1932

Abstract

The pancreas controls metabolism through endocrine and exocrine functions. Pancreatic diseases comprise a spectrum of mild to life-threatening conditions, including acute and chronic pancreatitis, diabetes, and pancreatic cancer, which affect endocrine and exocrine pancreatic function and impose a substantial disease burden on individuals. Increasing experimental evidence demonstrates that the intestinal microbiota has an important impact on pancreatic function and diseases. This influence may be conferred by bacterial metabolites, such as short-chain fatty acids, or the modulation of immune responses. In turn, pancreatic factors, such as the excretion of antimicrobials, might have a substantial impact on the composition and functional properties of the gut microbiota. Here, we summarize experimental and clinical approaches used to untie the intricate pancreas–microbiota cross talk. Future advances will allow clinicians to manipulate the intestinal microbiota and guide patient management in pancreatic diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082018-124306
2019-08-21
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/nutr/39/1/annurev-nutr-082018-124306.html?itemId=/content/journals/10.1146/annurev-nutr-082018-124306&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adolph TE, Grander C, Moschen AR, Tilg H 2018. Liver–microbiome axis in health and disease. Trends Immunol 39:712–23
    [Google Scholar]
  2. 2.
    Adolph TE, Mayr L, Grabherr F, Tilg H 2018. Paneth cells and their antimicrobials in intestinal immunity. Curr. Pharm. Des. 24:1121–29
    [Google Scholar]
  3. 3.
    Ahuja M, Schwartz DM, Tandon M, Son A, Zeng M et al. 2017. Orai1-mediated antimicrobial secretion from pancreatic acini shapes the gut microbiome and regulates gut innate immunity. Cell Metab 25:635–46
    [Google Scholar]
  4. 4.
    Alkanani AK, Hara N, Gottlieb PA, Ir D, Robertson CE et al. 2015. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes 64:3510–20
    [Google Scholar]
  5. 5.
    Amyot J, Semache M, Ferdaoussi M, Fontes G, Poitout V 2012. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling. PLOS ONE 7:e36200
    [Google Scholar]
  6. 6.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al. 2011. Enterotypes of the human gut microbiome. Nature 473:174–80
    [Google Scholar]
  7. 7.
    Atkinson MA, Eisenbarth GS, Michels AW 2014. Type 1 diabetes. Lancet 383:69–82
    [Google Scholar]
  8. 8.
    Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T 2016. Iron regulation of pancreatic β-cell functions and oxidative stress. Annu. Rev. Nutr. 36:241–73
    [Google Scholar]
  9. 9.
    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY et al. 2004. The gut microbiota as an environmental factor that regulates fat storage. PNAS 101:15718–23
    [Google Scholar]
  10. 10.
    Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell 157:121–41
    [Google Scholar]
  11. 11.
    Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB et al. 2012. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491:399–405
    [Google Scholar]
  12. 12.
    Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M et al. 2017. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356:44–50
    [Google Scholar]
  13. 13.
    Burrows MP, Volchkov P, Kobayashi KS, Chervonsky AV 2015. Microbiota regulates type 1 diabetes through Toll-like receptors. PNAS 112:9973–77
    [Google Scholar]
  14. 14.
    Cani PD. 2018. Human gut microbiome: hopes, threats and promises. Gut 67:1716–25
    [Google Scholar]
  15. 15.
    Cani PD, Jordan BF. 2018. Gut microbiota–mediated inflammation in obesity: a link with gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol. 15:671–82
    [Google Scholar]
  16. 16.
    Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A et al. 2011. Moving pictures of the human microbiome. Genome Biol 12:R50
    [Google Scholar]
  17. 17.
    Charbonneau MR, Blanton LV, DiGiulio DB, Relman DA, Lebrilla CB et al. 2016. A microbial perspective of human developmental biology. Nature 535:48–55
    [Google Scholar]
  18. 18.
    Chatterjee S, Khunti K, Davies MJ 2017. Type 2 diabetes. Lancet 389:2239–51
    [Google Scholar]
  19. 19.
    Chen J, Domingue JC, Sears CL 2017. Microbiota dysbiosis in select human cancers: evidence of association and causality. Semin. Immunol. 32:25–34
    [Google Scholar]
  20. 20.
    Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L et al. 2006. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12:636–41
    [Google Scholar]
  21. 21.
    Ciocan D, Rebours V, Voican CS, Wrzosek L, Puchois V et al. 2018. Characterization of intestinal microbiota in alcoholic patients with and without alcoholic hepatitis or chronic alcoholic pancreatitis. Sci. Rep. 8:4822
    [Google Scholar]
  22. 22.
    Costa FR, Francozo MC, de Oliveira GG, Ignacio A, Castoldi A et al. 2016. Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset. J. Exp. Med. 213:1223–39
    [Google Scholar]
  23. 23.
    Costea PI, Hildebrand F, Manimozhiyan A, Bäckhed F, Blaser MJ et al. 2018. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3:8–16
    [Google Scholar]
  24. 24.
    Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N et al. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500:585–88
    [Google Scholar]
  25. 25.
    Danai LV, Babic A, Rosenthal MH, Dennstedt EA, Muir A et al. 2018. Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature 558:600–4
    [Google Scholar]
  26. 26.
    Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E et al. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–36
    [Google Scholar]
  27. 27.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63
    [Google Scholar]
  28. 28.
    Deng YY, Shamoon M, He Y, Bhatia M, Sun J 2016. Cathelicidin-related antimicrobial peptide modulates the severity of acute pancreatitis in mice. Mol. Med. Rep. 13:3881–85
    [Google Scholar]
  29. 29.
    Dickson I. 2018. Microbiome promotes pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 15:328
    [Google Scholar]
  30. 30.
    Dumas ME, Rothwell AR, Hoyles L, Aranias T, Chilloux J et al. 2017. Microbial–host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior, obesity, and impaired glucose tolerance. Cell Rep 20:136–48
    [Google Scholar]
  31. 31.
    Durack J, Lynch SV. 2018. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216:20–40
    [Google Scholar]
  32. 32.
    Endesfelder D, Engel M, Davis-Richardson AG, Ardissone AN, Achenbach P et al. 2016. Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production. Microbiome 4:17
    [Google Scholar]
  33. 33.
    Endesfelder D, zu Castell W, Ardissone A, Davis-Richardson AG, Achenbach P et al. 2014. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 63:2006–14
    [Google Scholar]
  34. 34.
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS 110:9066–71
    [Google Scholar]
  35. 35.
    Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ et al. 2018. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case–control study. Gut 67:120–27
    [Google Scholar]
  36. 36.
    Fan X, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP et al. 2018. Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome 6:59
    [Google Scholar]
  37. 37.
    Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D et al. 2012. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61:582–88
    [Google Scholar]
  38. 38.
    Forbes JD, Van Domselaar G, Bernstein CN 2016. The gut microbiota in immune-mediated inflammatory diseases. Front. Microbiol. 7:1081
    [Google Scholar]
  39. 39.
    Forsmark CE, Vege SS, Wilcox CM 2016. Acute pancreatitis. N. Engl. J. Med. 375:1972–81
    [Google Scholar]
  40. 40.
    Gallo RL, Kim KJ, Bernfield M, Kozak CA, Zanetti M et al. 1997. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J. Biol. Chem. 272:13088–93
    [Google Scholar]
  41. 41.
    Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:1355–59
    [Google Scholar]
  42. 42.
    Gillen S, Schuster T, Meyer zum Büschenfelde C, Friess H, Kleeff J 2010. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLOS Med 7:e1000267
    [Google Scholar]
  43. 43.
    Gittes GK. 2009. Developmental biology of the pancreas: a comprehensive review. Dev. Biol. 326:4–35
    [Google Scholar]
  44. 44.
    Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC et al. 2018. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359:97–103
    [Google Scholar]
  45. 45.
    Groele L, Szajewska H, Szypowska A 2017. Effects of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12 on β-cell function in children with newly diagnosed type 1 diabetes: protocol of a randomised controlled trial. BMJ Open 7:e017178
    [Google Scholar]
  46. 46.
    Gu G, Dubauskaite J, Melton DA 2002. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–57
    [Google Scholar]
  47. 47.
    Hamada S, Masamune A, Nabeshima T, Shimosegawa T 2018. Differences in gut microbiota profiles between autoimmune pancreatitis and chronic pancreatitis. Tohoku J. Exp. Med. 244:113–17
    [Google Scholar]
  48. 48.
    Hanninen A, Toivonen R, Poysti S, Belzer C, Plovier H et al. 2018. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut 67:1445–53
    [Google Scholar]
  49. 49.
    Hooper LV, Littman DR, Macpherson AJ 2012. Interactions between the microbiota and the immune system. Science 336:1268–73
    [Google Scholar]
  50. 50.
    Hooper LV, Macpherson AJ. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10:159–69
    [Google Scholar]
  51. 51.
    Huang C, Chen J, Wang J, Zhou H, Lu Y et al. 2017. Dysbiosis of intestinal microbiota and decreased antimicrobial peptide level in Paneth cells during hypertriglyceridemia-related acute necrotizing pancreatitis in rats. Front. Microbiol. 8:776
    [Google Scholar]
  52. 52.
    Ianiro G, Tilg H, Gasbarrini A 2016. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 65:1906–15
    [Google Scholar]
  53. 53.
    Imhann F, Bonder MJ, Vich Vila A, Fu J, Mujagic Z et al. 2016. Proton pump inhibitors affect the gut microbiome. Gut 65:740–48
    [Google Scholar]
  54. 54.
    Issa Y, Bruno MJ, Bakker OJ, Besselink MG, Schepers NJ et al. 2014. Treatment options for chronic pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 11:556–64
    [Google Scholar]
  55. 55.
    Jandhyala SM, Madhulika A, Deepika G, Rao GV, Reddy DN et al. 2017. Altered intestinal microbiota in patients with chronic pancreatitis: implications in diabetes and metabolic abnormalities. Sci. Rep. 7:43640
    [Google Scholar]
  56. 56.
    Jia L, Shan K, Pan LL, Feng N, Lv Z et al. 2017. Clostridium butyricum CGMCC0313.1 protects against autoimmune diabetes by modulating intestinal immune homeostasis and inducing pancreatic regulatory T cells. Front. Immunol. 8:1345
    [Google Scholar]
  57. 57.
    Jia W, Xie G, Jia W 2018. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15:111–28
    [Google Scholar]
  58. 58.
    Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ et al. 2008. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–6
    [Google Scholar]
  59. 59.
    Kahn SE, Cooper ME, Del Prato S 2014. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:1068–83
    [Google Scholar]
  60. 60.
    Kahn SE, Hull RL, Utzschneider KM 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–46
    [Google Scholar]
  61. 61.
    Kamisawa T, Wood LD, Itoi T, Takaori K 2016. Pancreatic cancer. Lancet 388:73–85
    [Google Scholar]
  62. 62.
    Kamisawa T, Zen Y, Pillai S, Stone JH 2015. IgG4-related disease. Lancet 385:1460–71
    [Google Scholar]
  63. 63.
    Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J 2000. Incidence of childhood type 1 diabetes worldwide: Diabetes Mondiale (DiaMond) Project Group. Diabetes Care 23:1516–26
    [Google Scholar]
  64. 64.
    Keller J, Layer P. 2005. Human pancreatic exocrine response to nutrients in health and disease. Gut 54:Suppl. 61–28
    [Google Scholar]
  65. 65.
    Kosciuczuk EM, Lisowski P, Jarczak J, Strzalkowska N, Jozwik A et al. 2012. Cathelicidins: family of antimicrobial peptides. A review. Mol. Biol. Rep. 39:10957–70
    [Google Scholar]
  66. 66.
    Kountouras J, Zavos C, Gavalas E, Tzilves D 2007. Challenge in the pathogenesis of autoimmune pancreatitis: potential role of Helicobacter pylori infection via molecular mimicry. Gastroenterology 133:368–69
    [Google Scholar]
  67. 67.
    Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D 2011. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. PNAS 108:11548–53
    [Google Scholar]
  68. 68.
    Lankisch PG, Apte M, Banks PA 2015. Acute pancreatitis. Lancet 386:85–96
    [Google Scholar]
  69. 69.
    Li Q, Wang C, Tang C, Zhao X, He Q, Li J 2018. Identification and characterization of blood and neutrophil-associated microbiomes in patients with severe acute pancreatitis using next-generation sequencing. Front. Cell. Infect. Microbiol. 8:5
    [Google Scholar]
  70. 70.
    Li X, Watanabe K, Kimura I 2017. Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Front. Immunol. 8:1882
    [Google Scholar]
  71. 71.
    Liang D, Leung RK, Guan W, Au WW 2018. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathog 10:3
    [Google Scholar]
  72. 72.
    Lynch SV, Pedersen O. 2016. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375:2369–79
    [Google Scholar]
  73. 73.
    Ma C, Han M, Heinrich B, Fu Q, Zhang Q et al. 2018. Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360:eaan5931
    [Google Scholar]
  74. 74.
    Majumder S, Chari ST. 2016. Chronic pancreatitis. Lancet 387:1957–66
    [Google Scholar]
  75. 75.
    Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C et al. 2018. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359:1156–61
    [Google Scholar]
  76. 76.
    Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM et al. 2016. The gut microbiota and host health: a new clinical frontier. Gut 65:330–39
    [Google Scholar]
  77. 77.
    Marino E, Richards JL, McLeod KH, Stanley D, Yap YA et al. 2017. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18:552–62
    [Google Scholar]
  78. 78.
    Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM et al. 2013. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084–88
    [Google Scholar]
  79. 79.
    McCarl CA, Picard C, Khalil S, Kawasaki T, Rother J et al. 2009. ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J. Allergy Clin. Immunol. 124:1311–18.e7
    [Google Scholar]
  80. 80.
    Memba R, Duggan SN, Ni Chonchubhair HM, Griffin OM, Bashir Y et al. 2017. The potential role of gut microbiota in pancreatic disease: a systematic review. Pancreatology 17:867–74
    [Google Scholar]
  81. 81.
    Metzger RN, Krug AB, Eisenacher K 2018. Enteric virome sensing—its role in intestinal homeostasis and immunity. Viruses 10:146
    [Google Scholar]
  82. 82.
    Mitsuhashi K, Nosho K, Sukawa Y, Matsunaga Y, Ito M et al. 2015. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget 6:7209–20
    [Google Scholar]
  83. 83.
    Moschen AR, Wieser V, Tilg H 2012. Dietary factors: major regulators of the gut's microbiota. Gut Liver 6:411–16
    [Google Scholar]
  84. 84.
    Mullaney JA, Stephens JE, Costello ME, Fong C, Geeling BE et al. 2018. Type 1 diabetes susceptibility alleles are associated with distinct alterations in the gut microbiota. Microbiome 6:35
    [Google Scholar]
  85. 85.
    Niederreiter L, Adolph TE, Tilg H 2018. Food, microbiome and colorectal cancer. Dig. Liver Dis. 50:647–52
    [Google Scholar]
  86. 86.
    Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S et al. 2012. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J. Exp. Med. 209:1671–87
    [Google Scholar]
  87. 87.
    Pagliari D, Saviano A, Newton EE, Serricchio ML, Dal Lago AA et al. 2018. Gut microbiota–immune system crosstalk and pancreatic disorders. Mediat. Inflamm. 2018:7946431
    [Google Scholar]
  88. 88.
    Passero FC Jr, Saif MW. 2017. Second line treatment options for pancreatic cancer. Expert Opin. Pharmacother. 18:1607–17
    [Google Scholar]
  89. 89.
    Perry RJ, Peng L, Barry NA, Cline GW, Zhang D et al. 2016. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534:213–17
    [Google Scholar]
  90. 90.
    Peschel A, Sahl HG. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4:529–36
    [Google Scholar]
  91. 91.
    Plovier H, Everard A, Druart C, Depommier C, Van Hul M et al. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23:107–13
    [Google Scholar]
  92. 92.
    Ponziani FR, Bhoori S, Castelli C, Putignani L, Rivoltini L et al. 2019. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in non-alcoholic fatty liver disease. Hepatology 69:107–20
    [Google Scholar]
  93. 93.
    Pound LD, Patrick C, Eberhard CE, Mottawea W, Wang GS et al. 2015. Cathelicidin antimicrobial peptide: a novel regulator of islet function, islet regeneration, and selected gut bacteria. Diabetes 64:4135–47
    [Google Scholar]
  94. 94.
    Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E et al. 2018. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8:403–16
    [Google Scholar]
  95. 95.
    Qin J, Li Y, Cai Z, Li S, Zhu J et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60
    [Google Scholar]
  96. 96.
    Ren Z, Jiang J, Xie H, Li A, Lu H et al. 2017. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget 8:95176–91
    [Google Scholar]
  97. 97.
    Roder PV, Wu B, Liu Y, Han W 2016. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 48:e219
    [Google Scholar]
  98. 98.
    Rogers MB, Aveson V, Firek B, Yeh A, Brooks B et al. 2017. Disturbances of the perioperative microbiome across multiple body sites in patients undergoing pancreaticoduodenectomy. Pancreas 46:260–67
    [Google Scholar]
  99. 99.
    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT et al. 2018. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97
    [Google Scholar]
  100. 100.
    Rouxel O, Da Silva J, Beaudoin L, Nel I, Tard C et al. 2017. Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat. Immunol. 18:1321–31
    [Google Scholar]
  101. 101.
    Sartor RB. 2008. Microbial influences in inflammatory bowel diseases. Gastroenterology 134:577–94
    [Google Scholar]
  102. 102.
    Sears CL, Garrett WS. 2014. Microbes, microbiota, and colon cancer. Cell Host Microbe 15:317–28
    [Google Scholar]
  103. 103.
    Seifert L, Werba G, Tiwari S, Giao Ly NN, Alothman S et al. 2016. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532:245–49
    [Google Scholar]
  104. 104.
    Sekirov I, Russell SL, Antunes LC, Finlay BB 2010. Gut microbiota in health and disease. Physiol. Rev. 90:859–904
    [Google Scholar]
  105. 105.
    Sender R, Fuchs S, Milo R 2016. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol 14:e1002533
    [Google Scholar]
  106. 106.
    Sethi V, Kurtom S, Tarique M, Lavania S, Malchiodi Z et al. 2018. Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology 155:33–37.e6
    [Google Scholar]
  107. 107.
    Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R et al. 2006. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355:1318–30
    [Google Scholar]
  108. 108.
    Shih HP, Wang A, Sander M 2013. Pancreas organogenesis: from lineage determination to morphogenesis. Annu. Rev. Cell Dev. Biol. 29:81–105
    [Google Scholar]
  109. 109.
    Silverman M, Kua L, Tanca A, Pala M, Palomba A et al. 2017. Protective major histocompatibility complex allele prevents type 1 diabetes by shaping the intestinal microbiota early in ontogeny. PNAS 114:9671–76
    [Google Scholar]
  110. 110.
    Simeone DM, Pandol SJ. 2013. The pancreas: biology, diseases, and therapy. Gastroenterology 144:1163–65
    [Google Scholar]
  111. 111.
    Soares FS, Amaral FC, Silva NLC, Valente MR, Santos LKR et al. 2017. Antibiotic-induced pathobiont dissemination accelerates mortality in severe experimental pancreatitis. Front. Immunol. 8:1890
    [Google Scholar]
  112. 112.
    Song M, Garrett WS, Chan AT 2015. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 148:1244–60.e16
    [Google Scholar]
  113. 113.
    Sonnenburg JL, Bäckhed F. 2016. Diet–microbiota interactions as moderators of human metabolism. Nature 535:56–64
    [Google Scholar]
  114. 114.
    Stewart CJ, Ajami NJ, O'Brien JL, Hutchinson DS, Smith DP et al. 2018. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562:583–88
    [Google Scholar]
  115. 115.
    Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E et al. 2015. Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 43:304–17
    [Google Scholar]
  116. 116.
    Surana NK, Kasper DL. 2017. Moving beyond microbiome-wide associations to causal microbe identification. Nature 552:244–47
    [Google Scholar]
  117. 117.
    Tan C, Ling Z, Huang Y, Cao Y, Liu Q et al. 2015. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis. Pancreas 44:868–75
    [Google Scholar]
  118. 118.
    Thomas RM, Gharaibeh RZ, Gauthier J, Beveridge M, Pope JL et al. 2018. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis 39:1068–78
    [Google Scholar]
  119. 119.
    Tilg H, Adolph TE. 2017. Beyond digestion: the pancreas shapes intestinal microbiota and immunity. Cell Metab 25:495–96
    [Google Scholar]
  120. 120.
    Tilg H, Adolph TE, Gerner RR, Moschen AR 2018. The intestinal microbiota in colorectal cancer. Cancer Cell 33:954–64
    [Google Scholar]
  121. 121.
    Uhlig HH, Powrie F. 2018. Translating immunology into therapeutic concepts for inflammatory bowel disease. Annu. Rev. Immunol. 36:755–81
    [Google Scholar]
  122. 122.
    Uusitalo U, Liu X, Yang J, Aronsson CA, Hummel S et al. 2016. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr 170:20–28
    [Google Scholar]
  123. 123.
    Vaarala O. 2002. The gut immune system and type 1 diabetes. Ann. N. Y. Acad. Sci. 958:39–46
    [Google Scholar]
  124. 124.
    Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD et al. 2018. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562:589–94
    [Google Scholar]
  125. 125.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW 2013. Cancer genome landscapes. Science 339:1546–58
    [Google Scholar]
  126. 126.
    Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS et al. 2015. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518:495–501
    [Google Scholar]
  127. 127.
    Watanabe T, Kudo M, Strober W 2017. Immunopathogenesis of pancreatitis. Mucosal Immunol 10:283–98
    [Google Scholar]
  128. 128.
    Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L et al. 2008. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:1109–13
    [Google Scholar]
  129. 129.
    Xiao AY, Tan ML, Wu LM, Asrani VM, Windsor JA et al. 2016. Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol. Hepatol. 1:45–55
    [Google Scholar]
  130. 130.
    Yu H, Gagliani N, Ishigame H, Huber S, Zhu S et al. 2017. Intestinal type 1 regulatory T cells migrate to periphery to suppress diabetogenic T cells and prevent diabetes development. PNAS 114:10443–48
    [Google Scholar]
  131. 131.
    Zambirinis CP, Levie E, Nguy S, Avanzi A, Barilla R et al. 2015. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J. Exp. Med. 212:2077–94
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082018-124306
Loading
/content/journals/10.1146/annurev-nutr-082018-124306
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error