1932

Abstract

Recent data have shown that interindividual variability in the bioavailability of vitamins A (β-carotene), D, and E, and carotenoids (lutein and lycopene), as well as that of phytosterols, is modulated by single nucleotide polymorphisms (SNPs). The identified SNPs are in or near genes involved in intestinal uptake or efflux of these compounds, as well as in genes involved in their metabolism and transport. The phenotypic effect of each SNP is usually low, but combinations of SNPs can explain a significant part of the variability. Nevertheless, results from these studies should be considered preliminary since they have not been validated in other cohorts. Guidelines for future studies are provided to ensure that sound associations are elucidated that can be used to build consolidated genetic scores that may allow recommended dietary allowances to be tailored to individuals or groups by taking into account the multiloci genotypic signature of people of different ethnic origin or even of individuals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082117-051628
2018-08-21
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/nutr/38/1/annurev-nutr-082117-051628.html?itemId=/content/journals/10.1146/annurev-nutr-082117-051628&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 1000 Genomes Proj. Consort. 2015. A global reference for human genetic variation. Nature 526:68–74
    [Google Scholar]
  2. 2.  Abumrad NA, Davidson NO 2012. Role of the gut in lipid homeostasis. Physiol. Rev. 92:1061–85
    [Google Scholar]
  3. 3.  Afzal S, Brondum-Jacobsen P, Bojesen SE, Nordestgaard BG 2014. Genetically low vitamin D concentrations and increased mortality: Mendelian randomisation analysis in three large cohorts. BMJ 349:g6330
    [Google Scholar]
  4. 4.  Alrefai WA, Annaba F, Sarwar Z, Dwivedi A, Saksena S et al. 2007. Modulation of human Niemann-Pick C1-like 1 gene expression by sterol: role of sterol regulatory element binding protein 2. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G369–76
    [Google Scholar]
  5. 5.  Altmann SW, Davis HR Jr., Zhu LJ, Yao X, Hoos LM et al. 2004. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–4
    [Google Scholar]
  6. 6.  Aronow ME, Chew EY 2014. Age-related Eye Disease Study 2: perspectives, recommendations, and unanswered questions. Curr. Opin. Ophthalmol. 25:186–90
    [Google Scholar]
  7. 7.  Athinarayanan S, Wei R, Zhang M, Bai S, Traber MG et al. 2014. Genetic polymorphism of cytochrome P450 4F2, vitamin E level and histological response in adults and children with nonalcoholic fatty liver disease who participated in PIVENS and TONIC clinical trials. PLOS ONE 9:e95366
    [Google Scholar]
  8. 8.  Aydemir G, Kasiri Y, Birta E, Beke G, Garcia AL et al. 2013. Lycopene-derived bioactive retinoic acid receptors/retinoid-X receptors—activating metabolites may be relevant for lycopene's anti-cancer potential. Mol. Nutr. Food Res. 57:739–47
    [Google Scholar]
  9. 9.  Bailey RL, Dodd KW, Goldman JA, Gahche JJ, Dwyer JT et al. 2010. Estimation of total usual calcium and vitamin D intakes in the United States. J. Nutr. 140:817–22
    [Google Scholar]
  10. 10.  Barry EL, Rees JR, Peacock JL, Mott LA, Amos CI et al. 2014. Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvitamin D levels in a randomized controlled trial. J. Clin. Endocrinol. Metab. 99:E2133–37
    [Google Scholar]
  11. 11.  Berge KE, Tian H, Graf GA, Yu L, Grishin NV et al. 2000. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–75
    [Google Scholar]
  12. 12.  Berge KE, von Bergmann K, Lutjohann D, Guerra R, Grundy SM et al. 2002. Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8. . J. Lipid Res. 43:486–94
    [Google Scholar]
  13. 13.  Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R et al. 2016. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 50:34–66
    [Google Scholar]
  14. 14.  Bjelakovic G, Nikolova D, Gluud C 2014. Antioxidant supplements and mortality. Curr. Opin. Clin. Nutr. Metab. Care 17:40–44
    [Google Scholar]
  15. 15.  Blum S, Vardi M, Brown JB, Russell A, Milman U et al. 2010. Vitamin E reduces cardiovascular disease in individuals with diabetes mellitus and the haptoglobin 2–2 genotype. Pharmacogenomics 11:675–84
    [Google Scholar]
  16. 16.  Bohn T, Desmarchelier C, Dragsted LO, Nielsen CS, Stahl W et al. 2017. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol. Nutr. Food Res. 61:201600685
    [Google Scholar]
  17. 17.  Borel P 2003. Factors affecting intestinal absorption of highly lipophilic food microconstituents (fat-soluble vitamins, carotenoids and phytosterols). Clin. Chem. Lab. Med. 41:979–94
    [Google Scholar]
  18. 18.  Borel P 2012. Genetic variations involved in interindividual variability in carotenoid status. Mol. Nutr. Food Res. 56:228–40
    [Google Scholar]
  19. 19.  Borel P, de Edelenyi FS, Vincent-Baudry S, Malezet-Desmoulin C, Margotat A et al. 2010. Genetic variants in BCMO1 and CD36 are associated with plasma lutein concentrations and macular pigment optical density in humans. Ann. Med. 43:47–59
    [Google Scholar]
  20. 20.  Borel P, Desmarchelier C 2016. Genetic variations involved in vitamin E status. Int. J. Mol. Sci. 17:2094
    [Google Scholar]
  21. 21.  Borel P, Desmarchelier C 2017. Genetic variations associated with vitamin A status and vitamin A bioavailability. Nutrients 9:246
    [Google Scholar]
  22. 22.  Borel P, Desmarchelier C, Nowicki M, Bott R 2015. A combination of single-nucleotide polymorphisms is associated with interindividual variability in dietary β-carotene bioavailability in healthy men. J. Nutr. 145:1740–47
    [Google Scholar]
  23. 23.  Borel P, Desmarchelier C, Nowicki M, Bott R 2015. Lycopene bioavailability is associated with a combination of genetic variants. Free Radic. Biol. Med. 83:238–44
    [Google Scholar]
  24. 24.  Borel P, Desmarchelier C, Nowicki M, Bott R, Morange S, Lesavre N 2014. Interindividual variability of lutein bioavailability in healthy men: characterization, genetic variants involved, and relation with fasting plasma lutein concentration. Am. J. Clin. Nutr. 100:168–75
    [Google Scholar]
  25. 25.  Borel P, Desmarchelier C, Nowicki M, Bott R, Tourniaire F 2015. Can genetic variability in α-tocopherol bioavailability explain the heterogeneous response to α-tocopherol supplements?. Antioxid. Redox Signal. 22:669–78
    [Google Scholar]
  26. 26.  Borel P, Grolier P, Mekki N, Boirie Y, Rochette Y et al. 1998. Low and high responders to pharmacological doses of β-carotene: proportion in the population, mechanisms involved and consequences on β-carotene metabolism. J. Lipid Res. 39:2250–60
    [Google Scholar]
  27. 27.  Burton GW 1994. Vitamin E: molecular and biological function. Proc. Nutr. Soc. 53:251–62
    [Google Scholar]
  28. 28.  Canaff L, Hendy GN 2002. Human calcium-sensing receptor gene: vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J. Biol. Chem. 277:30337–50
    [Google Scholar]
  29. 29.  Cardenas E, Ghosh R 2013. Vitamin E: a dark horse at the crossroad of cancer management. Biochem. Pharmacol. 86:845–52
    [Google Scholar]
  30. 30.  Carlberg C, Seuter S, de Mello VD, Schwab U, Voutilainen S et al. 2013. Primary vitamin D target genes allow a categorization of possible benefits of vitamin D3 supplementation. PLOS ONE 8:e71042
    [Google Scholar]
  31. 31.  Chen B, Gagnon M, Shahangian S, Anderson NL, Howerton DA, Boone JD 2009. Good laboratory practices for molecular genetic testing for heritable diseases and conditions. MMWR. Recomm. Rep. 58:1–37
    [Google Scholar]
  32. 32.  Chen J, Song Y, Zhang L 2013. Lycopene/tomato consumption and the risk of prostate cancer: a systematic review and meta-analysis of prospective studies. J. Nutr. Sci. Vitaminol. 59:213–23
    [Google Scholar]
  33. 33.  Cheng HM, Koutsidis G, Lodge JK, Ashor A, Siervo M, Lara J 2017. Tomato and lycopene supplementation and cardiovascular risk factors: a systematic review and meta-analysis. Atherosclerosis 257:100–8
    [Google Scholar]
  34. 34.  Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G 2016. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 96:365–408
    [Google Scholar]
  35. 35.  Cohen JC, Pertsemlidis A, Fahmi S, Esmail S, Vega GL et al. 2006. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. PNAS 103:1810–15
    [Google Scholar]
  36. 36.  Cook-Mills J, Gebretsadik T, Abdala-Valencia H, Green J, Larkin EK et al. 2016. Interaction of vitamin E isoforms on asthma and allergic airway disease. Thorax 71:954–56
    [Google Scholar]
  37. 37.  Davis HR Jr., Zhu LJ, Hoos LM, Tetzloff G, Maguire M et al. 2004. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J. Biol. Chem. 279:33586–92
    [Google Scholar]
  38. 38.  Dawson PA, Lan T, Rao A 2009. Bile acid transporters. J. Lipid Res. 50:2340–57
    [Google Scholar]
  39. 39.  de Pee S, West CE 1996. Dietary carotenoids and their role in combating vitamin A deficiency: a review of the literature. Eur. J. Clin. Nutr. 50:Suppl. 3S38–53
    [Google Scholar]
  40. 40.  Desmarchelier C, Borel P 2017. Overview of carotenoid bioavailability determinants: from dietary factors to host genetic variations. Trends Food Sci. Technol. 69:270–80
    [Google Scholar]
  41. 41.  Desmarchelier C, Borel P, Goncalves A, Kopec R, Nowicki M et al. 2016. A combination of single-nucleotide polymorphisms is associated with interindividual variability in cholecalciferol bioavailability in healthy men. J. Nutr. 146:2421–28
    [Google Scholar]
  42. 42.  Desmarchelier C, Margier M, Prévéraud D, Nowicki M, Rosilio V et al. 2017. Comparison of the micellar incorporation and the intestinal cell uptake of cholecalciferol, 25-hydroxycholecalciferol and 1-α-hydroxycholecalciferol. Nutrients 9:1152
    [Google Scholar]
  43. 43.  Desmarchelier C, Martin JC, Planells R, Gastaldi M, Nowicki M et al. 2014. The postprandial chylomicron triacylglycerol response to dietary fat in healthy male adults is significantly explained by a combination of single nucleotide polymorphisms in genes involved in triacylglycerol metabolism. J. Clin. Endocrinol. Metab. 99:E484–88
    [Google Scholar]
  44. 44.  Didriksen A, Grimnes G, Hutchinson MS, Kjaergaard M, Svartberg J et al. 2013. The serum 25-hydroxyvitamin D response to vitamin D supplementation is related to genetic factors, BMI, and baseline levels. Eur. J. Endocrinol. 169:559–67
    [Google Scholar]
  45. 45.  Duncan KG, Hosseini K, Bailey KR, Yang H, Lowe RJ et al. 2009. Expression of reverse cholesterol transport proteins ATP-binding cassette A1 (ABCA1) and scavenger receptor BI (SR-BI) in the retina and retinal pigment epithelium. Br. J. Ophthalmol. 93:1116–20
    [Google Scholar]
  46. 46.  During A, Dawson HD, Harrison EH 2005. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. J. Nutr. 135:2305–12
    [Google Scholar]
  47. 47.  Fahmi S, Yang C, Esmail S, Hobbs HH, Cohen JC 2008. Functional characterization of genetic variants in NPC1L1 supports the sequencing extremes strategy to identify complex trait genes. Hum. Mol. Genet. 17:2101–7
    [Google Scholar]
  48. 48.  Falchi M, El-Sayed Moustafa JS, Takousis P, Pesce F, Bonnefond A et al. 2014. Low copy number of the salivary amylase gene predisposes to obesity. Nat. Genet. 46:492–97
    [Google Scholar]
  49. 49.  Fenni S, Hammou H, Astier J, Bonnet L, Karkeni E et al. 2017. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response and associated metabolic disorders. Mol. Nutr. Food Res. In press. https://doi.org/10.1002/mnfr.201601083
    [Crossref]
  50. 50.  Ferrucci L, Perry JR, Matteini A, Perola M, Tanaka T et al. 2009. Common variation in the β-carotene 15,15′-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study. Am. J. Hum. Genet. 84:123–33
    [Google Scholar]
  51. 51.  Fujita K, Iwasaki M, Ochi H, Fukuda T, Ma C et al. 2012. Vitamin E decreases bone mass by stimulating osteoclast fusion. Nat. Med. 18:589–94
    [Google Scholar]
  52. 52.  Gale CR, Hall NF, Phillips DI, Martyn CN 2003. Lutein and zeaxanthin status and risk of age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 44:2461–65
    [Google Scholar]
  53. 53.  Gorman U, Mathers JC, Grimaldi KA, Ahlgren J, Nordstrom K 2013. Do we know enough? A scientific and ethical analysis of the basis for genetic-based personalized nutrition. Genes Nutr 8:373–81
    [Google Scholar]
  54. 54.  Gouranton E, Aydemir G, Reynaud E, Marcotorchino J, Malezet C et al. 2012. Apo-10′-lycopenoic acid impacts adipose tissue biology via the retinoic acid receptors. Biochim. Biophys. Acta 1811:1105–14
    [Google Scholar]
  55. 55.  Gouranton E, Thabuis C, Riollet C, Malezet-Desmoulins C, El Yazidi C et al. 2011. Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue. J. Nutr. Biochem. 22:642–48
    [Google Scholar]
  56. 56.  Guallar E, Stranges S, Mulrow C, Appel LJ, Miller ER3rd 2013. Enough is enough: Stop wasting money on vitamin and mineral supplements. Ann. Intern. Med. 159:850–51
    [Google Scholar]
  57. 57.  Gylling H, Hallikainen M, Pihlajamaki J, Agren J, Laakso M et al. 2004. Polymorphisms in the ABCG5 and ABCG8 genes associate with cholesterol absorption and insulin sensitivity. J. Lipid Res. 45:1660–65
    [Google Scholar]
  58. 58.  Handelman GJ, Nightingale ZD, Lichtenstein AH, Schaefer EJ, Blumberg JB 1999. Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. Am. J. Clin. Nutr. 70:247–51
    [Google Scholar]
  59. 59.  Haskell MJ 2012. The challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversion—evidence in humans. Am. J. Clin. Nutr. 96:1193S–203S
    [Google Scholar]
  60. 60.  Hendrickson SJ, Hazra A, Chen C, Eliassen AH, Kraft P et al. 2012. β-carotene 15,15′-monooxygenase 1 single nucleotide polymorphisms in relation to plasma carotenoid and retinol concentrations in women of European descent. Am. J. Clin. Nutr. 96:1379–89
    [Google Scholar]
  61. 61.  Hill KM, Jonnalagadda SS, Albertson AM, Joshi NA, Weaver CM 2012. Top food sources contributing to vitamin D intake and the association of ready-to-eat cereal and breakfast consumption habits to vitamin D intake in Canadians and United States Americans. J. Food Sci. 77:H170–75
    [Google Scholar]
  62. 62.  Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K 2002. A comprehensive review of genetic association studies. Genet. Med. 4:45–61
    [Google Scholar]
  63. 63.  Horenstein RB, Mitchell BD, Post WS, Lutjohann D, von Bergmann K et al. 2013. The ABCG8 G574R variant, serum plant sterol levels, and cardiovascular disease risk in the Old Order Amish. Arterioscler. Thromb. Vasc. Biol. 33:413–19
    [Google Scholar]
  64. 64.  Horton JD, Goldstein JL, Brown MS 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. 109:1125–31
    [Google Scholar]
  65. 65.  Hubacek JA, Berge KE, Stefkova J, Pitha J, Skodova Z et al. 2004. Polymorphisms in ABCG5 and ABCG8 transporters and plasma cholesterol levels. Physiol. Res. 53:395–401
    [Google Scholar]
  66. 66. Inst. Med. Panel Diet. Antioxid. Relate. Compd. 2000. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids Washington, DC: Natl. Acad.
  67. 67. Int. HapMap Consort. 2003. The International HapMap Project. Nature 426:789–96
    [Google Scholar]
  68. 68. Int. HapMap3 Consort. 2010. Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58
    [Google Scholar]
  69. 69.  Iqbal J, Hussain MM 2009. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 296:E1183–94
    [Google Scholar]
  70. 70.  Jakulj L, Vissers MN, Tanck MW, Hutten BA, Stellaard F et al. 2010. ABCG5/G8 polymorphisms and markers of cholesterol metabolism: systematic review and meta-analysis. J. Lipid Res. 51:3016–23
    [Google Scholar]
  71. 71.  Jiang Q, Christen S, Shigenaga MK, Ames BN 2001. γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 74:714–22
    [Google Scholar]
  72. 72.  Jiang Q, Wong J, Fyrst H, Saba JD, Ames BN 2004. γ-Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis. PNAS 101:17825–30
    [Google Scholar]
  73. 73.  Jones P, MacKay D 2015. Safety, health, and methodological aspects of plant sterols and stanols. J. AOAC Int. 98:671–73
    [Google Scholar]
  74. 74.  Kang D, Lee KM, Park SK, Berndt SI, Peters U et al. 2007. Functional variant of manganese superoxide dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer study. Cancer Epidemiol. Biomark. Prev. 16:1581–86
    [Google Scholar]
  75. 75.  Kelkel M, Schumacher M, Dicato M, Diederich M 2011. Antioxidant and anti-proliferative properties of lycopene. Free Radic. Res. 45:925–40
    [Google Scholar]
  76. 76.  Kesaniemi YA, Ehnholm C, Miettinen TA 1987. Intestinal cholesterol absorption efficiency in man is related to apoprotein E phenotype. J. Clin. Investig. 80:578–81
    [Google Scholar]
  77. 77.  Khachik F, Beecher GR, Goli MB, Lusby WR, Smith JC 1992. Separation and identification of carotenoids and their oxidation products in the extracts of human plasma. Anal. Chem. 64:2111–22
    [Google Scholar]
  78. 78.  Landrier JF, Gouranton E, El Yazidi C, Malezet C, Balaguer P et al. 2009. Adiponectin expression is induced by vitamin E via a peroxisome proliferator-activated receptor γ-dependent mechanism. Endocrinology 150:5318–25
    [Google Scholar]
  79. 79.  Lee MH, Lu K, Patel SB 2001. Genetic basis of sitosterolemia. Curr. Opin. Lipidol. 12:141–49
    [Google Scholar]
  80. 80.  Leung WC, Hessel S, Meplan C, Flint J, Oberhauser V et al. 2009. Two common single nucleotide polymorphisms in the gene encoding β-carotene 15,15′-monoxygenase alter β-carotene metabolism in female volunteers. FASEB J 23:1041–53
    [Google Scholar]
  81. 81.  Lietz G, Oxley A, Leung W, Hesketh J 2012. Single nucleotide polymorphisms upstream from the β-carotene 15,15′-monoxygenase gene influence provitamin A conversion efficiency in female volunteers. J. Nutr. 142:161S–65S
    [Google Scholar]
  82. 82.  Lobo GP, Amengual J, Baus D, Shivdasani RA, Taylor D, von Lintig J 2013. Genetics and diet regulate vitamin A production via the homeobox transcription factor ISX. J. Biol. Chem. 288:9017–27
    [Google Scholar]
  83. 83.  Lupattelli G, Pisciotta L, De Vuono S, Siepi D, Bellocchio A et al. 2013. A silent mutation of Niemann-Pick C1-like 1 and apolipoprotein E4 modulate cholesterol absorption in primary hyperlipidemias. J. Clin. Lipidol. 7:147–52
    [Google Scholar]
  84. 84.  Maeda T, Honda A, Ishikawa T, Kinoshita M, Mashimo Y et al. 2010. A SNP of NPC1L1 affects cholesterol absorption in Japanese. J. Atheroscler. Thromb. 17:356–60
    [Google Scholar]
  85. 85.  Major JM, Yu K, Chung CC, Weinstein SJ, Yeager M et al. 2012. Genome-wide association study identifies three common variants associated with serologic response to vitamin E supplementation in men. J. Nutr. 142:866–71
    [Google Scholar]
  86. 86.  Marcotorchino J, Romier B, Gouranton E, Riollet C, Gleize B et al. 2012. Lycopene attenuates LPS-induced TNF-α secretion in macrophages and inflammatory markers in adipocytes exposed to macrophage-conditioned media. Mol. Nutr. Food Res. 56:725–32
    [Google Scholar]
  87. 87.  Mares J 2016. Lutein and zeaxanthin isomers in eye health and disease. Annu. Rev. Nutr. 36:571–602
    [Google Scholar]
  88. 88.  Marinova M, Lutjohann D, Breuer O, Kolsch H, Westhofen P et al. 2013. VKORC1-dependent pharmacokinetics of intravenous and oral phylloquinone (vitamin K1) mixed micelles formulation. Eur. J. Clin. Pharmacol. 69:467–75
    [Google Scholar]
  89. 89.  Mashurabad PC, Kondaiah P, Palika R, Ghosh S, Nair MK, Raghu P 2016. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism. Arch. Biochem. Biophys. 590:118–24
    [Google Scholar]
  90. 90.  Mason J, Greiner T, Shrimpton R, Sanders D, Yukich J 2015. Vitamin A policies need rethinking. Int. J. Epidemiol. 44:283–92
    [Google Scholar]
  91. 91.  McBurney MI, Yu EA, Ciappio ED, Bird JK, Eggersdorfer M, Mehta S 2015. Suboptimal serum α-tocopherol concentrations observed among younger adults and those depending exclusively upon food sources, NHANES 2003–2006. PLOS ONE 10:e0135510
    [Google Scholar]
  92. 92.  Mein JR, Lian F, Wang XD 2008. Biological activity of lycopene metabolites: implications for cancer prevention. Nutr. Rev. 66:667–83
    [Google Scholar]
  93. 93.  Milman U, Blum S, Shapira C, Aronson D, Miller-Lotan R et al. 2008. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler. Thromb. Vasc. Biol. 28:341–47
    [Google Scholar]
  94. 94.  Miwa K, Inazu A, Kobayashi J, Higashikata T, Nohara A et al. 2005. ATP-binding cassette transporter G8 M429V polymorphism as a novel genetic marker of higher cholesterol absorption in hypercholesterolaemic Japanese subjects. Clin. Sci. 109:183–88
    [Google Scholar]
  95. 95.  Moran NE, Cichon MJ, Riedl KM, Grainger EM, Schwartz SJ et al. 2015. Compartmental and noncompartmental modeling of 13C-lycopene absorption, isomerization, and distribution kinetics in healthy adults. Am. J. Clin. Nutr. 102:1436–49
    [Google Scholar]
  96. 96.  Narushima K, Takada T, Yamanashi Y, Suzuki H 2008. Niemann-Pick C1-like 1 mediates α-tocopherol transport. Mol. Pharmacol. 74:42–49
    [Google Scholar]
  97. 97.  Negis Y, Zingg JM, Libinaki R, Meydani M, Azzi A 2009. Vitamin E and cancer. Nutr. Cancer 61:875–78
    [Google Scholar]
  98. 98.  Ni Z, Bikadi Z, Rosenberg MF, Mao Q 2010. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr. Drug Metab. 11:603–17
    [Google Scholar]
  99. 99.  Nicod N, Parker RS 2013. Vitamin E secretion by Caco-2 monolayers to APOA1, but not to HDL, is vitamer selective. J. Nutr. 143:1565–72
    [Google Scholar]
  100. 100.  Nielsen DE, El-Sohemy A 2012. A randomized trial of genetic information for personalized nutrition. Genes Nutr 7:559–66
    [Google Scholar]
  101. 101.  Niesor EJ, Chaput E, Mary JL, Staempfli A, Topp A et al. 2014. Effect of compounds affecting ABCA1 expression and CETP activity on the HDL pathway involved in intestinal absorption of lutein and zeaxanthin. Lipids 49:1233–43
    [Google Scholar]
  102. 102.  Nisar N, Li L, Lu S, Khin NC, Pogson BJ 2015. Carotenoid metabolism in plants. Mol. Plant 8:68–82
    [Google Scholar]
  103. 103.  Nissen J, Vogel U, Ravn-Haren G, Andersen EW, Madsen KH et al. 2015. Common variants in CYP2R1 and GC genes are both determinants of serum 25-hydroxyvitamin D concentrations after UVB irradiation and after consumption of vitamin D3-fortified bread and milk during winter in Denmark. Am. J. Clin. Nutr. 101:218–27
    [Google Scholar]
  104. 104.  Olivier M, Bott GR, Frisdal E, Nowick M, Plengpanich W et al. 2014. ABCG1 is involved in vitamin E efflux. Biochim. Biophys. Acta 1841:1741–51
    [Google Scholar]
  105. 105.  Ostlund RE Jr 2002. Phytosterols in human nutrition. Annu. Rev. Nutr. 22:533–49
    [Google Scholar]
  106. 106.  Papas A, Vos E 2001. Vitamin E, cancer, and apoptosis. Am. J. Clin. Nutr. 73:1113–14
    [Google Scholar]
  107. 107.  Peter S, Friedel A, Roos FF, Wyss A, Eggersdorfer M et al. 2018. A systematic review of global α-tocopherol status as assessed by nutritional intake levels and blood serum concentrations. Int. J. Vitam. Nutr. Res. In press. https://doi.org/10.1024/0300-9831/a000281
    [Crossref]
  108. 108.  Plat J, Baumgartner S, Mensink RP 2015. Mechanisms underlying the health benefits of plant sterol and stanol ester consumption. J. AOAC Int. 98:697–700
    [Google Scholar]
  109. 109.  Plat J, Bragt MC, Mensink RP 2004. Common sequence variations in ABCG8 are related to plant sterol metabolism in healthy volunteers. J. Lipid Res. 46:68–75
    [Google Scholar]
  110. 110.  Pruthi S, Allison TG, Hensrud DD 2001. Vitamin E supplementation in the prevention of coronary heart disease. Mayo Clinic Proc 76:1131–36
    [Google Scholar]
  111. 111.  Rao AV, Rao LG 2007. Carotenoids and human health. Pharmacol. Res. 55:207–16
    [Google Scholar]
  112. 112.  Reboul E, Borel P 2011. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog. Lipid Res. 50:388–402
    [Google Scholar]
  113. 113.  Reboul E, Goncalves A, Comera C, Bott R, Nowicki M et al. 2011. Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Mol. Nutr. Food Res. 55:691–702
    [Google Scholar]
  114. 114.  Rees JR, Mott LA, Barry EL, Baron JA, Bostick RM et al. 2016. Lifestyle and other factors explain one-half of the variability in the serum 25-hydroxyvitamin D response to cholecalciferol supplementation in healthy adults. J. Nutr. 146:2312–24
    [Google Scholar]
  115. 115.  Renner O, Lutjohann D, Richter D, Strohmeyer A, Schimmel S et al. 2013. Role of the ABCG8 19H risk allele in cholesterol absorption and gallstone disease. BMC Gastroenterol 13:30
    [Google Scholar]
  116. 116.  Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E et al. 2007. Genome-wide detection and characterization of positive selection in human populations. Nature 449:913–18
    [Google Scholar]
  117. 117.  Shyam R, Gorusupudi A, Nelson K, Horvath MP, Bernstein PS 2017. RPE65 has an additional function as the lutein to meso-zeaxanthin isomerase in the vertebrate eye. PNAS 114:10882–87
    [Google Scholar]
  118. 118.  Sitrin MD, Lieberman F, Jensen WE, Noronha A, Milburn C, Addington W 1987. Vitamin E deficiency and neurologic disease in adults with cystic fibrosis. Ann. Intern. Med. 107:51–54
    [Google Scholar]
  119. 119.  Sluijs I, Cadier E, Beulens JW, van der A DL, Spijkerman AM, van der Schouw YT 2015. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 25:376–81
    [Google Scholar]
  120. 120.  Tammi A, Ronnemaa T, Rask-Nissila L, Miettinen TA, Gylling H et al. 2001. Apolipoprotein E phenotype regulates cholesterol absorption in healthy 13-month-old children—the STRIP study. Pediatr. Res. 50:688–91
    [Google Scholar]
  121. 121.  Teupser D, Baber R, Ceglarek U, Scholz M, Illig T et al. 2010. Genetic regulation of serum phytosterol levels and risk of coronary artery disease. Circ. Cardiovasc. Genet. 3:331–39
    [Google Scholar]
  122. 122.  Thomas SE, Harrison EH 2016. Mechanisms of selective delivery of xanthophylls to retinal pigment epithelial cells by human lipoproteins. J. Lipid Res. 57:1865–78
    [Google Scholar]
  123. 123.  Tong SY, Lee JM, Song ES, Lee KB, Kim MK et al. 2009. Functional polymorphism in manganese superoxide dismutase and antioxidant status: their interactions on the risk of cervical intraepithelial neoplasia and cervical cancer. Gynecol. Oncol. 115:272–76
    [Google Scholar]
  124. 124.  Traber MG 2007. Heart disease and single-vitamin supplementation. Am. J. Clin. Nutr. 85:293S–99S
    [Google Scholar]
  125. 125.  Traber MG 2014. Vitamin E inadequacy in humans: causes and consequences. Adv. Nutr. 5:503–14
    [Google Scholar]
  126. 126.  Traber MG, Sies H 1996. Vitamin E in humans: demand and delivery. Annu. Rev. Nutr. 16:321–47
    [Google Scholar]
  127. 127.  Troesch B, Hoeft B, McBurney M, Eggersdorfer M, Weber P 2012. Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries. Br. J. Nutr. 108:692–98
    [Google Scholar]
  128. 128.  van Lieshout M, West CE, van Breemen RB 2003. Isotopic tracer techniques for studying the bioavailability and bioefficacy of dietary carotenoids, particularly β-carotene, in humans: a review. Am. J. Clin. Nutr. 77:12–28
    [Google Scholar]
  129. 129.  van Ommen B, El-Sohemy A, Hesketh J, Kaput J, Fenech M et al. 2010. The Micronutrient Genomics Project: a community-driven knowledge base for micronutrient research. Genes Nutr 5:285–96
    [Google Scholar]
  130. 130.  Von Bergmann K, Lutjohann D, Lindenthal B, Steinmetz A 2003. Efficiency of intestinal cholesterol absorption in humans is not related to apoE phenotype. J. Lipid Res. 44:193–97
    [Google Scholar]
  131. 131.  Wang DQ 2007. Regulation of intestinal cholesterol absorption. Annu. Rev. Physiol. 69:221–48
    [Google Scholar]
  132. 132.  Wang TT, Edwards AJ, Clevidence BA 2013. Strong and weak plasma response to dietary carotenoids identified by cluster analysis and linked to beta-carotene 15,15′-monooxygenase 1 single nucleotide polymorphisms. J. Nutr. Biochem. 24:1538–46
    [Google Scholar]
  133. 133.  Wang Y, Jacobs EJ, Newton CC, McCullough ML 2016. Lycopene, tomato products and prostate cancer-specific mortality among men diagnosed with nonmetastatic prostate cancer in the Cancer Prevention Study-II Nutrition Cohort. Int. J. Cancer 138:2846–55
    [Google Scholar]
  134. 134.  Waterhouse M, Tran B, Armstrong BK, Baxter C, Ebeling PR et al. 2014. Environmental, personal, and genetic determinants of response to vitamin D supplementation in older adults. J. Clin. Endocrinol. Metab. 99:E1332–40
    [Google Scholar]
  135. 135.  Weber D, Grune T 2012. The contribution of β-carotene to vitamin A supply of humans. Mol. Nutr. Food Res. 56:251–58
    [Google Scholar]
  136. 136.  West CE, Castenmiller JJ 1998. Quantification of the “SLAMENGHI” factors for carotenoid bioavailability and bioconversion. Int. J. Vitam. Nutr. Res. 68:371–77
    [Google Scholar]
  137. 137.  Widjaja-Adhi MA, Lobo GP, Golczak M, Von Lintig J 2015. A genetic dissection of intestinal fat-soluble vitamin and carotenoid absorption. Hum. Mol. Genet. 24:3206–19
    [Google Scholar]
  138. 138.  Yabuta S, Urata M, Wai Kun RY, Masaki M, Shidoji Y 2016. Common SNP rs6564851 in the BCO1 gene affects the circulating levels of β-carotene and the daily intake of carotenoids in healthy Japanese women. PLOS ONE 11:e0168857
    [Google Scholar]
  139. 139.  Yao P, Sun L, Lu L, Ding H, Chen X et al. 2017. Effects of genetic and nongenetic factors on total and bioavailable 25 (OH)D responses to vitamin D supplementation. J. Clin. Endocrinol. Metab. 102:100–10
    [Google Scholar]
  140. 140.  Yonova-Doing E, Hysi PG, Venturini C, Williams KM, Nag A et al. 2013. Candidate gene study of macular response to supplemental lutein and zeaxanthin. Exp. Eye Res. 115:172–77
    [Google Scholar]
  141. 141.  Zhang M, Zhao LJ, Zhou Y, Badr R, Watson P et al. 2017. SNP rs11185644 of RXRA gene is identified for dose-response variability to vitamin D3 supplementation: a randomized clinical trial. Sci. Rep. 7:40593
    [Google Scholar]
  142. 142.  Zhou Y, Zhao LJ, Xu X, Ye A, Travers-Gustafson D et al. 2014. DNA methylation levels of CYP2R1 and CYP24A1 predict vitamin D response variation. J. Steroid Biochem. Mol. Biol. 144:Pt. A207–14
    [Google Scholar]
  143. 143.  Zhu JG, Ochalek JT, Kaufmann M, Jones G, Deluca HF 2013. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. PNAS 110:15650–55
    [Google Scholar]
  144. 144.  Zingg JM 2007. Vitamin E: an overview of major research directions. Mol. Aspects Med. 28:400–22
    [Google Scholar]
  145. 145.  Zingg JM 2015. Vitamin E: a role in signal transduction. Annu. Rev. Nutr. 35:135–73
    [Google Scholar]
  146. 146.  Zingg JM, Azzi A 2004. Non-antioxidant activities of vitamin E. Curr. Med. Chem. 11:1113–33
    [Google Scholar]
  147. 147.  Zingg JM, Azzi A, Meydani M 2008. Genetic polymorphisms as determinants for disease-preventive effects of vitamin E. Nutr. Rev. 66:406–14
    [Google Scholar]
  148. 148.  Zou J, Feng D 2015. Lycopene reduces cholesterol absorption through the downregulation of Niemann-Pick C1-like 1 in Caco-2 cells. Mol. Nutr. Food Res. 59:2225–30
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082117-051628
Loading
/content/journals/10.1146/annurev-nutr-082117-051628
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error