et al. 2009. Neurovascular congruence during cerebral cortical development. Cereb. Cortex 19:Suppl. 1i32–41
    [Google Scholar]
  74. Subramanian L, Bershteyn M, Paredes MF, Kriegstein AR. 2017. Dynamic behaviour of human neuroepithelial cells in the developing forebrain. Nat. Commun. 8:14167
    [Google Scholar]
  75. Sulzer D, Surmeier DJ. 2013. Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov. Disord. 28:141–50
    [Google Scholar]
  76. Svoboda DS, Barrasa MI, Shu J, Rietjens R, Zhang S et al. 2019. Human iPSC-derived microglia assume a primary microglia-like state after transplantation into the neonatal mouse brain. PNAS 116:5025293–303
    [Google Scholar]
  77. Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J et al. 2019. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25:4558–69.e7
    [Google Scholar]
  78. Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M et al. 2019. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570:523–27
    [Google Scholar]
  79. Wang L, Sievert D, Clark AE, Lee S, Federman H et al. 2021. A human three-dimensional neural-perivascular “assembloid” promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nat. Med. 27:1600–6
    [Google Scholar]
  80. Watanabe M, Buth JE, Vishlaghi N, de la Torre-Ubieta L, Taxidis J et al. 2017. Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep. 21:2517–32
    [Google Scholar]
  81. Winden KD, Ebrahimi-Fakhari D, Sahin M. 2018. Abnormal mTOR activation in autism. Annu. Rev. Neurosci. 41:1–23
    [Google Scholar]
  82. Xiang Y, Tanaka Y, Cakir B, Patterson B, Kim K-Y et al. 2019. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell 24:3487–97.e7
    [Google Scholar]
  83. Xiang Y, Tanaka Y, Patterson B, Kang Y-J, Govindaiah G et al. 2017. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21:3383–98.e7
    [Google Scholar]
  84. Xu M, Lee EM, Wen Z, Cheng Y, Huang W-K et al. 2016. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 22:101101–7
    [Google Scholar]
  85. Zhao J, Fu Y, Yamazaki Y, Ren Y, Davis MD et al. 2020. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nat. Commun. 11:15540
    [Google Scholar]
  86. Zhou T, Tan L, Cederquist GY, Fan Y, Hartley BJ et al. 2017. High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 21:2274–83.e5
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-090812
Loading
/content/journals/10.1146/annurev-neuro-111020-090812
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error