1932

Abstract

The endocannabinoid system is involved in signal transduction in mammals. It comprises principally G protein-coupled cannabinoid receptors and their endogenous agonists, called endocannabinoids, as well as the enzymes and transporters responsible for the metabolism of endocannabinoids. Two arachidonic acid–containing lipid molecules, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, function as endocannabinoids. -acylethanolamines and monoacylglycerols, in which the arachidonic acid chain is replaced with a saturated or monounsaturated fatty acid, are not directly involved in the endocannabinoid system but exhibit agonistic activities for other receptors. These endocannabinoid-like moleculesinclude palmitoylethanolamide, oleoylethanolamide (OEA), and 2-oleoylglycerol. Endocannabinoids stimulate feeding behavior and the anabolism of lipids and glucose, while OEA suppresses appetite. Both central and peripheral systems are included in these nutritional and metabolic contexts. Therefore, they have potential in the treatment and prevention of obesity. We outline the structure, metabolism, and biological activities of endocannabinoids and related molecules, and focus on their involvement in energy homeostasis and metabolic regulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-043020-090216
2021-10-11
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/nutr/41/1/annurev-nutr-043020-090216.html?itemId=/content/journals/10.1146/annurev-nutr-043020-090216&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abrams DI. 2018. The therapeutic effects of Cannabis and cannabinoids: an update from the National Academies of Sciences, Engineering and Medicine report. Eur. J. Intern. Med. 49:7–11
    [Google Scholar]
  2. 2. 
    Bajzer M, Olivieri M, Haas MK, Pfluger PT, Magrisso IJ et al. 2011. Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice. Diabetologia 54:3121–31
    [Google Scholar]
  3. 3. 
    Bandiera T, Ponzano S, Piomelli D. 2014. Advances in the discovery of N-acylethanolamine acid amidase inhibitors. Pharmacol. Res. 86:11–17
    [Google Scholar]
  4. 4. 
    Bari M, Battista N, Fezza F, Gasperi V, Maccarrone M. 2006. New insights into endocannabinoid degradation and its therapeutic potential. Mini Rev. Med. Chem. 6:257–68
    [Google Scholar]
  5. 5. 
    Bazwinsky-Wutschke I, Zipprich A, Dehghani F. 2019. Endocannabinoid system in hepatic glucose metabolism, fatty liver disease, and cirrhosis. Int. J. Mol. Sci. 20:2516
    [Google Scholar]
  6. 6. 
    Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee MH et al. 1998. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur. J. Pharmacol. 353:23–31
    [Google Scholar]
  7. 7. 
    Bermudez-Silva FJ, Cardinal P, Cota D. 2012. The role of the endocannabinoid system in the neuroendocrine regulation of energy balance. J. Psychopharmacol. 26:114–24
    [Google Scholar]
  8. 8. 
    Bermúdez-Silva FJ, Suárez J, Baixeras E, Cobo N, Bautista D et al. 2008. Presence of functional cannabinoid receptors in human endocrine pancreas. Diabetologia 51:476–87
    [Google Scholar]
  9. 9. 
    Bermúdez-Siva FJ, Serrano A, Diaz-Molina FJ, Vera IS, Juan-Pico P et al. 2006. Activation of cannabinoid CB1 receptors induces glucose intolerance in rats. Eur. J. Pharmacol. 531:282–84
    [Google Scholar]
  10. 10. 
    Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG. 2010. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res 1350:43–64
    [Google Scholar]
  11. 11. 
    Bisogno T, Howell F, Williams G, Minassi A, Cascio MG et al. 2003. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163:463–68
    [Google Scholar]
  12. 12. 
    Bisogno T, Melck D, De Petrocellis L, Di Marzo V. 1999. Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin. J. Neurochem. 72:2113–19
    [Google Scholar]
  13. 13. 
    Bisogno T. 2008. Endogenous cannabinoids: structure and metabolism. J. Neuroendocrinol. 20:Suppl. 11–9
    [Google Scholar]
  14. 14. 
    Blankman JL, Simon GM, Cravatt BF. 2007. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14:1347–56
    [Google Scholar]
  15. 15. 
    Bolsoni-Lopes A, Alonso-Vale MIC. 2015. Lipolysis and lipases in white adipose tissue—an update. Arch. Endocrinol. Metab. 59:335–42
    [Google Scholar]
  16. 16. 
    Bondarenko OV, Hula NM, Makarchuk MY, Horid'ko TM 2014. Effects of N-stearoylethanolamine on anxiety-like behavioral reactions of rats after chronic alcoholization. Biologija 60:23–31
    [Google Scholar]
  17. 17. 
    Briffa JF, McAinch AJ, Romano T, Wlodek ME, Hryciw DH. 2015. Leptin in pregnancy and development: a contributor to adulthood disease?. Am. J. Physiol. Endocrinol. Metab. 308:335–50
    [Google Scholar]
  18. 18. 
    Brown I, Cascio MG, Wahle KW, Smoum R, Mechoulam R et al. 2010. Cannabinoid receptor-dependent and -independent anti-proliferative effects of omega-3 ethanolamides in androgen receptor-positive and -negative prostate cancer cell lines. Carcinogenesis 31:1584–91
    [Google Scholar]
  19. 19. 
    Cardinal P, Bellocchio L, Clark S, Cannich A, Klugmann M et al. 2012. Hypothalamic CB1 cannabinoid receptors regulate energy balance in mice. Endocrinology 153:4136–43
    [Google Scholar]
  20. 20. 
    Cavuoto P, McAinch AJ, Hatzinikolas G, Janovská A, Game P, Wittert GA. 2007. The expression of receptors for endocannabinoids in human and rodent skeletal muscle. Biochem. Biophys. Res. Commun. 364:105–10
    [Google Scholar]
  21. 21. 
    Clapper JR, Moreno-Sanz G, Russo R, Guijarro A, Vacondio F et al. 2010. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat. Neurosci. 13:1265–70
    [Google Scholar]
  22. 22. 
    Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. 1996. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87
    [Google Scholar]
  23. 23. 
    Crespillo A, Suárez J, Bermúdez-Silva FJ, Rivera P, Vida M et al. 2011. Expression of the cannabinoid system in muscle: effects of a high-fat diet and CB1 receptor blockade. Biochem. J. 433:175–85
    [Google Scholar]
  24. 24. 
    de Fonseca FR, Navarro M, Gomez R, Escuredo L, Nava F et al. 2001. An anorexic lipid mediator regulated by feeding. Nature 414:209–12
    [Google Scholar]
  25. 25. 
    Deng H, Li W. 2020. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm. Sin. B 10:582–602
    [Google Scholar]
  26. 26. 
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA et al. 1992. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–49
    [Google Scholar]
  27. 27. 
    Devi BP, Zhang H, Damstrup ML, Guo Z, Zhang L et al. 2008. Enzymatic synthesis of designer lipids. Ol. Corps Gras Lipides 15:189–95
    [Google Scholar]
  28. 28. 
    Di Marzo V, Cote M, Matias I, Lemieux I, Arsenault BJ et al. 2009. Changes in plasma endocannabinoid levels in viscerally obese men following a 1 year lifestyle modification programme and waist circumference reduction: associations with changes in metabolic risk factors. Diabetologia 52:213–17
    [Google Scholar]
  29. 29. 
    Di Marzo V, Goparaju SK, Wang L, Liu J, Bátkai S et al. 2001. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–25
    [Google Scholar]
  30. 30. 
    Di Marzo V, Matias I 2005. Endocannabinoid control of food intake and energy balance. Nat. Neurosci. 8:585–89
    [Google Scholar]
  31. 31. 
    Di Marzo V, Sepe N, De Petrocellis L, Berger A, Crozier G et al. 1998. Trick or treat from food endocannabinoids?. Nature 396:636–37
    [Google Scholar]
  32. 32. 
    Eckardt K, Sell H, Taube A, Koenen M, Platzbecker B et al. 2009. Cannabinoid type 1 receptors in human skeletal muscle cells participate in the negative crosstalk between fat and muscle. Diabetologia 52:664–74
    [Google Scholar]
  33. 33. 
    Engelstoft MS, Egerod KL, Holst B, Schwartz TW. 2008. A gut feeling for obesity: 7TM sensors on enteroendocrine cells. Cell Metab 8:447–49
    [Google Scholar]
  34. 34. 
    Everard A, Plovier H, Rastelli M, Van Hul M, de Wouters d'Oplinter A et al. 2019. Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat. Commun. 10:457
    [Google Scholar]
  35. 35. 
    Ezzili C, Otrubova K, Boger DL. 2010. Fatty acid amide signaling molecules. Bioorg. Med. Chem. Lett. 20:5959–68
    [Google Scholar]
  36. 36. 
    Feltes MMC, de Oliveira D, Block JM, Ninow JL. 2013. The production, benefits, and applications of monoacylglycerols and diacylglycerols of nutritional interest. Food Bioproc. Technol. 6:17–35
    [Google Scholar]
  37. 37. 
    Folick A, Oakley HD, Yu Y, Armstrong EH, Kumari M et al. 2015. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347:83–86
    [Google Scholar]
  38. 38. 
    Foltin RW, Haney M. 2007. Effects of the cannabinoid antagonist SR141716 (rimonabant) and d-amphetamine on palatable food and food pellet intake in non-human primates. Pharmacol. Biochem. Behav. 86:766–73
    [Google Scholar]
  39. 39. 
    Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF et al. 2007. Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J. Biol. Chem. 282:1518–28
    [Google Scholar]
  40. 40. 
    Fu J, Gaetani S, Oveisi F, Verme JL, Serrano A et al. 2003. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425:90–93
    [Google Scholar]
  41. 41. 
    Fu J, Kim J, Oveisi F, Astarita G, Piomelli D. 2008. Targeted enhancement of oleoylethanolamide production in proximal small intestine induces across-meal satiety in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295:45–50
    [Google Scholar]
  42. 42. 
    Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D 2005. Oleoylethanolamide, an endogenous PPAR-α agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology 48:1147–53
    [Google Scholar]
  43. 43. 
    Fukami K. 2002. Structure, regulation, and function of phospholipase C isozymes. J. Biochem. 131:293–99
    [Google Scholar]
  44. 44. 
    Gallily R, Breuer A, Mechoulam R. 2000. 2-Arachidonylglycerol, an endogenous cannabinoid, inhibits tumor necrosis factor-α production in murine macrophages, and in mice. Eur. J. Pharmacol. 406:R5–R7
    [Google Scholar]
  45. 45. 
    Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C et al. 2010. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J. Neurosci. 30:2017–24
    [Google Scholar]
  46. 46. 
    Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ et al. 2008. Beta-caryophyllene is a dietary cannabinoid. PNAS 105:9099–104
    [Google Scholar]
  47. 47. 
    Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T et al. 2015. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat. Commun. 6:6495
    [Google Scholar]
  48. 48. 
    Ghaffari S, Roshanravan N, Tutunchi H, Ostadrahimi A, Pouraghaei M, Kafil B. 2020. Oleoylethanolamide, a bioactive lipid amide, as a promising treatment strategy for coronavirus/COVID-19. Arch. Med. Res. 51:464–67
    [Google Scholar]
  49. 49. 
    Gil-Ordóñez A, Martín-Fontecha M, Ortega-Gutiérrez S, López-Rodríguez ML. 2018. Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochem. Pharmacol. 157:18–32
    [Google Scholar]
  50. 50. 
    Godlewski G, Offertáler L, Wagner JA, Kunos G. 2009. Receptors for acylethanolamides—GPR55 and GPR119. Prostaglandins Other Lipid Mediat 89:105–11
    [Google Scholar]
  51. 51. 
    Gómez R, Navarro M, Ferrer B, Trigo JM, Bilbao A et al. 2002. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J. Neurosci. 22:9612–17
    [Google Scholar]
  52. 52. 
    Gorelik A, Gebai A, Illes K, Piomelli D, Nagar B 2018. Molecular mechanism of activation of the immunoregulatory amidase NAAA. PNAS 115:10032–40
    [Google Scholar]
  53. 53. 
    Gresset A, Sondek J, Harden TK. 2012. The phospholipase C isozymes and their regulation. Subcell. Biochem. 58:61–94
    [Google Scholar]
  54. 54. 
    Guijarro A, Fu J, Astarita G, Piomelli D. 2010. CD36 gene deletion decreases oleoylethanolamide levels in small intestine of free-feeding mice. Pharmacol. Res. 61:27–33
    [Google Scholar]
  55. 55. 
    Hansen HS. 2014. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol. Res. 86:18–25
    [Google Scholar]
  56. 56. 
    Hansen HS, Rosenkilde MM, Holst JJ, Schwartz TW. 2012. GPR119 as a fat sensor. Trends Pharmacol. Sci. 33:374–81
    [Google Scholar]
  57. 57. 
    Hansen KB, Rosenkilde MM, Knop FK, Wellner N, Diep TA et al. 2011. 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J. Clin. Endocrinol. Metab. 96:1409–17
    [Google Scholar]
  58. 58. 
    Ho WS, Barrett DA, Randall MD. 2008. ‘Entourage’ effects of N-palmitoylethanolamide and N-oleoylethanolamide on vasorelaxation to anandamide occur through TRPV1 receptors. Br. J. Pharmacol. 155:837–46
    [Google Scholar]
  59. 59. 
    Hussain Z, Uyama T, Tsuboi K, Ueda N. 2017. Mammalian enzymes responsible for the biosynthesis of N-acylethanolamines. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:1546–61
    [Google Scholar]
  60. 60. 
    Jeong WI, Osei-Hyiaman D, Park O, Liu J, Bátkai S et al. 2008. Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell Metab 7:227–35
    [Google Scholar]
  61. 61. 
    Kaczocha M, Glaser ST, Chae J, Brown DA, Deutsch DG 2010. Lipid droplets are novel sites of N-acylethanolamine inactivation by fatty acid amide hydrolase-2. J. Biol. Chem. 285:2796–806
    [Google Scholar]
  62. 62. 
    Kaczocha M, Glaser ST, Deutsch DG 2009. Identification of intracellular carriers for the endocannabinoid anandamide. PNAS 106:6375–80
    [Google Scholar]
  63. 63. 
    Kamlekar RK, Swamy MJ. 2006. Molecular packing and intermolecular interactions in two structural polymorphs of N-palmitoylethanolamine, a type 2 cannabinoid receptor agonist. J. Lipid Res. 47:1424–33
    [Google Scholar]
  64. 64. 
    Kano M. 2014. Control of synaptic function by endocannabinoid-mediated retrograde signaling. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 90:235–50
    [Google Scholar]
  65. 65. 
    Kanoh H, Iwata T, Ono T, Suzuki T. 1986. Immunological characterization of sn-1,2-diacylglycerol and sn-2-monoacylglycerol kinase from pig brain. J. Biol. Chem. 261:5597–602
    [Google Scholar]
  66. 66. 
    Keppel Hesselink JM 2012. New targets in pain, non-neuronal cells, and the role of palmitoylethanolamide. Open Pain J 5:12–23
    [Google Scholar]
  67. 67. 
    Kim HY, Spector AA, Xiong ZM. 2011. A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development. Prostaglandins Other Lipid Mediat 96:114–20
    [Google Scholar]
  68. 68. 
    Kirkham TC, Williams CM, Fezza F, Di Marzo V. 2002. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br. J. Pharmacol. 136:550–57
    [Google Scholar]
  69. 69. 
    Kleberg K, Hassing HA, Hansen HS. 2014. Classical endocannabinoid-like compounds and their regulation by nutrients. Biofactors 40:363–72
    [Google Scholar]
  70. 70. 
    Kozak KR, Crews BC, Ray JL, Tai HH, Morrow JD, Marnett LJ. 2001. Metabolism of prostaglandin glycerol esters and prostaglandin ethanolamides in vitro and in vivo. J. Biol. Chem. 276:36993–98
    [Google Scholar]
  71. 71. 
    Kozak KR, Marnett LJ. 2002. Oxidative metabolism of endocannabinoids. Prostaglandins Leukot. Essent. Fatty Acids 66:211–20
    [Google Scholar]
  72. 72. 
    Kunos G, Járai Z, Bátkai S, Goparaju SK, Ishac EJ et al. 2000. Endocannabinoids as cardiovascular modulators. Chem. Phys. Lipids 108:159–68
    [Google Scholar]
  73. 73. 
    Kurahashi Y, Ueda N, Suzuki H, Suzuki M, Yamamoto S. 1997. Reversible hydrolysis and synthesis of anandamide demonstrated by recombinant rat fatty-acid amide hydrolase. Biochem. Biophys. Res. Commun. 237:512–15
    [Google Scholar]
  74. 74. 
    Labar G, Bauvois C, Borel F, Ferrer JL, Wouters J, Lambert DM. 2010. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. ChemBioChem 11:218–27
    [Google Scholar]
  75. 75. 
    Laleh P, Yaser K, Abolfazl B, Shahriar A, Mohammad AJ et al. 2018. Oleoylethanolamide increases the expression of PPAR-α and reduces appetite and body weight in obese people: a clinical trial. Appetite 128:44–49
    [Google Scholar]
  76. 76. 
    Lan H, Vassileva G, Corona A, Liu L, Baker H et al. 2009. GPR119 is required for physiological regulation of glucagon-like peptide-1 secretion but not for metabolic homeostasis. J. Endocrinol. 201:219–30
    [Google Scholar]
  77. 77. 
    Lazenka MF, Selley DE, Sim-Selley LJ. 2013. Brain regional differences in CB1 receptor adaptation and regulation of transcription. Life Sci 92:446–52
    [Google Scholar]
  78. 78. 
    Lindborg KA, Jacob S, Henriksen EJ 2011. Effects of chronic antagonism of endocannabinoid-1 receptors on glucose tolerance and insulin action in skeletal muscles of lean and obese Zucker rats. Cardiorenal Med 1:31–44
    [Google Scholar]
  79. 79. 
    Lindborg KA, Teachey MK, Jacob S, Henriksen EJ 2010. Effects of in vitro antagonism of endocannabinoid-1 receptors on the glucose transport system in normal and insulin-resistant rat skeletal muscle. Diabetes Obes. Metab. 12:722–30
    [Google Scholar]
  80. 80. 
    Lipina C, Rastedt W, Irving AJ, Hundal HS. 2013. Endocannabinoids in obesity: brewing up the perfect metabolic storm?. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2:49–63
    [Google Scholar]
  81. 81. 
    Lu L, Williams G, Doherty P. 2019. 2-Linoleoylglycerol is a partial agonist of the human cannabinoid type 1 receptor that can suppress 2-arachidonolyglycerol and anandamide activity. Cannabis Cannabinoid Res 4:231–39
    [Google Scholar]
  82. 82. 
    Lykhmus O, Uspenska K, Koval L, Lytovchenko D, Voytenko L et al. 2017. N-Stearoylethanolamine protects the brain and improves memory of mice treated with lipopolysaccharide or immunized with the extracellular domain of α7 nicotinic acetylcholine receptor. Int. Immunopharmacol. 52:290–96
    [Google Scholar]
  83. 83. 
    Maccarrone M. 2017. Metabolism of the endocannabinoid anandamide: open questions after 25 years. Front. Mol. Neurosci. 10:166
    [Google Scholar]
  84. 84. 
    Maccarrone M, Cartoni A, Parolaro D, Margonelli A, Massi P et al. 2002. Cannabimimetic activity, binding, and degradation of stearoylethanolamide within the mouse central nervous system. Mol. Cell. Neurosci. 21:126–40
    [Google Scholar]
  85. 85. 
    Maccarrone M, Pauselli R, Di Rienzo M, Finazzi-Agrò A. 2002. Binding, degradation and apoptotic activity of stearoylethanolamide in rat C6 glioma cells. Biochem. J. 366:137–44
    [Google Scholar]
  86. 86. 
    Malamas MS, Farah SI, Lamani M, Pelekoudas DN, Perry NT et al. 2020. Design and synthesis of cyanamides as potent and selective N-acylethanolamine acid amidase inhibitors. Bioorg. Med. Chem. 28:115195
    [Google Scholar]
  87. 87. 
    Mallet C, Dubray C, Dualé C. 2016. FAAH inhibitors in the limelight, but regrettably. Int. J. Clin. Pharmacol. Ther. 54:498–501
    [Google Scholar]
  88. 88. 
    Matias I, Belluomo I, Cota D. 2016. The fat side of the endocannabinoid system: role of endocannabinoids in the adipocyte. Cannabis Cannabinoid Res 1:176–85
    [Google Scholar]
  89. 89. 
    Matias I, Gonthier MP, Orlando P, Martiadis V, De Petrocellis L et al. 2006. Regulation, function, and dysregulation of endocannabinoids in models of adipose and β-pancreatic cells and in obesity and hyperglycemia. J. Clin. Endocrinol. Metab. 91:3171–80
    [Google Scholar]
  90. 90. 
    Matias I, Petrosino S, Racioppi A, Capasso R, Izzo AA, Di Marzo V. 2008. Dysregulation of peripheral endocannabinoid levels in hyperglycemia and obesity: effect of high fat diets. Mol. Cell. Endocrinol. 286:66–78
    [Google Scholar]
  91. 91. 
    McCue JM, Driscoll WJ, Mueller GP. 2009. In vitro synthesis of arachidonoyl amino acids by cytochrome c. Prostaglandins Other Lipid Mediat 90:42–48
    [Google Scholar]
  92. 92. 
    McPartland JM, Guy GW, Di Marzo V. 2014. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLOS ONE 9:e89566
    [Google Scholar]
  93. 93. 
    Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE et al. 1995. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50:83–90
    [Google Scholar]
  94. 94. 
    Meijerink J, Balvers M, Witkamp R. 2013. N-Acyl amines of docosahexaenoic acid and other n–3 polyunsatured fatty acids—from fishy endocannabinoids to potential leads. Br. J. Pharmacol. 169:772–83
    [Google Scholar]
  95. 95. 
    Misto A, Provensi G, Vozella V, Passani MB, Piomelli D. 2019. Mast cell-derived histamine regulates liver ketogenesis via oleoylethanolamide signaling. Cell Metab 29:91–102
    [Google Scholar]
  96. 96. 
    Morsanuto V, Galla R, Molinari C, Uberti F. 2020. A new palimitoylethanolamide form combined with antioxidant molecules to improve its effectivess on neuronal aging. Brain Sci 10:457
    [Google Scholar]
  97. 97. 
    Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ et al. 2019. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30:72–130
    [Google Scholar]
  98. 98. 
    Mustafiz SSB, Uyama T, Morito K, Takahashi N, Kawai K et al. 2019. Intracellular Ca2+-dependent formation of N-acyl-phosphatidylethanolamines by human cytosolic phospholipase A2ε. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864:158515
    [Google Scholar]
  99. 99. 
    Nakane S, Oka S, Arai S, Waku K, Ishima Y et al. 2002. 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch. Biochem. Biophys. 402:51–58
    [Google Scholar]
  100. 100. 
    Nesto RW, Mackie K. 2008. Endocannabinoid system and its implications for obesity and cardiometabolic risk. Eur. Heart J. Suppl. 10:34–41
    [Google Scholar]
  101. 101. 
    Oddi S, Fezza F, Pasquariello N, D'Agostino A, Catanzaro G et al. 2009. Molecular identification of albumin and Hsp70 as cytosolic anandamide-binding proteins. Chem. Biol. 16:624–32
    [Google Scholar]
  102. 102. 
    Ogura Y, Parsons WH, Kamat SS, Cravatt BF. 2016. A calcium-dependent acyltransferase that produces N-acyl phosphatidylethanolamines. Nat. Chem. Biol. 12:669–71
    [Google Scholar]
  103. 103. 
    Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. 2004. Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem. 279:5298–305
    [Google Scholar]
  104. 104. 
    Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S et al. 2005. Endocannabinoid activation at hepatic CB 1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Investig. 115:1298–305
    [Google Scholar]
  105. 105. 
    Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. 2006. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev. 27:73–100
    [Google Scholar]
  106. 106. 
    Park T, Chen H, Kim HY. 2019. GPR110 (ADGRF1) mediates anti-inflammatory effects of N-docosahexaenoylethanolamine. J. Neuroinflamm. 16:225
    [Google Scholar]
  107. 107. 
    Patel S, Carrier EJ, Ho WV, Rademacher DJ, Cunningham S et al. 2005. The postmortal accumulation of brain N-arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase activity. J. Lipid Res. 46:342–49
    [Google Scholar]
  108. 108. 
    Pavón FJ, Serrano A, Romero-Cuevas M, Alonso M, de Fonseca FR 2010. Oleoylethanolamide: a new player in peripheral control of energy metabolism. Therapeutic implications. Drug Discov. Today Dis. Mech. 7:175–83
    [Google Scholar]
  109. 109. 
    Pertwee R, Griffin G, Hanus L, Mechoulam R. 1994. Effects of two endogenous fatty acid ethanolamides on mouse vasa deferentia. Eur. J. Pharmacol. 259:115–20
    [Google Scholar]
  110. 110. 
    Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V et al. 2010. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol. Rev. 62:588–631
    [Google Scholar]
  111. 111. 
    Piomelli D. 2013. A fatty gut feeling. Trends Endrocrinol. Metab. 24:332–41
    [Google Scholar]
  112. 112. 
    Piomelli D, Scalvini L, Fotio Y, Lodola A, Spadoni G et al. 2020. N-Acylethanolamine acid amidase (NAAA): structure, function, and inhibition. J. Med. Chem. 63:7475–90
    [Google Scholar]
  113. 113. 
    Pratt PF, Hillard CJ, Edgemond WS, Campbell WB. 1998. N-Arachidonylethanolamide relaxation of bovine coronary artery is not mediated by CB1 cannabinoid receptor. Am. J. Physiol. Heart Circ. Physiol. 274:375–81
    [Google Scholar]
  114. 114. 
    Richardson D, Ortori CA, Chapman V, Kendall DA, Barrett DA. 2007. Quantitative profiling of endocannabinoids and related compounds in rat brain using liquid chromatography–tandem electrospray ionization mass spectrometry. Anal. Biochem. 360:216–26
    [Google Scholar]
  115. 115. 
    Romano A, Coccurello R, Giacovazzo G, Bedse G, Moles A, Gaetani S. 2014. Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite. Biomed. Res. Int. 2014:203425
    [Google Scholar]
  116. 116. 
    Romero-Zerbo SY, Bermúdez-Silva FJ 2014. Cannabinoids, eating behaviour, and energy homeostasis. Drug Test. Anal. 6:52–58
    [Google Scholar]
  117. 117. 
    Rouzer CA, Marnett LJ. 2008. Non-redundant functions of cyclooxygenases: oxygenation of endocannabinoids. J. Biol. Chem. 283:8065–69
    [Google Scholar]
  118. 118. 
    Ruby MA, Nomura DK, Hudak CS, Barber A, Casida JE, Krauss RM. 2011. Acute overactive endocannabinoid signaling induces glucose intolerance, hepatic steatosis, and novel cannabinoid receptor 1 responsive genes. PLOS ONE 6:e26415
    [Google Scholar]
  119. 119. 
    Scalvini L, Piomelli D, Mor M. 2016. Monoglyceride lipase: structure and inhibitors. Chem. Phys. Lipids 197:13–24
    [Google Scholar]
  120. 120. 
    Schmid PC, Kuwae T, Krebsbach RJ, Schmid HH. 1997. Anandamide and other N-acylethanolamines in mouse peritoneal macrophages. Chem. Phys. Lipids 87:103–10
    [Google Scholar]
  121. 121. 
    Shim YH, Lin CH, Strickland KP. 1989. The purification and properties of monoacylglycerol kinase from bovine brain. Biochem. Cell Biol. 67:233–41
    [Google Scholar]
  122. 122. 
    Silvestri C, Di Marzo V. 2013. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab 17:475–90
    [Google Scholar]
  123. 123. 
    Silvestri C, Ligresti A, Di Marzo V. 2011. Peripheral effects of the endocannabinoid system in energy homeostasis: adipose tissue, liver and skeletal muscle. Rev. Endocr. Metab. Disord. 12:153–62
    [Google Scholar]
  124. 124. 
    Simon GM, Cravatt BF. 2010. Characterization of mice lacking candidate N-acyl ethanolamine biosynthetic enzymes provides evidence for multiple pathways that contribute to endocannabinoid production in vivo. Mol. Biosyst. 6:1411–18
    [Google Scholar]
  125. 125. 
    Singh PK, Markwick R, Howell FV, Williams G, Doherty P. 2016. A novel live cell assay to measure diacylglycerol lipase α activity. Biosci. Rep. 36:e00331
    [Google Scholar]
  126. 126. 
    Sipe JC, Waalen J, Gerber A, Beutler E. 2005. Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int. J. Obes. 29:755–59
    [Google Scholar]
  127. 127. 
    Sugiura T, Kishimoto S, Oka S, Gokoh M. 2006. Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog. Lipid Res. 45:405–46
    [Google Scholar]
  128. 128. 
    Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A et al. 1995. 2-Arachidonoylgylcerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215:89–97
    [Google Scholar]
  129. 129. 
    Sun YX, Tsuboi K, Okamoto Y, Tonai T, Murakami M et al. 2004. Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D. Biochem. J. 380:749–56
    [Google Scholar]
  130. 130. 
    Syed SK, Bui HH, Beavers LS, Farb TB, Ficorilli J et al. 2012. Regulation of GPR119 receptor activity with endocannabinoid-like lipids. Am. J. Physiol. Endocrinol. Metab. 303:1469–78
    [Google Scholar]
  131. 131. 
    Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limón P et al. 2013. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341:800–802
    [Google Scholar]
  132. 132. 
    Trillou CR, Delgorge C, Menet C, Arnone M, Soubrie P. 2004. CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int. J. Obes. 28:640–48
    [Google Scholar]
  133. 133. 
    Tripathi RKP. 2020. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur. J. Med. Chem. 188:111953
    [Google Scholar]
  134. 134. 
    Tsuboi K, Okamoto Y, Ikematsu N, Inoue M, Shimizu Y et al. 2011. Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811:565–77
    [Google Scholar]
  135. 135. 
    Tsutsumi T, Kobayashi T, Ueda H, Yamauchi E, Watanabe S, Okuyama H. 1994. Lysophosphoinositide-specific phospholipase C in rat brain synaptic plasma membranes. Neurochem. Res. 19:399–406
    [Google Scholar]
  136. 136. 
    Ueda H, Kobayashi T, Kishimoto M, Tsutsumi T, Okuyama H. 1993. A possible pathway of phosphoinositide metabolism through EDTA-insensitive phospholipase A1 followed by lysophosphoinositide-specific phospholipase C in rat brain. J. Neurochem. 61:1874–81
    [Google Scholar]
  137. 137. 
    Ueda N, Tsuboi K, Uyama T, Ohnishi T. 2011. Biosynthesis and degradation of the endocannabinoid 2-arachidonoylglycerol. Biofactors 37:1–7
    [Google Scholar]
  138. 138. 
    Ueda N, Tsuboi K, Uyama T. 2010. Enzymological studies on the biosynthesis of N-acylethanolamines. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1801:1274–85
    [Google Scholar]
  139. 139. 
    Ueda N, Tsuboi K, Uyama T. 2013. Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J 280:1874–94
    [Google Scholar]
  140. 140. 
    Verme JL, Gaetani S, Fu J, Oveisi F, Burton K, Piomelli D. 2005. Regulation of food intake by oleoylethanolamide. Cell. Mol. Life Sci. 62:708–16
    [Google Scholar]
  141. 141. 
    Vettor R, Pagano C. 2009. The role of the endocannabinoid system in lipogenesis and fatty acid metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 23:51–63
    [Google Scholar]
  142. 142. 
    Wagner EJ. 2016. Sex differences in cannabinoid-regulated biology: a focus on energy homeostasis. Front. Neuroendocrinol. 40:101–9
    [Google Scholar]
  143. 143. 
    Walker JM, Krey JF, Chu CJ, Huang SM. 2002. Endocannabinoids and related fatty acid derivatives in pain modulation. Chem. Phys. Lipids 121:159–72
    [Google Scholar]
  144. 144. 
    Watkins BA, Kim J. 2015. The endocannabinoid system: directing eating behavior and macronutrient metabolism. Front. Psychol. 5:1506
    [Google Scholar]
  145. 145. 
    Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF. 2006. A second fatty acid amide hydrolase with variable distribution among placental mammals. J. Biol. Chem. 281:36569–78
    [Google Scholar]
  146. 146. 
    Williams CM, Kirkham TC. 1999. Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology 143:315–17
    [Google Scholar]
  147. 147. 
    Witkamp R. 2016. Fatty acids, endocannabinoids and inflammation. Eur. J. Pharmacol. 785:96–107
    [Google Scholar]
  148. 148. 
    Wouters J, Vandevoorde S, Culot C, Docquir F, Lambert DM. 2002. Polymorphism of N-stearoylethanolamine: differential scanning calorimetric, vibrational spectroscopic (FTIR), and crystallographic studies. Chem. Phys. Lipids 119:13–21
    [Google Scholar]
  149. 149. 
    Yang Y, Chen M, Georgeson KE, Harmon CM. 2007. Mechanism of oleoylethanolamide on fatty acid uptake in small intestine after food intake and body weight reduction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:235–41
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-043020-090216
Loading
/content/journals/10.1146/annurev-nutr-043020-090216
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error