1932

Abstract

The automation of one-loop amplitudes plays a key role in addressing several computational challenges for hadron collider phenomenology: They are needed for simulations including next-to-leading-order corrections, which can be large at hadron colliders. They also allow the exact computation of loop-induced processes. A high degree of automation has now been achieved in public codes that do not require expert knowledge and can be widely used in the high-energy physics community. In this article, we review many of the methods and tools used for the different steps of automated one-loop amplitude calculations: renormalization of the Lagrangian, derivation and evaluation of the amplitude, its decomposition onto a basis of scalar integrals and their subsequent evaluation, as well as computation of the rational terms.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Automated Computation of One-Loop Amplitudes
Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101917-020959
2018-10-19
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/nucl/68/1/annurev-nucl-101917-020959.html?itemId=/content/journals/10.1146/annurev-nucl-101917-020959&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Degrande C, Khoze VV, Mattelaer O Phys. Rev. D 94:085031 2016.
  2. 2.  Hirschi V, Mattelaer O J. High Energy Phys. 10:146 2015.
  3. 3.  Hahn T Comput. Phys. Commun. 140:418 2001.
  4. 4.  Agrawal S, Hahn T, Mirabella E Proc. Sci. SLL2012:046 2012.
  5. 5.  Vermaseren JAM arXiv:math-ph/0010025 [math-ph] 2000.
  6. 6.  Kuipers J, Ueda T, Vermaseren JAM, Vollinga J Comput. Phys. Commun. 184:1453 2013.
  7. 7.  Ruijl B, Ueda T, Vermaseren J arXiv:1707.06453 [hep-ph] 2017.
  8. 8.  Badger S, Biedermann B, Uwer P Comput. Phys. Commun. 182:1674 2011.
  9. 9.  Badger S, Biedermann B, Uwer P, Yundin V Comput. Phys. Commun. 184:1981 2013.
  10. 10.  Berger CF et al. Phys. Rev. D 78:036003 2008.
  11. 11.  van Hameren A, Papadopoulos CG, Pittau R J. High Energy Phys. 09:106 2009.
  12. 12.  Hirschi V et al. J. High Energy Phys. 05:044 2011.
  13. 13.  Cascioli F, Maierhofer P, Pozzorini S Phys. Rev. Lett. 108:111601 2012.
  14. 14.  Alwall J et al. J. High Energy Phys. 07:079 2014.
  15. 15.  Kallweit S et al. J. High Energy Phys. 04:012 2015.
  16. 16.  Actis S et al. J. High Energy Phys. 04:037 2013.
  17. 17.  Actis S et al. Comput. Phys. Commun. 214:140 2017.
  18. 18.  Chiesa M, Greiner N, Tramontano F J. Phys. G 43:013002 2016.
  19. 19.  Maltoni F, Paul K, Stelzer T, Willenbrock S Phys. Rev. D 67:014026 2003.
  20. 20.  Kilian W, Ohl T, Reuter J, Speckner C J. High Energy Phys. 10:022 2012.
  21. 21.  Wiesemann M et al. J. High Energy Phys. 02:132 2015.
  22. 22.  Denner A Fortschr. Phys. 41:307 1993.
  23. 23.  Degrande C et al. Phys. Rev. D 91:094005 2015.
  24. 24.  Denner A, Dittmaier S, Roth M, Wieders L Nucl. Phys. B 724:247 2005.
  25. 25.  Böhm M, Denner A, Joos H Gauge Theories of the Strong and Electroweak Interaction Stuttgart/Leipzig/ Wiesbaden, Ger.: Teubner 2001.
  26. 26.  Degrande C Comput. Phys. Commun. 197:239 2015.
  27. 27.  Alloul A et al. Comput. Phys. Commun. 185:2250 2014.
  28. 28.  Denner A, Lang JN, Uccirati S J. High Energy Phys. 07:087 2017.
  29. 29.  Fleischer J, Jegerlehner F Phys. Rev. D 23:2001 1981.
  30. 30.  Krause M et al. J. High Energy Phys. 09:143 2016.
  31. 31.  Denner A, Jenniches L, Lang JN, Sturm C J. High Energy Phys. 09:115 2016.
  32. 32.  Degrande C et al. Comput. Phys. Commun. 183:1201 2012.
  33. 33.  Berends FA, Giele WT Nucl. Phys. B 306:759 1988.
  34. 34.  Das G et al. Phys. Lett. B 770:507 2017.
  35. 35.  Degrande C, Maltoni F, Wang J, Zhang C Phys. Rev. D 91:034024 2015.
  36. 36.  Buarque Franzosi D, Zhang C Phys. Rev. D 91:114010 2015.
  37. 37.  Zhang C Phys. Rev. Lett. 116:162002 2016.
  38. 38.  Bessidskaia Bylund O et al. J. High Energy Phys. 05:052 2016.
  39. 39.  Maltoni F, Vryonidou E, Zhang C J. High Energy Phys. 10:123 2016.
  40. 40.  Degrande C et al. Eur. Phys. J. C 77:262 2017.
  41. 41.  Deutschmann N, Duhr C, Maltoni F, Vryonidou E J. High Energy Phys. 12:063 2017.
  42. 42.  Cullen G et al. Eur. Phys. J. C 72:1889 2012.
  43. 43.  Peraro T Comput. Phys. Commun. 185:2771 2014.
  44. 44.  Denner A, Dittmaier S, Hofer L Comput. Phys. Commun. 212:220 2017.
  45. 45.  Nogueira P J. Comput. Phys. 105:279 1993.
  46. 46.  van Hameren A J. High Energy Phys. 07:088 2009.
  47. 47.  de Aquino P et al. Comput. Phys. Commun. 183:2254 2012.
  48. 48.  Buccioni F, Pozzorini S, Zoller M Eur. Phys. J. C 78:70 2018.
  49. 49.  Buccioni F, Pozzorini S, Zoller M arXiv:1801.03772 [hep-ph] 2018.
  50. 50.  van Hameren A Comput. Phys. Commun. 182:2427 2011.
  51. 51.  Carrazza S, Ellis RK, Zanderighi G Comput. Phys. Commun. 209:134 2016.
  52. 52.  Denner A, Dittmaier S, Hofer L Proc. Sci. LL2014:071 2014.
  53. 53.  Denner A, Dittmaier S Nucl. Phys. B 844:199 2011.
  54. 54.  Passarino G, Veltman MJG Nucl. Phys. B 160:151 1979.
  55. 55.  Ossola G, Papadopoulos CG, Pittau R Nucl. Phys. B 763:147 2007.
  56. 56.  Ossola G, Papadopoulos CG, Pittau R J. High Energy Phys. 03:042 2008.
  57. 57.  Mastrolia P, Mirabella E, Peraro T J. High Energy Phys 06:095 2012. Erratum J. High Energy Phys. 11:128 2012.
    [Google Scholar]
  58. 58.  Hirschi V, Peraro T J. High Energy Phys. 06:060 2016.
  59. 59.  Ossola G, Papadopoulos CG, Pittau R J. High Energy Phys. 0805:004 2008.
  60. 60.  ’t Hooft G, Veltman M Nucl. Phys. B 44:189 1972.
  61. 61.  Bern Z, Kosower DA Nucl. Phys. B 379:451 1992.
  62. 62.  Kunszt Z, Signer A, Trocsanyi Z Nucl. Phys. B 411:397 1994.
  63. 63.  Catani S, Seymour MH, Trocsanyi Z Phys. Rev. D 55:6819 1997.
  64. 64.  Bern Z, De Freitas A, Dixon LJ, Wong HL Phys. Rev. D 66:085002 2002.
  65. 65.  Kreimer D arXiv:hep-ph/9401354 1993.
  66. 66.  Korner J, Kreimer D, Schilcher K Z. Phys. C 54:503 1992.
  67. 67.  Kreimer D Phys. Lett. B 237:59 1990.
  68. 68.  Bollini CG, Giambiagi JJ Phys. Lett. B 40:566 1972.
  69. 69.  Cicuta GM, Montaldi E Lett. Nuovo Cim. 4:329 1972.
  70. 70.  Ashmore JF Lett. Nuovo Cim. 4:289 1972.
  71. 71.  Breitenlohner P, Maison D Commun. Math. Phys. 52:11 1977.
  72. 72.  Breitenlohner P, Maison D Commun. Math. Phys. 52:55 1977.
  73. 73.  Breitenlohner P, Maison D Commun. Math. Phys. 52:39 1977.
  74. 74.  Bonneau G Phys. Lett. B 96:147 1980.
  75. 75.  Bonneau G Nucl. Phys. B 177:523 1981.
  76. 76.  Draggiotis P, Garzelli M, Papadopoulos C, Pittau R J. High Energy Phys. 0904:072 2009.
  77. 77.  Garzelli M, Malamos I, Pittau R J. High Energy Phys. 1001:040 2010.
  78. 78.  Shao HS, Zhang YJ J. High Energy Phys. 1206:112 2012.
  79. 79.  Garzelli M, Malamos I Eur. Phys. J. C 71:1605 2011.
/content/journals/10.1146/annurev-nucl-101917-020959
Loading
/content/journals/10.1146/annurev-nucl-101917-020959
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error