1932

Abstract

Considerable recent advancements in elucidating the genetic architecture of sleep traits and sleep disorders may provide insight into the relationship between sleep and obesity. Despite the involvement of the circadian clock in sleep and metabolism, few shared genes, including , were implicated in genome-wide association studies (GWASs) of sleep and obesity. Polygenic scores composed of signals from GWASs of sleep traits show largely null associations with obesity, suggesting lead variants are unique to sleep. Modest genome-wide genetic correlations are observed between many sleep traits and obesity and are largest for snoring. Notably, U-shaped positive genetic correlations with body mass index (BMI) exist for both short and long sleep durations. Findings from Mendelian randomization suggest robust causal effects of insomnia on higher BMI and, conversely, of higher BMI on snoring and daytime sleepiness. In addition, bidirectional effects between sleep duration and daytime napping with obesity may also exist. Limited gene-sleep interaction studies suggest that achieving favorable sleep, as part of a healthy lifestyle, may attenuate genetic predisposition to obesity,but whether these improvements produce clinically meaningful reductions in obesity risk remains unclear. Investigations of the genetic link between sleep and obesity for sleep disorders other than insomnia and in populations of non-European ancestry are currently limited.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082018-124258
2021-10-11
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/nutr/41/1/annurev-nutr-082018-124258.html?itemId=/content/journals/10.1146/annurev-nutr-082018-124258&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Allebrandt KV, Amin N, Müller-Myhsok B, Esko T, Teder-Laving M et al. 2013. A KATP channel gene effect on sleep duration: from genome-wide association studies to function in Drosophila. Mol. Psychiatry 18:1122–32
    [Google Scholar]
  2. 2. 
    Allebrandt KV, Teder-Laving M, Akyol M, Pichler I, Müller-Myhsok B et al. 2010. CLOCK gene variants associate with sleep duration in two independent populations. Biol. Psychiatry 67:111040–47
    [Google Scholar]
  3. 3. 
    Ashley EA. 2015. The precision medicine initiative: a new national effort. JAMA 313:212119–20
    [Google Scholar]
  4. 4. 
    Banerjee S, Wang Y, Solt LA, Griffett K, Kazantzis M et al. 2014. Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nat. Commun. 5:5759
    [Google Scholar]
  5. 5. 
    Barnes CM, Drake CL. 2015. Prioritizing sleep health: public health policy recommendations. Perspect. Psychol. Sci. 10:6733–37
    [Google Scholar]
  6. 6. 
    Bell CG, Walley AJ, Froguel P. 2005. The genetics of human obesity. Nat. Rev. Genet. 6:3221–34
    [Google Scholar]
  7. 7. 
    Bouchard C. 2008. Gene–environment interactions in the etiology of obesity: defining the fundamentals. Obesity 16:Suppl. 3S5–5
    [Google Scholar]
  8. 8. 
    Bouchard C, Tremblay A, Després JP, Nadeau A, Lupien PJ et al. 1990. The response to long-term overfeeding in identical twins. N. Engl. J. Med. 322:211477–82
    [Google Scholar]
  9. 9. 
    Buhr ED, Takahashi JS. 2013. Molecular components of the mammalian circadian clock. Handb. Exp. Pharmacol. 2013:2173–27
    [Google Scholar]
  10. 10. 
    Cade BE, Chen H, Stilp AM, Gleason KJ, Sofer T et al. 2016. Genetic associations with obstructive sleep apnea traits in Hispanic/Latino Americans. Am. J. Respir. Crit. Care Med. 194:7886–97
    [Google Scholar]
  11. 11. 
    Campbell SS, Tobler I. 1984. Animal sleep: a review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 8:3269–300
    [Google Scholar]
  12. 12. 
    Campos AI, García-Marín LM, Byrne EM, Martin NG, Cuéllar-Partida G, Rentería ME. 2020. Insights into the aetiology of snoring from observational and genetic investigations in the UK Biobank. Nat. Commun. 11:1817
    [Google Scholar]
  13. 13. 
    Cappuccio FP, D'Elia L, Strazzullo P, Miller MA 2010. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 33:2414–20
    [Google Scholar]
  14. 14. 
    Cappuccio FP, Taggart FM, Kandala N-B, Currie A, Peile E et al. 2008. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 31:5619–26
    [Google Scholar]
  15. 15. 
    Cedernaes J, Osler ME, Voisin S, Broman JE, Vogel H et al. 2015. Acute sleep loss induces tissue-specific epigenetic and transcriptional alterations to circadian clock genes in men. J. Clin. Endocrinol. Metab. 100:9E1255–1255
    [Google Scholar]
  16. 16. 
    Celis-Morales C, Lyall DM, Guo Y, Steell L, Llanas D et al. 2017. Sleep characteristics modify the association of genetic predisposition with obesity and anthropometric measurements in 119,679 UK Biobank participants. Am. J. Clin. Nutr. 105:4980–90
    [Google Scholar]
  17. 17. 
    Chudasama YV, Khunti K, Gillies CL, Dhalwani NN, Davies MJ et al. 2020. Healthy lifestyle and life expectancy in people with multimorbidity in the UK Biobank: a longitudinal cohort study. PLOS Med 17:9e1003332
    [Google Scholar]
  18. 18. 
    Daghlas I, Dashti HS, Lane J, Aragam KG, Rutter MK et al. 2019. Sleep duration and myocardial infarction. J. Am. Coll. Cardiol. 74:101304–14
    [Google Scholar]
  19. 19. 
    Dashti HS, Cade BE, Stutaite G, Saxena R, Redline S, Karlson EW. 2020. Sleep health, diseases, and pain syndromes: findings from an electronic health record biobank. Sleep 2020:zsaa189
    [Google Scholar]
  20. 20. 
    Dashti HS, Daghlas I, Lane JM, Huang Y, Udler MS et al. 2021. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat. Commun. 12:1900
    [Google Scholar]
  21. 21. 
    Dashti HS, Follis JL, Smith CE, Tanaka T, Cade BE et al. 2015. Habitual sleep duration is associated with BMI and macronutrient intake and may be modified by CLOCK genetic variants. Am. J. Clin. Nutr. 101:1135–43
    [Google Scholar]
  22. 22. 
    Dashti HS, Follis JL, Smith CE, Tanaka T, Garaulet M et al. 2015. Gene-environment interactions of circadian-related genes for cardiometabolic traits. Diabetes Care 38:81456–66
    [Google Scholar]
  23. 23. 
    Dashti HS, Jones SE, Wood AR, Lane JM, van Hees VT et al. 2019. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 10:11100
    [Google Scholar]
  24. 24. 
    Dashti HS, Redline S, Saxena R. 2019. Polygenic risk score identifies associations between sleep duration and diseases determined from an electronic medical record biobank. Sleep 42:3zsy247
    [Google Scholar]
  25. 25. 
    Dashti HS, Vetter C, Lane JM, Smith MC, Wood AR et al. 2019. Assessment of MTNR1B type 2 diabetes genetic risk modification by shift work and morningness-eveningness preference in the UK Biobank. Diabetes 69:2259–66
    [Google Scholar]
  26. 26. 
    Davies NM, Holmes MV, Davey Smith G 2018. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362:k601
    [Google Scholar]
  27. 27. 
    Davis KF, Parker KP, Montgomery GL. 2004. Sleep in infants and young children. Part one: normal sleep. J. Pediatr. Heal. Care 18:265–71
    [Google Scholar]
  28. 28. 
    de Castro JM. 2002. The influence of heredity on self-reported sleep patterns in free-living humans. Physiol. Behav. 76:4–5479–86
    [Google Scholar]
  29. 29. 
    Deacon-Crouch M, Begg S, Skinner T. 2020. Is sleep duration associated with overweight/obesity in indigenous Australian adults?. BMC Public Health 20:11229
    [Google Scholar]
  30. 30. 
    Doherty A, Smith-Byrne K, Ferreira T, Holmes MV, Holmes C et al. 2018. GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat. Commun. 9:15257
    [Google Scholar]
  31. 31. 
    Duncan LE, Shen H, Ballon JS, Hardy KV, Noordsy DL, Levinson DF. 2018. Genetic correlation profile of schizophrenia mirrors epidemiological results and suggests link between polygenic and rare variant (22q11.2) cases of schizophrenia. Schizophr. Bull. 44:61350–61
    [Google Scholar]
  32. 32. 
    Elks CE, den Hoed M, Zhao JH, Sharp SJ, Wareham NJ et al. 2012. Variability in the heritability of body mass index: a systematic review and meta-regression. Front. Endocrinol. 3:29
    [Google Scholar]
  33. 33. 
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM et al. 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:5826889–94
    [Google Scholar]
  34. 34. 
    Fu J, Wang Y, Li G, Han L, Li Y et al. 2019. Childhood sleep duration modifies the polygenic risk for obesity in youth through leptin pathway: the Beijing Child and Adolescent Metabolic Syndrome cohort study. Int. J. Obes. 43:81556–67
    [Google Scholar]
  35. 35. 
    Garaulet M, Sánchez-Moreno C, Smith CE, Lee Y-C, Nicolás F, Ordovás JM. 2011. Ghrelin, sleep reduction and evening preference: relationships to CLOCK 3111 T/C SNP and weight loss. PLOS ONE 6:2e17435
    [Google Scholar]
  36. 36. 
    Garfield V. 2019. The association between body mass index (BMI) and sleep duration: Where are we after nearly two decades of epidemiological research?. Int. J. Environ. Res. Public Health 16:224327
    [Google Scholar]
  37. 37. 
    Genderson MR, Rana BK, Panizzon MS, Grant MD, Toomey R et al. 2013. Genetic and environmental influences on sleep quality in middle-aged men: a twin study. J. Sleep Res. 22:5519–26
    [Google Scholar]
  38. 38. 
    Gómez-Abellán P, Madrid JA, Luján JA, Frutos MD, González R et al. 2012. Sexual dimorphism in clock genes expression in human adipose tissue. Obes. Surg. 22:1105–12
    [Google Scholar]
  39. 39. 
    Gottlieb DJ, Hek K, Chen T-H, Watson NF, Eiriksdottir G et al. 2015. Novel loci associated with usual sleep duration: the CHARGE consortium genome-wide association study. Mol. Psychiatry 20:101232–39
    [Google Scholar]
  40. 40. 
    Gottlieb DJ, O'Connor GT, Wilk JB 2007. Genome-wide association of sleep and circadian phenotypes. BMC Med. Genet. 8:Suppl. 1S9
    [Google Scholar]
  41. 41. 
    Guasch-Ferré M, Dashti HS, Merino J. 2018. Nutritional genomics and direct-to-consumer genetic testing: an overview. Adv. Nutr. 9:2128–35
    [Google Scholar]
  42. 42. 
    Hallmayer J, Faraco J, Lin L, Hesselson S, Winkelmann J et al. 2009. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat. Genet. 41:6708–11
    [Google Scholar]
  43. 43. 
    Hammerschlag AR, Stringer S, De Leeuw CA, Sniekers S, Taskesen E et al. 2017. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nat. Genet. 49:111584–92
    [Google Scholar]
  44. 44. 
    Hardaway JA, Halladay LR, Mazzone CM, Pati D, Bloodgood DW et al. 2019. Central amygdala prepronociceptin-expressing neurons mediate palatable food consumption and reward. Neuron 102:51037–52.e7
    [Google Scholar]
  45. 45. 
    He Y, Jones CR, Fujiki N, Xu Y, Guo B et al. 2009. The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325:5942866–70
    [Google Scholar]
  46. 46. 
    Heianza Y, Qi L. 2017. Gene–diet interaction and precision nutrition in obesity. Int. J. Mol. Sci. 18:4787
    [Google Scholar]
  47. 47. 
    Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O et al. 2015. National Sleep Foundation's updated sleep duration recommendations: final report. Sleep Heal 1:4233–43
    [Google Scholar]
  48. 48. 
    Hou S-J, Tsai S-J, Kuo P-H, Liu Y-L, Yang AC et al. 2020. An association study in the Taiwan Biobank reveals RORA as a novel locus for sleep duration in the Taiwanese population. Sleep Med 73:70–75
    [Google Scholar]
  49. 49. 
    Hu Y, Shmygelska A, Tran D, Eriksson N, Tung JY, Hinds DA. 2016. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun. 7:10448
    [Google Scholar]
  50. 50. 
    Hunter DJ. 2005. Gene-environment interactions in human diseases. Nat. Rev. Genet. 6:4287–98
    [Google Scholar]
  51. 51. 
    Jackson CL, Patel SR, Jackson WB, Lutsey PL, Redline S. 2018. Agreement between self-reported and objectively measured sleep duration among white, black, Hispanic, and Chinese adults in the United States: multi-ethnic study of atherosclerosis. Sleep 41:6zsy057
    [Google Scholar]
  52. 52. 
    Jackson CL, Ward JB, Johnson DA, Sims M, Wilson J, Redline S 2020. Concordance between self-reported and actigraphy-assessed sleep duration among African-American adults: findings from the Jackson Heart Sleep Study. Sleep 43:3zsz246
    [Google Scholar]
  53. 53. 
    Jansen PR, Watanabe K, Stringer S, Skene N, Bryois J et al. 2019. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 51:3394–403
    [Google Scholar]
  54. 54. 
    Jiang Y, Mei H, Lin Q, Wang J, Liu S et al. 2019. Interaction effects of FTO rs9939609 polymorphism and lifestyle factors on obesity indices in early adolescence. Obes. Res. Clin. Pract. 13:4352–57
    [Google Scholar]
  55. 55. 
    Joiner WJ. 2016. Unraveling the evolutionary determinants of sleep. Curr. Biol. 26:20R1073–1073
    [Google Scholar]
  56. 56. 
    Jones SE, Lane JM, Wood AR, van Hees VT, Tyrrell J et al. 2019. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 10:1343
    [Google Scholar]
  57. 57. 
    Jones SE, Tyrrell J, Wood AR, Beaumont RN, Ruth KS et al. 2016. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLOS Genet 12:8e1006125
    [Google Scholar]
  58. 58. 
    Jones SE, van Hees VT, Mazzotti DR, Marques-Vidal P, Sabia S et al. 2019. Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour. Nat. Commun. 10:11585
    [Google Scholar]
  59. 59. 
    Kent BD, Ryan S, McNicholas WT. 2010. The genetics of obstructive sleep apnoea. Curr. Opin Pulm. Med. 16:6536–42
    [Google Scholar]
  60. 60. 
    Khera AV, Chaffin M, Wade KH, Zahid S, Brancale J et al. 2019. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell 177:3587–96.e9
    [Google Scholar]
  61. 61. 
    Khera AV, Emdin CA, Kathiresan S. 2017. Genetic risk, lifestyle, and coronary artery disease. N. Engl. J. Med 376:121192–95
    [Google Scholar]
  62. 62. 
    Khoury S, Wang Q-P, Parisien M, Gris P, Bortsov AV et al. 2020. Multi-ethnic GWAS and meta-analysis of sleep quality identify MPP6 as a novel gene that functions in sleep center neurons. Sleep 2020:zsaa211
    [Google Scholar]
  63. 63. 
    Knutson KL, Spiegel K, Penev P, Van Cauter E. 2007. The metabolic consequences of sleep deprivation. Sleep Med. Rev. 11:3163–78
    [Google Scholar]
  64. 64. 
    Kripke DF, Kline LE, Nievergelt CM, Murray SS, Shadan FF et al. 2015. Genetic variants associated with sleep disorders. Sleep Med 16:2217–24
    [Google Scholar]
  65. 65. 
    Krishnan M, Shelling AN, Wall CR, Mitchell EA, Murphy R et al. 2017. Gene-by-environment interactions of the CLOCK, PEMT, and GHRELIN loci with average sleep duration in relation to obesity traits using a cohort of 643 New Zealand European children. Sleep Med 37:19–26
    [Google Scholar]
  66. 66. 
    Krueger JM, Frank MG, Wisor JP, Roy S 2016. Sleep function: toward elucidating an enigma. Sleep Med. Rev. 28:46–54
    [Google Scholar]
  67. 67. 
    Lane JM, Jones SE, Dashti HS, Wood AR, Aragam KG et al. 2019. Biological and clinical insights from genetics of insomnia symptoms. Nat. Genet. 51:3387–93
    [Google Scholar]
  68. 68. 
    Lane JM, Liang J, Vlasac I, Anderson SG, Bechtold DA et al. 2017. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 49:2274–81
    [Google Scholar]
  69. 69. 
    Lane JM, Vlasac I, Anderson SG, Kyle SD, Dixon WG et al. 2016. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 7:10889
    [Google Scholar]
  70. 70. 
    Larkin EK, Patel SR, Elston RC, Gray-McGuire C, Zhu X, Redline S. 2008. Using linkage analysis to identify quantitative trait loci for sleep apnea in relationship to body mass index. Ann. Hum. Genet. 72:6762–73
    [Google Scholar]
  71. 71. 
    Li J, Yang S, Jiao X, Yang Y, Sun H et al. 2019. Targeted sequencing analysis of the leptin receptor gene identifies variants associated with obstructive sleep apnoea in Chinese Han population. Lung 197:5577–84
    [Google Scholar]
  72. 72. 
    Lindenberger U, Nagel IE, Chicherio C, Li S-C, Heekeren HR, Bäckman L. 2008. Age-related decline in brain resources modulates genetic effects on cognitive functioning. Front. Neurosci. 2:2234–44
    [Google Scholar]
  73. 73. 
    Liu J, van Klinken JB, Semiz S, van Dijk KW, Verhoeven A et al. 2017. A Mendelian randomization study of metabolite profiles, fasting glucose, and type 2 diabetes. Diabetes 66:112915–26
    [Google Scholar]
  74. 74. 
    Liu Y, Wheaton A, Chapman D, Cunningham T, Lu H, Croft J. 2016: Prevalence of healthy sleep duration among adults—United States; 2014. Morb. Mortal. Wkly. Rep. 65:6137–41
    [Google Scholar]
  75. 75. 
    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH et al. 2015. Genetic studies of body mass index yield new insights for obesity biology. Nature 518:7538197–206
    [Google Scholar]
  76. 76. 
    Loos RJF. 2019. From nutrigenomics to personalizing diets: Are we ready for precision medicine?. Am. J. Clin. Nutr. 109:11–2
    [Google Scholar]
  77. 77. 
    Loos RJF, Lindgren CM, Li S, Wheeler E, Zhao JH et al. 2008. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40:6768–75
    [Google Scholar]
  78. 78. 
    Loos RJF, Yeo GSH. 2014. The bigger picture of FTO—the first GWAS-identified obesity gene. Nat. Rev. Endocrinol. 10:151–61
    [Google Scholar]
  79. 79. 
    Luyster FS, Strollo PJ Jr., Zee PC, Walsh JK. 2012. Sleep: a health imperative. Sleep 35:6727–34
    [Google Scholar]
  80. 80. 
    Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA et al. 2009. Finding the missing heritability of complex diseases. Nature 461:7265747–53
    [Google Scholar]
  81. 81. 
    Marin JM, Carrizo SJ, Vicente E, Agusti AGN 2005. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365:94641046–53
    [Google Scholar]
  82. 82. 
    Marinelli M, Pappa I, Bustamante M, Bonilla C, Suarez A et al. 2016. Heritability and genome-wide association analyses of sleep duration in children: the EAGLE Consortium. Sleep 39:101859–69
    [Google Scholar]
  83. 83. 
    Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. 2019. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51:4584–91
    [Google Scholar]
  84. 84. 
    McArdle N, Ward SV, Bucks RS, Maddison K, Smith A et al. 2020. The prevalence of common sleep disorders in young adults: a descriptive population-based study. Sleep 43:10zsaa072
    [Google Scholar]
  85. 85. 
    Mei H, Jiang F, Li L, Griswold M, Liu S, Mosley T. 2020. Study of genetic correlation between children's sleep and obesity. J. Hum. Genet. 65:11949–59
    [Google Scholar]
  86. 86. 
    Merino J, Dashti HS, Li SX, Sarnowski C, Justice AE et al. 2019. Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. Mol. Psychiatry 24:121920–32
    [Google Scholar]
  87. 87. 
    Mishima K, Tozawa T, Satoh K, Saitoh H, Mishima Y. 2005. The 3111T/C polymorphism of hClock is associated with evening preference and delayed sleep timing in a Japanese population sample. Am. J. Med. Genet. Neuropsychiatr. Genet. 133B:1101–4
    [Google Scholar]
  88. 88. 
    Miyagawa T, Kawashima M, Nishida N, Ohashi J, Kimura R et al. 2008. Variant between CPT1B and CHKB associated with susceptibility to narcolepsy. Nat. Genet. 40:111324–28
    [Google Scholar]
  89. 89. 
    Mukherjee S, Saxena R, Palmer LJ. 2018. The genetics of obstructive sleep apnoea. Respirology 23:118–27
    [Google Scholar]
  90. 90. 
    Murali NS, Svatikova A, Somers VK. 2003. Cardiovascular physiology and sleep. Front. Biosci. 8:s636–636
    [Google Scholar]
  91. 91. 
    Nascimento Ferreira MV, Goumidi L, Carvalho HB, De Moraes ACF, Santaliestra-Pasías AM et al. 2018. Associations between REV-ERBα, sleep duration and body mass index in European adolescents. Sleep Med 46:56–60
    [Google Scholar]
  92. 92. 
    Nishiyama T, Nakatochi M, Goto A, Iwasaki M, Hachiya T et al. 2019. Genome-wide association meta-analysis and Mendelian randomization analysis confirm the influence of ALDH2 on sleep duration in the Japanese population. Sleep 42:6zsz046
    [Google Scholar]
  93. 93. 
    Noordam R, Bos MM, Wang H, Winkler TW, Bentley AR et al. 2019. Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration. Nat. Commun. 10:15121
    [Google Scholar]
  94. 94. 
    Ogilvie RP, Patel SR. 2017. The epidemiology of sleep and obesity. Sleep Health 3:5383–88
    [Google Scholar]
  95. 95. 
    Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. 2004. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27:71255–73
    [Google Scholar]
  96. 96. 
    Ollila HM, Kronholm E, Kettunen J, Silander K, Perola M et al. 2016. Insomnia does not mediate or modify the association between MTNR1B risk variant rs10830963 and glucose levels. Diabetologia 59:51070–72
    [Google Scholar]
  97. 97. 
    Ophoff D, Slaats MA, Boudewyns A, Glazemakers I, Van Hoorenbeeck K, Verhulst SL. 2018. Sleep disorders during childhood: a practical review. Eur. J. Pediatr. 177:5641–48
    [Google Scholar]
  98. 98. 
    Pallesen S, Sivertsen B, Nordhus IH, Bjorvatn B. 2014. A 10-year trend of insomnia prevalence in the adult Norwegian population. Sleep Med 15:2173–79
    [Google Scholar]
  99. 99. 
    Partinen M, Kaprio J, Koskenvuo M, Putkonen P, Langinvainio H. 1983. Genetic and environmental determination of human sleep. Sleep 6:3179–85
    [Google Scholar]
  100. 100. 
    Patel SR. 2005. Shared genetic risk factors for obstructive sleep apnea and obesity. J. Appl. Physiol. 99:41600–6
    [Google Scholar]
  101. 101. 
    Patel SR, Hu FB. 2008. Short sleep duration and weight gain: a systematic review. Obesity 16:3643–53
    [Google Scholar]
  102. 102. 
    Prats-Puig A, Grau-Cabrera P, Riera-Pérez E, Cortés-Marina R, Fortea E et al. 2013. Variations in the obesity genes FTO, TMEM18 and NRXN3 influence the vulnerability of children to weight gain induced by short sleep duration. Int. J. Obes. 37:2182–87
    [Google Scholar]
  103. 103. 
    Rask-Andersen M, Karlsson T, Ek WE, Johansson Å. 2017. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLOS Genet 13:9e1006977
    [Google Scholar]
  104. 104. 
    Redline S, Tishler PV. 2000. The genetics of sleep apnea. Sleep Med. Rev. 4:6583–602
    [Google Scholar]
  105. 105. 
    Riestra P, Gebreab SY, Xu R, Khan RJ, Gaye A et al. 2017. Circadian CLOCK gene polymorphisms in relation to sleep patterns and obesity in African Americans: findings from the Jackson Heart Study. BMC Genet 18:158
    [Google Scholar]
  106. 106. 
    Rogers NL, Szuba MP, Staab JP, Evans DL, Dinges DF. 2001. Neuroimmunologic aspects of sleep and sleep loss. Semin. Clin. Neuropsychiatry 6:4295–307
    [Google Scholar]
  107. 107. 
    Ruiz-Lozano T, Vidal J, De Hollanda A, Canteras M, Garaulet M, Izquierdo-Pulido M. 2016. Evening chronotype associates with obesity in severely obese subjects: interaction with CLOCK 3111T/C. Int. J. Obes. 40:101550–57
    [Google Scholar]
  108. 108. 
    Sa J, Choe S, Cho B-Y, Chaput J-P, Kim G et al. 2020. Relationship between sleep and obesity among U.S. and South Korean college students. BMC Public Health 20:196
    [Google Scholar]
  109. 109. 
    Schormair B, Zhao C, Bell S, Tilch E, Salminen AV et al. 2017. Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurol 16:11898–907
    [Google Scholar]
  110. 110. 
    Scott EM, Carter AM, Grant PJ. 2008. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int. J. Obes. 32:4658–62
    [Google Scholar]
  111. 111. 
    Sehgal A, Mignot E. 2011. Genetics of sleep and sleep disorders. Cell 146:2194–207
    [Google Scholar]
  112. 112. 
    Serretti A, Gaspar-Barba E, Calati R, Cruz-Fuentes CS, Gomez-Sanchez A et al. 2010. 3111TC CLOCK gene polymorphism is not associated with sleep disturbances in untreated depressed patients. Chronobiol. Int. 27:2265–77
    [Google Scholar]
  113. 113. 
    Skuladottir GV, Nilsson EK, Mwinyi J, Schiöth HB. 2016. One-night sleep deprivation induces changes in the DNA methylation and serum activity indices of stearoyl-CoA desaturase in young healthy men. Lipids Health Dis 15:1137
    [Google Scholar]
  114. 114. 
    Sodini SM, Kemper KE, Wray NR, Trzaskowski M. 2018. Comparison of genotypic and phenotypic correlations: Cheverud's conjecture in humans. Genetics 209:3941–48
    [Google Scholar]
  115. 115. 
    Sookoian S, Gemma C, Gianotti TF, Burgueño A, Castaño G, Pirola CJ. 2008. Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am. J. Clin. Nutr. 87:61606–15
    [Google Scholar]
  116. 116. 
    Spada J, Scholz M, Kirsten H, Hensch T, Horn K et al. 2016. Genome-wide association analysis of actigraphic sleep phenotypes in the LIFE Adult Study. J. Sleep Res. 25:6690–701
    [Google Scholar]
  117. 117. 
    Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G et al. 2010. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42:11937–48
    [Google Scholar]
  118. 118. 
    Stranges S, Cappuccio FP, Kandala NB, Miller MA, Taggart FM et al. 2008. Cross-sectional versus prospective associations of sleep duration with changes in relative weight and body fat distribution: the Whitehall II Study. Am. J. Epidemiol. 167:3321–29
    [Google Scholar]
  119. 119. 
    Tahira K, Ueno T, Fukuda N, Aoyama T, Tsunemi A et al. 2011. Obesity alters the expression profile of clock genes in peripheral blood mononuclear cells. Preliminary results. Arch. Med. Sci. 7:6933–40
    [Google Scholar]
  120. 120. 
    Tare A, Lane JM, Cade BE, Grant SFA, Chen TH et al. 2014. Sleep duration does not mediate or modify association of common genetic variants with type 2 diabetes. Diabetologia 57:2339–46
    [Google Scholar]
  121. 121. 
    Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P et al. 2009. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 41:118–24
    [Google Scholar]
  122. 122. 
    Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G et al. 2005. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:57241043–45
    [Google Scholar]
  123. 123. 
    Tyrrell J, Wood AR, Ames RM, Yaghootkar H, Beaumont RN et al. 2017. Gene-obesogenic environment interactions in the UK Biobank Study. Int. J. Epidemiol. 46:2559–75
    [Google Scholar]
  124. 124. 
    Udler MS, Kim J, von Grotthuss M, Bonàs-Guarch S, Cole JB et al. 2018. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLOS Med 15:9e1002654
    [Google Scholar]
  125. 125. 
    Valladares M, Obregón AM, Chaput J-P. 2015. Association between genetic variants of the clock gene and obesity and sleep duration. J. Physiol. Biochem. 71:4855–60
    [Google Scholar]
  126. 126. 
    Vera B, Dashti HS, Gómez-Abellán P, Hernández-Martínez AM, Esteban A et al. 2018. Modifiable lifestyle behaviors, but not a genetic risk score, associate with metabolic syndrome in evening chronotypes. Sci. Rep. 8:1945
    [Google Scholar]
  127. 127. 
    Walter S, Mejia-Guevara I, Estrada K, Liu SY, Glymour MM. 2016. Association of a genetic risk score with body mass index across different birth cohorts. JAMA 316:163–69
    [Google Scholar]
  128. 128. 
    Wang H, Lane JM, Jones SE, Dashti HS, Ollila HM et al. 2019. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun. 10:13503
    [Google Scholar]
  129. 129. 
    Wang J, Li AM, Lam HSHS, Leung GM, Schooling CM 2019. Sleep duration and adiposity in children and adults: observational and Mendelian randomization studies. Obesity 27:61013–22
    [Google Scholar]
  130. 130. 
    Watson NF, Buchwald D, Vitiello MV, Noonan C, Goldberg J. 2010. A twin study of sleep duration and body mass index. J. Clin. Sleep Med. 6:111–17
    [Google Scholar]
  131. 131. 
    Watson NF, Harden KP, Buchwald D, Vitiello MV, Pack AI et al. 2012. Sleep duration and body mass index in twins: a gene-environment interaction. Sleep 35:5597–603
    [Google Scholar]
  132. 132. 
    Weiss AR, Johnson NL, Berger NA, Redline S 2010. Validity of activity-based devices to estimate sleep. J. Clin. Sleep Med. 6:4336–42
    [Google Scholar]
  133. 133. 
    Willer CJ, Speliotes EK, Loos RJF, Li S, Lindgren CM et al. 2009. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41:125–34
    [Google Scholar]
  134. 134. 
    Wilms B, Leineweber EM, Mölle M, Chamorro R, Pommerenke C et al. 2019. Sleep loss disrupts morning-to-evening differences in human white adipose tissue transcriptome. J. Clin. Endocrinol. Metab. 104:51687–96
    [Google Scholar]
  135. 135. 
    Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J et al. 2019. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570:7762514–18
    [Google Scholar]
  136. 136. 
    Wu Y, Gong Q, Zou Z, Li H, Zhang X. 2017. Short sleep duration and obesity among children: a systematic review and meta-analysis of prospective studies. Obes. Res. Clin. Pract. 11:2140–50
    [Google Scholar]
  137. 137. 
    Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR et al. 2018. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27:203641–49
    [Google Scholar]
  138. 138. 
    Yin J, Jin X, Shan Z, Li S, Huang H et al. 2017. Relationship of sleep duration with all-cause mortality and cardiovascular events: a systematic review and dose-response meta-analysis of prospective cohort studies. J. Am. Heart Assoc. 6:9e005947
    [Google Scholar]
  139. 139. 
    Young AI, Wauthier F, Donnelly P. 2016. Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. Nat. Commun. 7:12724
    [Google Scholar]
  140. 140. 
    Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L et al. 2017. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33:2272–79
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082018-124258
Loading
/content/journals/10.1146/annurev-nutr-082018-124258
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error