1932

Abstract

Despite great advances in treatment, cancer remains a leading cause of death worldwide. Diet can greatly impact health, while caloric restriction and fasting have putative benefits for disease prevention and longevity. Strong epidemiological associations exist between obesity and cancer, whereas healthy diets can reduce cancer risk. However, less is known about how diet might impact cancer once it has been diagnosed and particularly how diet can impact cancer treatment. In the present review, we discuss the links between obesity, diet, and cancer. We explore potential mechanisms by which diet can improve cancer outcomes, including through hormonal, metabolic, and immune/inflammatory effects, and present the limited clinical research that has been published in this arena. Though data are sparse, diet intervention may reduce toxicity, improve chemotherapy efficacy, and lower the risk of long-term complications in cancer patients. Thus, it is important that we understand and expand the science of this important but complex adjunctive cancer treatment strategy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-013120-041149
2020-08-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/nutr/40/1/annurev-nutr-013120-041149.html?itemId=/content/journals/10.1146/annurev-nutr-013120-041149&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A et al. 2012. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLOS ONE 7:e36197
    [Google Scholar]
  2. 2. 
    Akinyemiju T, Moore JX, Pisu M, Judd SE, Goodman M et al. 2018. A prospective study of obesity, metabolic health, and cancer mortality. Obesity 26:193–201
    [Google Scholar]
  3. 3. 
    Allen BG, Bhatia SK, Buatti JM, Brandt KE, Lindholm KE et al. 2013. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin. Cancer Res. 19:3905–13
    [Google Scholar]
  4. 4. 
    Allott EH, Masko EM, Freedland SJ 2013. Obesity and prostate cancer: weighing the evidence. Eur. Urol. 63:800–9
    [Google Scholar]
  5. 5. 
    Ananieva EA, Wilkinson AC. 2018. Branched-chain amino acid metabolism in cancer. Curr. Opin. Clin. Nutr. Metab. Care 21:64–70
    [Google Scholar]
  6. 6. 
    Anderson EK, Gutierrez DA, Hasty AH 2010. Adipose tissue recruitment of leukocytes. Curr. Opin. Lipidol. 21:172–77
    [Google Scholar]
  7. 7. 
    Bach PB, Schrag D, Brawley OW, Galaznik A, Yakren S, Begg CB 2002. Survival of blacks and whites after a cancer diagnosis. JAMA 287:2106–13
    [Google Scholar]
  8. 8. 
    Bao C, Yang X, Xu W, Luo H, Xu Z et al. 2013. Diabetes mellitus and incidence and mortality of kidney cancer: a meta-analysis. J. Diabetes Complicat. 27:357–64
    [Google Scholar]
  9. 9. 
    Barrington-Trimis JL, Cockburn M, Metayer C, Gauderman WJ, Wiemels J, McKean-Cowdin R 2017. Trends in childhood leukemia incidence over two decades from 1992 to 2013. Int. J. Cancer 140:1000–8
    [Google Scholar]
  10. 10. 
    Bauersfeld SP, Kessler CS, Wischnewsky M, Jaensch A, Steckhan N et al. 2018. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer 18:476
    [Google Scholar]
  11. 11. 
    Beeken RJ, Wilson R, McDonald L, Wardle J 2014. Body mass index and cancer screening: findings from the English Longitudinal Study of Ageing. J. Med. Screen. 21:76–81
    [Google Scholar]
  12. 12. 
    Behan JW, Yun JP, Proektor MP, Ehsanipour EA, Arutyunyan A et al. 2009. Adipocytes impair leukemia treatment in mice. Cancer Res 69:7867–74
    [Google Scholar]
  13. 13. 
    Berg AH, Scherer PE. 2005. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res. 96:939–49
    [Google Scholar]
  14. 14. 
    Berrigan D, Perkins SN, Haines DC, Hursting SD 2002. Adult-onset calorie restriction and fasting delay spontaneous tumorigenesis in p53-deficient mice. Carcinogenesis 23:817–22
    [Google Scholar]
  15. 15. 
    Bianchi G, Martella R, Ravera S, Marini C, Capitanio S et al. 2015. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget 6:11806–19
    [Google Scholar]
  16. 16. 
    Birt DF, Pour PM, Nagel DL, Barnett T, Blackwood D, Duysen E 1997. Dietary energy restriction does not inhibit pancreatic carcinogenesis by N-nitrosobis-2-(oxopropyl)amine in the Syrian hamster. Carcinogenesis 18:2107–11
    [Google Scholar]
  17. 17. 
    Blando J, Moore T, Hursting S, Jiang G, Saha A et al. 2011. Dietary energy balance modulates prostate cancer progression in Hi-Myc mice. Cancer Prev. Res. 4:2002–14
    [Google Scholar]
  18. 18. 
    Boileau TW, Liao Z, Kim S, Lemeshow S, Erdman JW Jr., SK Clinton 2003. Prostate carcinogenesis in N-methyl-N-nitrosourea (NMU)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets. J. Natl. Cancer Inst. 95:1578–86
    [Google Scholar]
  19. 19. 
    Bonorden MJ, Rogozina OP, Kluczny CM, Grossmann ME, Grambsch PL et al. 2009. Intermittent calorie restriction delays prostate tumor detection and increases survival time in TRAMP mice. Nutr. Cancer 61:265–75
    [Google Scholar]
  20. 20. 
    Brandhorst S, Wei M, Hwang S, Morgan TE, Longo VD 2013. Short-term calorie and protein restriction provide partial protection from chemotoxicity but do not delay glioma progression. Exp. Gerontol. 48:1120–28
    [Google Scholar]
  21. 21. 
    Buschemeyer WC III, Klink JC, Mavropoulos JC, Poulton SH, Demark-Wahnefried W et al. 2010. Effect of intermittent fasting with or without caloric restriction on prostate cancer growth and survival in SCID mice. Prostate 70:1037–43
    [Google Scholar]
  22. 22. 
    Cadoni E, Marongiu F, Fanti M, Serra M, Laconi E 2017. Caloric restriction delays early phases of carcinogenesis via effects on the tissue microenvironment. Oncotarget 8:36020–32
    [Google Scholar]
  23. 23. 
    Caffa I, D'Agostino V, Damonte P, Soncini D, Cea M et al. 2015. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition. Oncotarget 6:11820–32
    [Google Scholar]
  24. 24. 
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ 2003. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348:1625–38
    [Google Scholar]
  25. 25. 
    Carver DK, Barnes HJ, Anderson KE, Petitte JN, Whitaker R et al. 2011. Reduction of ovarian and oviductal cancers in calorie-restricted laying chickens. Cancer Prev. Res. 4:562–67
    [Google Scholar]
  26. 26. 
    Casagrande DS, Rosa DD, Umpierre D, Sarmento RA, Rodrigues CG, Schaan BD 2014. Incidence of cancer following bariatric surgery: systematic review and meta-analysis. Obes. Surg. 24:1499–509
    [Google Scholar]
  27. 27. 
    Chen Y, Ling L, Su G, Han M, Fan X et al. 2016. Effect of intermittent versus chronic calorie restriction on tumor incidence: a systematic review and meta-analysis of animal studies. Sci. Rep. 6:33739
    [Google Scholar]
  28. 28. 
    Chen Y, Wu F, Saito E, Lin Y, Song M et al. 2017. Association between type 2 diabetes and risk of cancer mortality: a pooled analysis of over 771,000 individuals in the Asia Cohort Consortium. Diabetologia 60:1022–32
    [Google Scholar]
  29. 29. 
    Choi IY, Lee C, Longo VD 2017. Nutrition and fasting mimicking diets in the prevention and treatment of autoimmune diseases and immunosenescence. Mol. Cell Endocrinol. 455:4–12
    [Google Scholar]
  30. 30. 
    Cleary MP, Hu X, Grossmann ME, Juneja SC, Dogan S et al. 2007. Prevention of mammary tumorigenesis by intermittent caloric restriction: Does caloric intake during refeeding modulate the response. Exp. Biol. Med. 232:70–80
    [Google Scholar]
  31. 31. 
    Conroy SM, Maskarinec G, Wilkens LR, White KK, Henderson BE, Kolonel LN 2011. Obesity and breast cancer survival in ethnically diverse postmenopausal women: the Multiethnic Cohort Study. Breast Cancer Res. Treat. 129:565–74
    [Google Scholar]
  32. 32. 
    Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW et al. 1996. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334:292–95
    [Google Scholar]
  33. 33. 
    Dalamaga M, Diakopoulos KN, Mantzoros CS 2012. The role of adiponectin in cancer: a review of current evidence. Endocr. Rev. 33:547–94
    [Google Scholar]
  34. 34. 
    Dang MT, Wehrli S, Dang CV, Curran T 2015. The ketogenic diet does not affect growth of Hedgehog pathway medulloblastoma in mice. PLOS ONE 10:e0133633
    [Google Scholar]
  35. 35. 
    de Groot S, Vreeswijk MP, Welters MJ, Gravesteijn G, Boei JJ et al. 2015. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer 15:652
    [Google Scholar]
  36. 36. 
    de la Cruz Bonilla M, Stemler KM, Jeter-Jones S, Fujimoto TN, Molkentine J et al. 2019. Fasting reduces intestinal radiotoxicity, enabling dose-escalated radiation therapy for pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 105:537–47
    [Google Scholar]
  37. 37. 
    De Lorenzo MS, Baljinnyam E, Vatner DE, Abarzua P, Vatner SF, Rabson AB 2011. Caloric restriction reduces growth of mammary tumors and metastases. Carcinogenesis 32:1381–87
    [Google Scholar]
  38. 38. 
    Deng X, Su R, Stanford S, Chen J 2018. Critical enzymatic functions of FTO in obesity and cancer. Front. Endocrinol. 9:396
    [Google Scholar]
  39. 39. 
    Diaz-Ruiz A, Di Francesco A, Carboneau BA, Levan SR, Pearson KJ et al. 2019. Benefits of caloric restriction in longevity and chemical-induced tumorigenesis are transmitted independent of NQO1. J. Gerontol. A Biol. Sci. Med. Sci. 74:155–62
    [Google Scholar]
  40. 40. 
    Dinu M, Abbate R, Gensini GF, Casini A, Sofi F 2017. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 57:3640–49
    [Google Scholar]
  41. 41. 
    Dogan S, Rogozina OP, Lokshin AE, Grande JP, Cleary MP 2010. Effects of chronic versus intermittent calorie restriction on mammary tumor incidence and serum adiponectin and leptin levels in MMTV-TGF-α mice at different ages. Oncol. Lett. 1:167–76
    [Google Scholar]
  42. 42. 
    Dong L, Yuan Y, Opansky C, Chen Y, Aguilera-Barrantes I et al. 2017. Diet-induced obesity links to ER positive breast cancer progression via LPA/PKD-1-CD36 signaling-mediated microvascular remodeling. Oncotarget 8:22550–62
    [Google Scholar]
  43. 43. 
    Dorff TB, Groshen S, Garcia A, Shah M, Tsao-Wei D et al. 2016. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer 16:360
    [Google Scholar]
  44. 44. 
    Duan T, Sun W, Zhang M, Ge J, He Y et al. 2017. Dietary restriction protects against diethylnitrosamine-induced hepatocellular tumorigenesis by restoring the disturbed gene expression profile. Sci. Rep. 7:43745
    [Google Scholar]
  45. 45. 
    Duell EJ, Lucenteforte E, Olson SH, Bracci PM, Li D et al. 2012. Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann. Oncol. 23:2964–70
    [Google Scholar]
  46. 46. 
    Dunlap SM, Chiao LJ, Nogueira L, Usary J, Perou CM et al. 2012. Dietary energy balance modulates epithelial-to-mesenchymal transition and tumor progression in murine claudin-low and basal-like mammary tumor models. Cancer Prev. Res. 5:930–42
    [Google Scholar]
  47. 47. 
    Dunn SE, Kari FW, French J, Leininger JR, Travlos G et al. 1997. Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res 57:4667–72
    [Google Scholar]
  48. 48. 
    E S, Yamamoto K, Sakamoto Y, Mizowaki Y, Iwagaki Y et al. 2017. Intake of mulberry 1-deoxynojirimycin prevents colorectal cancer in mice. J. Clin. Biochem. Nutr. 61:47–52
    [Google Scholar]
  49. 49. 
    Ehsanipour EA, Sheng X, Behan JW, Wang X, Butturini A et al. 2013. Adipocytes cause leukemia cell resistance to l-asparaginase via release of glutamine. Cancer Res 73:2998–3006
    [Google Scholar]
  50. 50. 
    Engelman RW, Day NK, Good RA 1994. Calorie intake during mammary development influences cancer risk: lasting inhibition of C3H/HeOu mammary tumorigenesis by peripubertal calorie restriction. Cancer Res 54:5724–30
    [Google Scholar]
  51. 51. 
    Faienza MF, Delvecchio M, Giordano P, Cavallo L, Grano M et al. 2015. Metabolic syndrome in childhood leukemia survivors: a meta-analysis. Endocrine 49:353–60
    [Google Scholar]
  52. 52. 
    Ferrante JM, Fyffe DC, Vega ML, Piasecki AK, Ohman-Strickland PA, Crabtree BF 2010. Family physicians’ barriers to cancer screening in extremely obese patients. Obesity 18:1153–59
    [Google Scholar]
  53. 53. 
    Fontana L, Adelaiye RM, Rastelli AL, Miles KM, Ciamporcero E et al. 2013. Dietary protein restriction inhibits tumor growth in human xenograft models. Oncotarget 4:2451–61
    [Google Scholar]
  54. 54. 
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM et al. 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–94
    [Google Scholar]
  55. 55. 
    Galet C, Gray A, Said JW, Castor B, Wan J et al. 2013. Effects of calorie restriction and IGF-1 receptor blockade on the progression of 22Rv1 prostate cancer xenografts. Int. J. Mol. Sci. 14:13782–95
    [Google Scholar]
  56. 56. 
    Gillette CA, Zhu Z, Westerlind KC, Melby CL, Wolfe P, Thompson HJ 1997. Energy availability and mammary carcinogenesis: effects of calorie restriction and exercise. Carcinogenesis 18:1183–88
    [Google Scholar]
  57. 57. 
    Gravaghi C, Bo J, Laperle KM, Quimby F, Kucherlapati R et al. 2008. Obesity enhances gastrointestinal tumorigenesis in Apc-mutant mice. Int. J. Obes. 32:1716–19
    [Google Scholar]
  58. 58. 
    Greathouse KL, White JR, Padgett RN, Perrotta BG, Jenkins GD et al. 2019. Gut microbiome meta-analysis reveals dysbiosis is independent of body mass index in predicting risk of obesity-associated CRC. BMJ Open Gastroenterol 6:e000247
    [Google Scholar]
  59. 59. 
    Griggs JJ, Mangu PB, Anderson H, Balaban EP, Dignam JJ et al. 2012. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 30:1553–61
    [Google Scholar]
  60. 60. 
    Grigura V, Barbier M, Zarov AP, Kaufman CK 2018. Feeding amount significantly alters overt tumor onset rate in a zebrafish melanoma model. Biol. Open 7:bio030726
    [Google Scholar]
  61. 61. 
    Gupta A, Herman Y, Ayers C, Beg MS, Lakoski SG et al. 2016. Plasma leptin levels and risk of incident cancer: results from the Dallas Heart Study. PLOS ONE 11:e0162845
    [Google Scholar]
  62. 62. 
    Gusscott S, Jenkins CE, Lam SH, Giambra V, Pollak M, Weng AP 2016. IGF1R derived PI3K/AKT signaling maintains growth in a subset of human T-cell acute lymphoblastic leukemias. PLOS ONE 11:e0161158
    [Google Scholar]
  63. 63. 
    Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70
    [Google Scholar]
  64. 64. 
    Harbuzariu A, Rampoldi A, Daley-Brown DS, Candelaria P, Harmon TL et al. 2017. Leptin-Notch signaling axis is involved in pancreatic cancer progression. Oncotarget 8:7740–52
    [Google Scholar]
  65. 65. 
    Harvey AE, Lashinger LM, Otto G, Nunez NP, Hursting SD 2013. Decreased systemic IGF-1 in response to calorie restriction modulates murine tumor cell growth, nuclear factor-κB activation, and inflammation-related gene expression. Mol. Carcinog. 52:997–1006
    [Google Scholar]
  66. 66. 
    Hirose Y, Hata K, Kuno T, Yoshida K, Sakata K et al. 2004. Enhancement of development of azoxymethane-induced colonic premalignant lesions in C57BL/KsJ-db/db mice. Carcinogenesis 25:821–25
    [Google Scholar]
  67. 67. 
    Hosseini B, Saedisomeolia A, Allman-Farinelli M 2017. Association between antioxidant intake/status and obesity: a systematic review of observational studies. Biol. Trace Elem. Res. 175:287–97
    [Google Scholar]
  68. 68. 
    Hursting SD, Margolin BH, Switzer BR 1993. Diet and human leukemia: an analysis of international data. Prev. Med. 22:409–22
    [Google Scholar]
  69. 69. 
    Hursting SD, Perkins SN, Brown CC, Haines DC, Phang JM 1997. Calorie restriction induces a p53-independent delay of spontaneous carcinogenesis in p53-deficient and wild-type mice. Cancer Res 57:2843–46
    [Google Scholar]
  70. 70. 
    Hursting SD, Perkins SN, Phang JM 1994. Calorie restriction delays spontaneous tumorigenesis in p53-knockout transgenic mice. PNAS 91:7036–40
    [Google Scholar]
  71. 71. 
    Incio J, Liu H, Suboj P, Chin SM, Chen IX et al. 2016. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov 6:852–69
    [Google Scholar]
  72. 72. 
    James SJ, Muskhelishvili L. 1994. Rates of apoptosis and proliferation vary with caloric intake and may influence incidence of spontaneous hepatoma in C57BL/6 × C3H F1 mice. Cancer Res 54:5508–10
    [Google Scholar]
  73. 73. 
    Jiang W, Zhu Z, Thompson HJ 2008. Dietary energy restriction modulates the activity of AMP-activated protein kinase, Akt, and mammalian target of rapamycin in mammary carcinomas, mammary gland, and liver. Cancer Res 68:5492–99
    [Google Scholar]
  74. 74. 
    Jiang YS, Wang FR. 2013. Caloric restriction reduces edema and prolongs survival in a mouse glioma model. J. Neuro-Oncology 114:25–32
    [Google Scholar]
  75. 75. 
    Jongbloed F, Huisman SA, van Steeg H, Pennings JLA, IJzermans JNM et al. 2019. The transcriptomic response to irinotecan in colon carcinoma bearing mice preconditioned by fasting. Oncotarget 10:2224–34
    [Google Scholar]
  76. 76. 
    Kandori H, Suzuki S, Asamoto M, Murasaki T, Mingxi T et al. 2005. Influence of atrazine administration and reduction of calorie intake on prostate carcinogenesis in probasin/SV40 T antigen transgenic rats. Cancer Sci 96:221–26
    [Google Scholar]
  77. 77. 
    Kehm RD, Spector LG, Poynter JN, Vock DM, Altekruse SF, Osypuk TL 2018. Does socioeconomic status account for racial and ethnic disparities in childhood cancer survival. Cancer 124:4090–97
    [Google Scholar]
  78. 78. 
    Khatua B, El-Kurdi B, Singh VP 2017. Obesity and pancreatitis. Curr. Opin. Gastroenterol. 33:374–82
    [Google Scholar]
  79. 79. 
    Kim JE, Lin G, Zhou J, Mund JA, Case J, Campbell WW 2017. Weight loss achieved using an energy restriction diet with normal or higher dietary protein decreased the number of CD14++CD16+ proinflammatory monocytes and plasma lipids and lipoproteins in middle-aged, overweight, and obese adults. Nutr. Res. 40:75–84
    [Google Scholar]
  80. 80. 
    Klement RJ, Champ CE, Otto C, Kammerer U 2016. Anti-tumor effects of ketogenic diets in mice: a meta-analysis. PLOS ONE 11:e0155050
    [Google Scholar]
  81. 81. 
    Kohler LN, Garcia DO, Harris RB, Oren E, Roe DJ, Jacobs ET 2016. Adherence to diet and physical activity cancer prevention guidelines and cancer outcomes: a systematic review. Cancer Epidemiol. Biomarkers Prev. 25:1018–28
    [Google Scholar]
  82. 82. 
    Kong Y, Dong Q, Ji H, Sang M, Ding Y et al. 2019. The effect of the leptin and leptin receptor expression on the efficacy of neoadjuvant chemotherapy in breast cancer. Med. Sci. Monit. 25:3005–13
    [Google Scholar]
  83. 83. 
    Koru-Sengul T, Santander AM, Miao F, Sanchez LG, Jorda M et al. 2016. Breast cancers from black women exhibit higher numbers of immunosuppressive macrophages with proliferative activity and of crown-like structures associated with lower survival compared to non-black Latinas and Caucasians. Breast Cancer Res. Treat. 158:113–26
    [Google Scholar]
  84. 84. 
    Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW 2004. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 64:2070–75
    [Google Scholar]
  85. 85. 
    Kusuoka O, Fujiwara-Tani R, Nakashima C, Fujii K, Ohmori H et al. 2018. Intermittent calorie restriction enhances epithelial-mesenchymal transition through the alteration of energy metabolism in a mouse tumor model. Int. J. Oncol. 52:413–23
    [Google Scholar]
  86. 86. 
    Lai R, Bian Z, Lin H, Ren J, Zhou H, Guo H 2017. The association between dietary protein intake and colorectal cancer risk: a meta-analysis. World J. Surg. Oncol. 15:169
    [Google Scholar]
  87. 87. 
    Lanza-Jacoby S, Yan G, Radice G, LePhong C, Baliff J, Hess R 2013. Calorie restriction delays the progression of lesions to pancreatic cancer in the LSL-KrasG12D; Pdx-1/Cre mouse model of pancreatic cancer. Exp. Biol. Med. 238:787–97
    [Google Scholar]
  88. 88. 
    Laron Z. 2015. Lessons from 50 years of study of Laron syndrome. Endocr. Pract. 21:1395–402
    [Google Scholar]
  89. 89. 
    Lashinger LM, Malone LM, McArthur MJ, Goldberg JA, Daniels EA et al. 2011. Genetic reduction of insulin-like growth factor-1 mimics the anticancer effects of calorie restriction on cyclooxygenase-2-driven pancreatic neoplasia. Cancer Prev. Res. 4:1030–40
    [Google Scholar]
  90. 90. 
    Leclerc GM, Leclerc GJ, Kuznetsov JN, DeSalvo J, Barredo JC 2013. Metformin induces apoptosis through AMPK-dependent inhibition of UPR signaling in ALL lymphoblasts. PLOS ONE 8:e74420
    [Google Scholar]
  91. 91. 
    Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G et al. 2012. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med. 4:124ra27
    [Google Scholar]
  92. 92. 
    Lee JE, Spiegelman D, Hunter DJ, Albanes D, Bernstein L et al. 2008. Fat, protein, and meat consumption and renal cell cancer risk: a pooled analysis of 13 prospective studies. J. Natl. Cancer Inst. 100:1695–706
    [Google Scholar]
  93. 93. 
    Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng CW et al. 2014. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab 19:407–17
    [Google Scholar]
  94. 94. 
    Li XJ, Luo XQ, Han BW, Duan FT, Wei PP, Chen YQ 2013. MicroRNA-100/99a, deregulated in acute lymphoblastic leukaemia, suppress proliferation and promote apoptosis by regulating the FKBP51 and IGF1R/mTOR signalling pathways. Br. J. Cancer 109:2189–98
    [Google Scholar]
  95. 95. 
    Lope V, Martin M, Castello A, Ruiz A, Casas AM et al. 2019. Overeating, caloric restriction and breast cancer risk by pathologic subtype: the EPIGEICAM study. Sci. Rep. 9:3904
    [Google Scholar]
  96. 96. 
    Lu Z, Xie J, Wu G, Shen J, Collins R et al. 2017. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat. Med. 23:79–90
    [Google Scholar]
  97. 97. 
    Luo J, Chlebowski RT, Hendryx M, Rohan T, Wactawski-Wende J et al. 2017. Intentional weight loss and endometrial cancer risk. J. Clin. Oncol. 35:1189–93
    [Google Scholar]
  98. 98. 
    Lussier DM, Woolf EC, Johnson JL, Brooks KS, Blattman JN, Scheck AC 2016. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer 16:310
    [Google Scholar]
  99. 99. 
    Lv M, Zhu X, Wang H, Wang F, Guan W 2014. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PLOS ONE 9:e115147
    [Google Scholar]
  100. 100. 
    Ma D, Chen X, Zhang PY, Zhang H, Wei LJ et al. 2018. Upregulation of the ALDOA/DNA-PK/p53 pathway by dietary restriction suppresses tumor growth. Oncogene 37:1041–48
    [Google Scholar]
  101. 101. 
    Ma Z, Parris AB, Howard EW, Shi Y, Yang S et al. 2018. Caloric restriction inhibits mammary tumorigenesis in MMTV-ErbB2 transgenic mice through the suppression of ER and ErbB2 pathways and inhibition of epithelial cell stemness in premalignant mammary tissues. Carcinogenesis 39:1264–73
    [Google Scholar]
  102. 102. 
    Mai V, Colbert LH, Berrigan D, Perkins SN, Pfeiffer R et al. 2003. Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in ApcMin mice through different mechanisms. Cancer Res 63:1752–55
    [Google Scholar]
  103. 103. 
    Mao Y, Tie Y, Du J 2018. Association between dietary protein intake and prostate cancer risk: evidence from a meta-analysis. World J. Surg. Oncol. 16:152
    [Google Scholar]
  104. 104. 
    Marsh J, Mukherjee P, Seyfried TN 2008. Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phosphatase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin. Cancer Res. 14:7751–62
    [Google Scholar]
  105. 105. 
    Martin-McGill KJ, Srikandarajah N, Marson AG, Tudur Smith C, Jenkinson MD 2018. The role of ketogenic diets in the therapeutic management of adult and paediatric gliomas: a systematic review. CNS Oncol 7:CNS17
    [Google Scholar]
  106. 106. 
    Maruvada P, Leone V, Kaplan LM, Chang EB 2017. The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22:589–99
    [Google Scholar]
  107. 107. 
    McConnell R, Gilliland FD, Goran M, Allayee H, Hricko A, Mittelman S 2016. Does near-roadway air pollution contribute to childhood obesity. Pediatr. Obes. 11:1–3
    [Google Scholar]
  108. 108. 
    McCormick DL, Johnson WD, Haryu TM, Bosland MC, Lubet RA, Steele VE 2007. Null effect of dietary restriction on prostate carcinogenesis in the Wistar-Unilever rat. Nutr. Cancer 57:194–200
    [Google Scholar]
  109. 109. 
    McQuade JL, Daniel CR, Hess KR, Mak C, Wang DY et al. 2018. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol 19:310–22
    [Google Scholar]
  110. 110. 
    Miller KD, Goding Sauer A, Ortiz AP, Fedewa SA, Pinheiro PS et al. 2018. Cancer statistics for Hispanics/Latinos, 2018. CA Cancer J. Clin. 68:425–45
    [Google Scholar]
  111. 111. 
    Mizuno NK, Rogozina OP, Seppanen CM, Liao DJ, Cleary MP, Grossmann ME 2013. Combination of intermittent calorie restriction and eicosapentaenoic acid for inhibition of mammary tumors. Cancer Prev. Res. 6:540–47
    [Google Scholar]
  112. 112. 
    Molina-Aguilar C, Guerrero-Carrillo MJ, Espinosa-Aguirre JJ, Olguin-Reyes S, Castro-Belio T et al. 2017. Time-caloric restriction inhibits the neoplastic transformation of cirrhotic liver in rats treated with diethylnitrosamine. Carcinogenesis 38:847–58
    [Google Scholar]
  113. 113. 
    Moore T, Beltran L, Carbajal S, Hursting SD, DiGiovanni J 2012. Energy balance modulates mouse skin tumor promotion through altered IGF-1R and EGFR crosstalk. Cancer Prev. Res. 5:1236–46
    [Google Scholar]
  114. 114. 
    Morris PG, Hudis CA, Giri D, Morrow M, Falcone DJ et al. 2011. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev. Res. 4:1021–29
    [Google Scholar]
  115. 115. 
    Morscher RJ, Aminzadeh-Gohari S, Feichtinger RG, Mayr JA, Lang R et al. 2015. Inhibition of neuroblastoma tumor growth by ketogenic diet and/or calorie restriction in a CD1-Nu mouse model. PLOS ONE 10:e0129802
    [Google Scholar]
  116. 116. 
    Morscher RJ, Aminzadeh-Gohari S, Hauser-Kronberger C, Feichtinger RG, Sperl W, Kofler B 2016. Combination of metronomic cyclophosphamide and dietary intervention inhibits neuroblastoma growth in a CD1-nu mouse model. Oncotarget 7:17060–73
    [Google Scholar]
  117. 117. 
    Newman LA, Kaljee LM. 2017. Health disparities and triple-negative breast cancer in African American women: a review. JAMA Surg 152:485–93
    [Google Scholar]
  118. 118. 
    Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R et al. 2011. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17:1498–503
    [Google Scholar]
  119. 119. 
    Nieman KM, Romero IL, Van Houten B, Lengyel E 2013. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1831:1533–41
    [Google Scholar]
  120. 120. 
    Nogueira LM, Dunlap SM, Ford NA, Hursting SD 2012. Calorie restriction and rapamycin inhibit MMTV-Wnt-1 mammary tumor growth in a mouse model of postmenopausal obesity. Endocr. Relat. Cancer 19:57–68
    [Google Scholar]
  121. 121. 
    Nottage KA, Ness KK, Li C, Srivastava D, Robison LL, Hudson MM 2014. Metabolic syndrome and cardiovascular risk among long-term survivors of acute lymphoblastic leukaemia—from the St. Jude Lifetime Cohort. Br. J. Haematol. 165:364–74
    [Google Scholar]
  122. 122. 
    O'Keefe SJ. 2016. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 13:691–706
    [Google Scholar]
  123. 123. 
    Oppezzo P, Vasconcelos Y, Settegrana C, Jeannel D, Vuillier F et al. 2005. The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood 106:650–57
    [Google Scholar]
  124. 124. 
    Orgel E, Genkinger JM, Aggarwal D, Sung L, Nieder M, Ladas EJ 2016. Association of body mass index and survival in pediatric leukemia: a meta-analysis. Am. J. Clin. Nutr. 103:808–17
    [Google Scholar]
  125. 125. 
    Orgel E, Mueske NM, Sposto R, Gilsanz V, Freyer DR, Mittelman SD 2016. Limitations of body mass index to assess body composition due to sarcopenic obesity during leukemia therapy. Leuk. Lymphoma 59:138–45
    [Google Scholar]
  126. 126. 
    Pang Y, Wang W. 2018. Dietary protein intake and risk of ovarian cancer: evidence from a meta-analysis of observational studies. Biosci. Rep. 38:BSR20181857
    [Google Scholar]
  127. 127. 
    Pape-Ansorge KA, Grande JP, Christensen TA, Maihle NJ, Cleary MP 2002. Effect of moderate caloric restriction and/or weight cycling on mammary tumor incidence and latency in MMTV-Neu female mice. Nutr. Cancer 44:162–68
    [Google Scholar]
  128. 128. 
    Parekh N, Chandran U, Bandera EV 2012. Obesity in cancer survival. Annu. Rev. Nutr. 32:311–42
    [Google Scholar]
  129. 129. 
    Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK et al. 2009. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001
    [Google Scholar]
  130. 130. 
    Phoenix KN, Vumbaca F, Fox MM, Evans R, Claffey KP 2010. Dietary energy availability affects primary and metastatic breast cancer and metformin efficacy. Breast Cancer Res. Treat. 123:333–44
    [Google Scholar]
  131. 131. 
    Pinkston JM, Garigan D, Hansen M, Kenyon C 2006. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313:971–75
    [Google Scholar]
  132. 132. 
    Ploeger JM, Manivel JC, Boatner LN, Mashek DG 2017. Caloric restriction prevents carcinogen-initiated liver tumorigenesis in mice. Cancer Prev. Res. 10:660–70
    [Google Scholar]
  133. 133. 
    Psaltopoulou T, Kosti RI, Haidopoulos D, Dimopoulos M, Panagiotakos DB 2011. Olive oil intake is inversely related to cancer prevalence: a systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies. Lipids Health Dis 10:127
    [Google Scholar]
  134. 134. 
    Raffaghello L, Lee C, Safdie FM, Wei M, Madia F et al. 2008. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. PNAS 105:8215–20
    [Google Scholar]
  135. 135. 
    Ramsey MM, Ingram RL, Cashion AB, Ng AH, Cline JM et al. 2002. Growth hormone-deficient dwarf animals are resistant to dimethylbenzanthracine (DMBA)-induced mammary carcinogenesis. Endocrinology 143:4139–42
    [Google Scholar]
  136. 136. 
    Rapp K, Schroeder J, Klenk J, Stoehr S, Ulmer H et al. 2005. Obesity and incidence of cancer: a large cohort study of over 145,000 adults in Austria. Br. J. Cancer 93:1062–67
    [Google Scholar]
  137. 137. 
    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M 2008. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–78
    [Google Scholar]
  138. 138. 
    Richman EL, Kenfield SA, Chavarro JE, Stampfer MJ, Giovannucci EL et al. 2013. Fat intake after diagnosis and risk of lethal prostate cancer and all-cause mortality. JAMA Intern. Med. 173:1318–26
    [Google Scholar]
  139. 139. 
    Richter JE, Rubenstein JH. 2018. Presentation and epidemiology of gastroesophageal reflux disease. Gastroenterology 154:267–76
    [Google Scholar]
  140. 140. 
    Rocha NS, Barbisan LF, de Oliveira ML, de Camargo JL 2002. Effects of fasting and intermittent fasting on rat hepatocarcinogenesis induced by diethylnitrosamine. Teratog. Carcinog. Mutagen. 22:129–38
    [Google Scholar]
  141. 141. 
    Rossi EL, Dunlap SM, Bowers LW, Khatib SA, Doerstling SS et al. 2017. Energy balance modulation impacts epigenetic reprogramming, ERα and ERβ expression, and mammary tumor development in MMTV-neu transgenic mice. Cancer Res 77:2500–11
    [Google Scholar]
  142. 142. 
    Rouhani MH, Salehi-Abargouei A, Surkan PJ, Azadbakht L 2014. Is there a relationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obes. Rev. 15:740–48
    [Google Scholar]
  143. 143. 
    Roy S, Trinchieri G. 2017. Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer 17:271–85
    [Google Scholar]
  144. 144. 
    Safdie FM, Dorff T, Quinn D, Fontana L, Wei M et al. 2009. Fasting and cancer treatment in humans: a case series report. Aging 1:988–1007
    [Google Scholar]
  145. 145. 
    Saleh AD, Simone BA, Palazzo J, Savage JE, Sano Y et al. 2013. Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle 12:1955–63
    [Google Scholar]
  146. 146. 
    Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M et al. 2010. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest. 120:142–56
    [Google Scholar]
  147. 147. 
    Sayon-Orea C, Martinez-Gonzalez MA, Bes-Rastrollo M 2011. Alcohol consumption and body weight: a systematic review. Nutr. Rev. 69:419–31
    [Google Scholar]
  148. 148. 
    Schwingshackl L, Hoffmann G. 2015. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis of observational studies. Cancer Med 4:1933–47
    [Google Scholar]
  149. 149. 
    Surveillance, Epidemiology, and End Results (SEER) Program 2018. Mortality—all COD, aggregated with state, total U.S. (1969–2017) <Katrina/Rita Population Adjustment>. SEER*Stat Database, SEER, Natl. Cancer Inst., Div. Cancer Control Pop. Sci Bethesda, MD: released Dec. 2019, retrieved May 24, 2020. https://www.seer.cancer.gov. Underlying mortality data provided by Nat. Cent. Health Stat. ( https://www.cdc.gov/nchs )
  150. 150. 
    Seibert RG, Hanchate AD, Berz JP, Schroy PC III 2017. National disparities in colorectal cancer screening among obese adults. Am. J. Prev. Med. 53:e41–49
    [Google Scholar]
  151. 151. 
    Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P 2003. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br. J. Cancer 89:1375–82
    [Google Scholar]
  152. 152. 
    Shelton LM, Huysentruyt LC, Mukherjee P, Seyfried TN 2010. Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse. ASN Neuro 2:e00038
    [Google Scholar]
  153. 153. 
    Sheng X, Parmentier JH, Tucci J, Pei H, Cortez-Toledo O et al. 2017. Adipocytes sequester and metabolize the chemotherapeutic daunorubicin. Mol. Cancer Res. 15:1704–13
    [Google Scholar]
  154. 154. 
    Shields BA, Engelman RW, Fukaura Y, Good RA, Day NK 1991. Calorie restriction suppresses subgenomic mink cytopathic focus-forming murine leukemia virus transcription and frequency of genomic expression while impairing lymphoma formation. PNAS 88:11138–42
    [Google Scholar]
  155. 155. 
    Shu XO, Zheng Y, Cai H, Gu K, Chen Z et al. 2009. Soy food intake and breast cancer survival. JAMA 302:2437–43
    [Google Scholar]
  156. 156. 
    Siegel RL, Miller KD, Jemal A 2017. Cancer statistics, 2017. CA Cancer J. Clin. 67:7–30
    [Google Scholar]
  157. 157. 
    Sikalidis AK, Fitch MD, Fleming SE 2013. Diet induced obesity increases the risk of colonic tumorigenesis in mice. Pathol. Oncol. Res. 19:657–66
    [Google Scholar]
  158. 158. 
    Simone BA, Dan T, Palagani A, Jin L, Han SY et al. 2016. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer. Cell Cycle 15:2265–74
    [Google Scholar]
  159. 159. 
    Simone BA, Palagani A, Strickland K, Ko K, Jin L et al. 2018. Caloric restriction counteracts chemotherapy-induced inflammation and increases response to therapy in a triple negative breast cancer model. Cell Cycle 17:1536–44
    [Google Scholar]
  160. 160. 
    Sinicrope FA, Foster NR, Sargent DJ, O'Connell MJ, Rankin C 2010. Obesity is an independent prognostic variable in colon cancer survivors. Clin. Cancer Res. 16:1884–93
    [Google Scholar]
  161. 161. 
    Slavin JL. 2005. Dietary fiber and body weight. Nutrition 21:411–18
    [Google Scholar]
  162. 162. 
    Song M, Fung TT, Hu FB, Willett WC, Longo VD et al. 2016. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern. Med. 176:1453–63
    [Google Scholar]
  163. 163. 
    Stewart JW, Koehler K, Jackson W, Hawley J, Wang W et al. 2005. Prevention of mouse skin tumor promotion by dietary energy restriction requires an intact adrenal gland and glucocorticoid supplementation restores inhibition. Carcinogenesis 26:1077–84
    [Google Scholar]
  164. 164. 
    Sun P, Wang H, He Z, Chen X, Wu Q et al. 2017. Fasting inhibits colorectal cancer growth by reducing M2 polarization of tumor-associated macrophages. Oncotarget 8:74649–60
    [Google Scholar]
  165. 165. 
    Suttie AW, Dinse GE, Nyska A, Moser GJ, Goldsworthy TL, Maronpot RR 2005. An investigation of the effects of late-onset dietary restriction on prostate cancer development in the TRAMP mouse. Toxicol. Pathol. 33:386–97
    [Google Scholar]
  166. 166. 
    Tabe Y, Yamamoto S, Saitoh K, Sekihara K, Monma N et al. 2017. Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Res 77:1453–64
    [Google Scholar]
  167. 167. 
    Tagliaferro AR, Ronan AM, Meeker LD, Thompson HJ, Scott AL, Sinha D 1996. Cyclic food restriction alters substrate utilization and abolishes protection from mammary carcinogenesis female rats. J. Nutr. 126:1398–405
    [Google Scholar]
  168. 168. 
    Thomas JA II, Antonelli JA, Lloyd JC, Masko EM, Poulton SH et al. 2010. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model. Prostate Cancer Prostatic Dis 13:350–55
    [Google Scholar]
  169. 169. 
    Thompson HJ, McGinley JN, Spoelstra NS, Jiang W, Zhu Z, Wolfe P 2004. Effect of dietary energy restriction on vascular density during mammary carcinogenesis. Cancer Res 64:5643–50
    [Google Scholar]
  170. 170. 
    Tomasi C, Laconi E, Laconi S, Greco M, Sarma DS, Pani P 1999. Effect of fasting/refeeding on the incidence of chemically induced hepatocellular carcinoma in the rat. Carcinogenesis 20:1979–83
    [Google Scholar]
  171. 171. 
    Tomita M. 2012. Caloric restriction reduced 1, 2-dimethylhydrazine-induced aberrant crypt foci and induces the expression of Sirtuins in colonic mucosa of F344 rats. J. Carcinog. 11:10
    [Google Scholar]
  172. 172. 
    Tsao JL, Dudley S, Kwok B, Nickel AE, Laird PW et al. 2002. Diet, cancer and aging in DNA mismatch repair deficient mice. Carcinogenesis 23:1807–10
    [Google Scholar]
  173. 173. 
    Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP 2015. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350:g7607
    [Google Scholar]
  174. 174. 
    Tucci J, Alhushki W, Chen T, Sheng X, Kim YM, Mittelman SD 2018. Switch to low-fat diet improves outcome of acute lymphoblastic leukemia in obese mice. Cancer Metab 6:15
    [Google Scholar]
  175. 175. 
    van Ginhoven TM, van den Berg JW, Dik WA, Ijzermans JN, de Bruin RW 2010. Preoperative dietary restriction reduces hepatic tumor load by reduced E-selectin-mediated adhesion in mice. J. Surg. Oncol. 102:348–53
    [Google Scholar]
  176. 176. 
    Von Tungeln LS, Bucci TJ, Hart RW, Kadlubar FF, Fu PP 1996. Inhibitory effect of caloric restriction on tumorigenicity induced by 4-aminobiphenyl and 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP) in the CD1 newborn mouse bioassay. Cancer Lett 104:133–36
    [Google Scholar]
  177. 177. 
    Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC et al. 2018. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab 27:136–50.e5
    [Google Scholar]
  178. 178. 
    Warburg O. 1925. The metabolism of carcinoma cells. J. Cancer Res. 9:148–63
    [Google Scholar]
  179. 179. 
    Ward E, Jemal A, Cokkinides V, Singh GK, Cardinez C et al. 2004. Cancer disparities by race/ethnicity and socioeconomic status. CA Cancer J. Clin. 54:78–93
    [Google Scholar]
  180. 180. 
    Woolf EC, Curley KL, Liu Q, Turner GH, Charlton JA et al. 2015. The ketogenic diet alters the hypoxic response and affects expression of proteins associated with angiogenesis, invasive potential and vascular permeability in a mouse glioma model. PLOS ONE 10:e0130357
    [Google Scholar]
  181. 181. 
    World Cancer Research Fund International/American Institute for Cancer Research (WCRF/AICR) Continuous Update Project 2018. Diet, nutrition, physical activity and cancer: a global perspective Third Expert Rep., WCRF Int. London: https://www.dietandcancerreport.org
  182. 182. 
    Wu J, Zeng R, Huang J, Li X, Zhang J et al. 2016. Dietary protein sources and incidence of breast cancer: a dose-response meta-analysis of prospective studies. Nutrients 8:730
    [Google Scholar]
  183. 183. 
    Xu XD, Shao SX, Jiang HP, Cao YW, Wang YH et al. 2015. Warburg effect or reverse Warburg Effect? A review of cancer metabolism. Oncol. Res. Treat. 38:117–22
    [Google Scholar]
  184. 184. 
    Yakar S, Nunez NP, Pennisi P, Brodt P, Sun H et al. 2006. Increased tumor growth in mice with diet-induced obesity: impact of ovarian hormones. Endocrinology 147:5826–34
    [Google Scholar]
  185. 185. 
    Yamaza H, Komatsu T, Wakita S, Kijogi C, Park S et al. 2010. FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell 9:372–82
    [Google Scholar]
  186. 186. 
    Yang HS, Yoon C, Myung SK, Park SM 2011. Effect of obesity on survival of women with epithelial ovarian cancer: a systematic review and meta-analysis of observational studies. Int. J. Gynecol. Cancer 21:1525–32
    [Google Scholar]
  187. 187. 
    Yeung CY, Tso AW, Xu A, Wang Y, Woo YC et al. 2013. Pro-inflammatory adipokines as predictors of incident cancers in a Chinese cohort of low obesity prevalence in Hong Kong. PLOS ONE 8:e78594
    [Google Scholar]
  188. 188. 
    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101
    [Google Scholar]
  189. 189. 
    Yuan C, Bao Y, Wu C, Kraft P, Ogino S et al. 2013. Prediagnostic body mass index and pancreatic cancer survival. J. Clin. Oncol. 31:4229–34
    [Google Scholar]
  190. 190. 
    Yuhara H, Steinmaus C, Cohen SE, Corley DA, Tei Y, Buffler PA 2011. Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer. Am. J. Gastroenterol. 106:1911–21
    [Google Scholar]
  191. 191. 
    Yun JP, Behan JW, Heisterkamp N, Butturini A, Klemm L et al. 2010. Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models. Cancer Prev. Res. 3:1259–64
    [Google Scholar]
  192. 192. 
    Zaytouni T, Tsai PY, Hitchcock DS, DuBois CD, Freinkman E et al. 2017. Critical role for arginase 2 in obesity-associated pancreatic cancer. Nat. Commun. 8:242
    [Google Scholar]
  193. 193. 
    Zhang J, Jia PP, Liu QL, Cong MH, Gao Y et al. 2018. Low ketolytic enzyme levels in tumors predict ketogenic diet responses in cancer cell lines in vitro and in vivo. J. Lipid Res. 59:625–34
    [Google Scholar]
  194. 194. 
    Zhang J, Pavlova NN, Thompson CB 2017. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J 36:1302–15
    [Google Scholar]
  195. 195. 
    Zhu Y, Aupperlee MD, Haslam SZ, Schwartz RC 2017. Pubertally initiated high-fat diet promotes mammary tumorigenesis in obesity-prone FVB mice similarly to obesity-resistant BALB/c mice. Transl. Oncol. 10:928–35
    [Google Scholar]
  196. 196. 
    Zhuang Y, Chan DK, Haugrud AB, Miskimins WK 2014. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo. PLOS ONE 9:e108444
    [Google Scholar]
  197. 197. 
    Zoico E, Rizzatti V, Darra E, Budui SL, Franceschetti G et al. 2017. Morphological and functional changes in the peritumoral adipose tissue of colorectal cancer patients. Obesity 25:Suppl. 2S87–94
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-013120-041149
Loading
/content/journals/10.1146/annurev-nutr-013120-041149
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error