1932

Abstract

According to the developmental origins of health and disease hypothesis, our health is determined by events experienced in utero and during early infancy. Indeed, both our prenatal and postnatal nutrition conditions have an impact on the initial architecture and activity of our microbiota. Recent evidence has underlined the importance of the composition of the early gut microbiota in relation to malnutrition, whether it be undernutrition or overnutrition, that is, in terms of both stunted and overweight development. It remains unclear how early microbial contact is linked to the risk of disease, as well as whether alterations in the microbiome underlie the pathogenesis of malnutrition or are merely the end result of it, which indicates that thequestion of causality must urgently be answered. This review provides information on the complex interaction between the microbiota and nutrition during the first 1,000 days of life, taking into account the impact of both undernutrition and overnutrition on the microbiota and on infants’ health outcomes in the short- and long-term.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082117-051716
2019-08-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/nutr/39/1/annurev-nutr-082117-051716.html?itemId=/content/journals/10.1146/annurev-nutr-082117-051716&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K et al. 2017. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377:13–27
    [Google Scholar]
  2. 2.
    Agosti M, Tandoi F, Morlacchi L, Bossi A 2017. Nutritional and metabolic programming during the first thousand days of life. Pediatr. Med. Chir. 39:2157
    [Google Scholar]
  3. 3.
    Albert MJ, Mathan VI, Baker SJ 1980. Vitamin B12 synthesis by human small intestinal bacteria. Nature 283:781–82
    [Google Scholar]
  4. 4.
    Alcock J, Maley CC, Aktipis CA 2014. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36:940–49
    [Google Scholar]
  5. 5.
    Arboleya S, Suarez M, Fernandez N, Mantecon L, Solis G et al. 2018. C-section and the neonatal gut microbiome acquisition: consequences for future health. Ann. Nutr. Metab. 73:Suppl. 317–23
    [Google Scholar]
  6. 6.
    Atiya Ali M, Strandvik B, Sabel KG, Palme Kilander C, Strömberg R, Yngve A 2013. Polyamine levels in breast milk are associated with mothers' dietary intake and are higher in preterm than full-term human milk and formulas. J. Hum. Nutr. Diet. 27:459–67
    [Google Scholar]
  7. 7.
    Ayres JS. 2016. Cooperative microbial tolerance behaviors in host–microbiota mutualism. Cell 165:1323–31
    [Google Scholar]
  8. 8.
    Azad MB, Konya T, Maughan H, Guttman DS, Field CJ et al. 2013. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185:385–94
    [Google Scholar]
  9. 9.
    Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS et al. 2016. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG 123:983–93
    [Google Scholar]
  10. 10.
    Azad MB, Moossavi S, Owora A, Sepehri S 2017. Early-life antibiotic exposure, gut microbiota development, and predisposition to obesity. Nestle Nutr. Inst. Workshop Ser. 88:67–79
    [Google Scholar]
  11. 11.
    Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H et al. 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703
    [Google Scholar]
  12. 12.
    Baker SJ. 1981. Contribution of the microflora of the small intestine to the vitamin B12 nutriture of man. Nutr. Rev. 39:147–48
    [Google Scholar]
  13. 13.
    Bergman EN. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567–90
    [Google Scholar]
  14. 14.
    Bhutta ZA, Ahmed T, Black RE, Cousens S, Dewey K et al. 2008. What works? Interventions for maternal and child undernutrition and survival. Lancet 371:417–40
    [Google Scholar]
  15. 15.
    Biro FM, Wien M. 2010. Childhood obesity and adult morbidities. Am. J. Clin. Nutr. 91:1499S–505S
    [Google Scholar]
  16. 16.
    Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P et al. 2013. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382:427–51
    [Google Scholar]
  17. 17.
    Blanton LV, Barratt MJ, Charbonneau MR, Ahmed T, Gordon JI 2016. Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science 352:1533
    [Google Scholar]
  18. 18.
    Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S et al. 2016. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351:aad3311
    [Google Scholar]
  19. 19.
    Blustein J, Attina T, Liu M, Ryan AM, Cox LM et al. 2013. Association of Caesarean delivery with child adiposity from age 6 weeks to 15 years. Int. J. Obes. 37:900–6
    [Google Scholar]
  20. 20.
    Bode L. 2015. The functional biology of human milk oligosaccharides. Early Hum. Dev. 91:619–22
    [Google Scholar]
  21. 21.
    Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M et al. 2016. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8:343ra82
    [Google Scholar]
  22. 22.
    Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C et al. 2004. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose–response relation study. Am. J. Clin. Nutr. 80:1658–64
    [Google Scholar]
  23. 23.
    Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A 2012. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96:544–51
    [Google Scholar]
  24. 24.
    Cani PD, Delzenne NM. 2007. Gut microflora as a target for energy and metabolic homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 10:729–34
    [Google Scholar]
  25. 25.
    Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG et al. 2007. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–83
    [Google Scholar]
  26. 26.
    Chang L, Neu J. 2015. Early factors leading to later obesity: interactions of the microbiome, epigenome, and nutrition. Curr. Probl. Pediatr. Adolesc. Health Care 45:134–42
    [Google Scholar]
  27. 27.
    Charbonneau MR, O'Donnell D, Blanton LV, Totten SM, Davis JCC et al. 2016. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164:859–71
    [Google Scholar]
  28. 28.
    Charles MA, Heude B. 2015. [Early determinants of obesity]. Bull. Acad. Natl. Med. 199:1281–89 In French )
    [Google Scholar]
  29. 29.
    Christensen L, Roager HM, Astrup A, Hjorth MF 2018. Microbial enterotypes in personalized nutrition and obesity management. Am. J. Clin. Nutr. 108:645–51
    [Google Scholar]
  30. 30.
    Collado MC, Isolauri E, Laitinen K, Salminen S 2008. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am. J. Clin. Nutr. 88:894–99
    [Google Scholar]
  31. 31.
    Collado MC, Isolauri E, Laitinen K, Salminen S 2010. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am. J. Clin. Nutr. 92:1023–30
    [Google Scholar]
  32. 32.
    Collado MC, Laitinen K, Salminen S, Isolauri E 2012. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr. Res. 72:77–85
    [Google Scholar]
  33. 33.
    Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S 2016. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6:23129
    [Google Scholar]
  34. 34.
    Conlon MA, Bird AR. 2015. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:17–44
    [Google Scholar]
  35. 35.
    de Clercq NC, Groen AK, Romijn JA, Nieuwdorp M 2016. Gut microbiota in obesity and undernutrition. Adv. Nutr. 7:1080–89
    [Google Scholar]
  36. 36.
    DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM et al. 2008. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLOS ONE 3:e3056
    [Google Scholar]
  37. 37.
    Dinh DM, Ramadass B, Kattula D, Sarkar R, Braunstein P et al. 2016. Longitudinal analysis of the intestinal microbiota in persistently stunted young children in south India. PLOS ONE 11:e0155405
    [Google Scholar]
  38. 38.
    Donnet-Hughes A, Perez PF, Doré J, Leclerc M, Levenez F et al. 2010. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc. Nutr. Soc. 69:407–15
    [Google Scholar]
  39. 39.
    Duffy VB, Hayes JE, Davidson AC, Kidd JR, Kidd KK, Bartoshuk LM 2010. Vegetable intake in college-aged adults is explained by oral sensory phenotypes and TAS2R38 genotype. Chemosens. Percept. 3:137–48
    [Google Scholar]
  40. 40.
    Fall CHD. 2011. Evidence for the intra-uterine programming of adiposity in later life. Ann. Hum. Biol. 38:410–28
    [Google Scholar]
  41. 41.
    FAO (Food Agric. Organ.) 2017. The State of Food Security and Nutrition in the World: Building Resilience for Peace and Food Security Rome: FAO
  42. 42.
    Fetissov SO. 2017. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol. 13:11–25
    [Google Scholar]
  43. 43.
    Finn S, Culligan EP, Snelling WJ, Sleator RD 2018. Early life nutrition. Sci. Prog. 101:332–59
    [Google Scholar]
  44. 44.
    Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM et al. 2018. Origins of lifetime health around the time of conception: causes and consequences. Lancet 391:1842–52
    [Google Scholar]
  45. 45.
    Fujiwara N, Tsuruda K, Iwamoto Y, Kato F, Odaki T et al. 2017. Significant increase of oral bacteria in the early pregnancy period in Japanese women. J. Investig. Clin. Dent. 8:e12189
    [Google Scholar]
  46. 46.
    Galley JD, Bailey M, Kamp Dush C, Schoppe-Sullivan S, Christian LM 2014. Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLOS ONE 9:e113026
    [Google Scholar]
  47. 47.
    García-Mantrana I, Collado MC. 2016. Obesity and overweight: impact on maternal and milk microbiome and their role for infant health and nutrition. Mol. Nutr. Food Res. 60:1865–75
    [Google Scholar]
  48. 48.
    Ghazalpour A, Cespedes I, Bennett BJ, Allayee H 2016. Expanding role of gut microbiota in lipid metabolism. Curr. Opin. Lipidol. 27:141–47
    [Google Scholar]
  49. 49.
    Ghosh TS, Gupta SS, Bhattacharya T, Yadav D, Barik A et al. 2014. Gut microbiomes of Indian children of varying nutritional status. PLOS ONE 9:e95547
    [Google Scholar]
  50. 50.
    Gómez-Cabrera MC, Martínez-Costa C, Sastre J 2011. Poverty. The Chemical Element: Chemistry's Contribution to Our Global Future J García-Martínez, E Serrano-Torregrosa 99–128 Chichester, UK: Wiley
    [Google Scholar]
  51. 51.
    Gómez-Gallego C, Kumar H, García-Mantrana I, du Toit E, Suomela JP et al. 2017. Breast milk polyamines and microbiota interactions: impact of mode of delivery and geographical location. Ann. Nutr. Metab. 70:184–90
    [Google Scholar]
  52. 52.
    Gómez-Gallego C, Salminen S. 2017. Microbiota and the gastro-intestinal system in children. Microbiota in Health and Disease: From Pregnancy to Childhood PD Browne, E Claassen, MD Cabana 141–50 Wageningen, Neth: Wageningen Acad.
    [Google Scholar]
  53. 53.
    Gordon JI, Dewey KG, Mills DA, Medzhitov RM 2012. The human gut microbiota and undernutrition. Sci. Transl. Med. 4:137ps12
    [Google Scholar]
  54. 54.
    Gueimonde M, Latinen K, Seppo S, Isolauri E 2007. Breast milk: a source of bifidobacteria for infant gut development and maturation?. Neonatology 92:64–66
    [Google Scholar]
  55. 55.
    Gupta SS, Mohammed MH, Ghosh TS, Kanungo S, Nair GB, Mande SS 2011. Metagenome of the gut of a malnourished child. Gut Pathog 3:7
    [Google Scholar]
  56. 56.
    Hacquard S, Garrido-Oter R, Gonzalez A, Spaepen S, Ackermann G et al. 2015. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–16
    [Google Scholar]
  57. 57.
    Halsted JA, Carroll J, Dehghani A, Loghmani M, Prasad AS 1960. Serum vitamin B12 concentration in dietary deficiency. Am. J. Clin. Nutr. 8:374–76
    [Google Scholar]
  58. 58.
    Havenaar R. 2011. Intestinal health functions of colonic microbial metabolites: a review. Benef. Microbes 2:103–14
    [Google Scholar]
  59. 59.
    Hoffman DJ, Reynolds RM, Hardy DB 2017. Developmental origins of health and disease: current knowledge and potential mechanisms. Nutr. Rev. 75:951–70
    [Google Scholar]
  60. 60.
    Hoppu U, Laitinen K, Jaakkola J, Sandell M 2015. The hTAS2R38 genotype is associated with sugar and candy consumption in preschool boys. J. Hum. Nutr. Diet. 28:Suppl. 145–51
    [Google Scholar]
  61. 61.
    Hu JZ, Nomura Y, Bashir A, Fernandez-Hernandez H, Itzkowitz S et al. 2013. Diversified microbiota of meconium is affected by maternal diabetes status. PLOS ONE 8:e78257
    [Google Scholar]
  62. 62.
    Indrio F, Martini S, Francavilla R, Corvaglia L, Cristofori F et al. 2017. Epigenetic matters: the link between early nutrition, microbiome, and long-term health development. Front. Pediatr. 5:178
    [Google Scholar]
  63. 63.
    Isolauri E, Salminen S, Rautava S 2016. Early microbe contact and obesity risk: evidence of causality. J. Pediatr. Gastroenterol. Nutr. 63:S3–5
    [Google Scholar]
  64. 64.
    Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C et al. 2014. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut 63:559–66
    [Google Scholar]
  65. 65.
    Jost T, Lacroix C, Braegger C, Chassard C 2015. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr. Rev. 73:426–37
    [Google Scholar]
  66. 66.
    Kaczmarek JL, Musaad SM, Holscher HD 2017. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am. J. Clin. Nutr. 106:1220–31
    [Google Scholar]
  67. 67.
    Kaczmarek JL, Thompson SV, Holscher HD 2017. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr. Rev. 75:673–82
    [Google Scholar]
  68. 68.
    Kalliomaki M, Collado MC, Salminen S, Isolauri E 2008. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 87:534–38
    [Google Scholar]
  69. 69.
    Kane AV, Dinh DM, Ward HD 2015. Childhood malnutrition and the intestinal microbiome. Pediatr. Res. 77:256–62
    [Google Scholar]
  70. 70.
    Karl JP, Meydani M, Barnett JB, Vanegas SM, Barger K et al. 2017. Fecal concentrations of bacterially derived vitamin K forms are associated with gut microbiota composition but not plasma or fecal cytokine concentrations in healthy adults. Am. J. Clin. Nutr. 106:1052–61
    [Google Scholar]
  71. 71.
    Karlsson CLJ, Önnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K 2012. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20:2257–61
    [Google Scholar]
  72. 72.
    Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI 2011. Human nutrition, the gut microbiome and the immune system. Nature 474:327–36
    [Google Scholar]
  73. 73.
    Kaur J. 2014. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014:943162
    [Google Scholar]
  74. 74.
    Kim JS, de La Serre CB 2018. Diet, gut microbiota composition and feeding behavior. Physiol. Behav. 192:177–81
    [Google Scholar]
  75. 75.
    Klingbeil EA, de La Serre CB 2018. Microbiota modulation by eating patterns, dietary and macronutrient composition: impact on food intake. Am. J. Physiol. 315:R1254–60
    [Google Scholar]
  76. 76.
    Koletzko B, Brands B, Poston L, Godfrey K, Demmelmair H Early Nutr. Proj 2012. Early nutrition programming of long-term health. Proc. Nutr. Soc. 71:371–78
    [Google Scholar]
  77. 77.
    Koleva PT, Bridgman SL, Kozyrskyj AL 2015. The infant gut microbiome: evidence for obesity risk and dietary intervention. Nutrients 7:2237–60
    [Google Scholar]
  78. 78.
    Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K et al. 2012. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150:470–80
    [Google Scholar]
  79. 79.
    Korpela K, de Vos WM 2018. Early life colonization of the human gut: microbes matter everywhere. Curr. Opin. Microbiol. 44:70–78
    [Google Scholar]
  80. 80.
    Kozyrskyj AL, Kalu R, Koleva PT, Bridgman SL 2016. Fetal programming of overweight through the microbiome: boys are disproportionately affected. J. Dev. Orig. Health Dis. 7:25–34
    [Google Scholar]
  81. 81.
    Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK 2012. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27:201–14
    [Google Scholar]
  82. 82.
    Kumar H, du Toit E, Kulkarni A, Aakko J, Linderborg KM et al. 2016. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front. Microbiol. 7:1619
    [Google Scholar]
  83. 83.
    Langdon A, Crook N, Dantas G 2016. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8:39
    [Google Scholar]
  84. 84.
    Larroya-Garcia A, Navas-Carrillo D, Orenes-Pinero E 2018. Impact of gut microbiota on neurological diseases: diet composition and novel treatments. Crit. Rev. Food Sci. Nutr. 2018:1–15
    [Google Scholar]
  85. 85.
    LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P 2017. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 16:79
    [Google Scholar]
  86. 86.
    LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M 2013. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24:160–68
    [Google Scholar]
  87. 87.
    Leitao-Goncalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M et al. 2017. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLOS Biol 15:e2000862
    [Google Scholar]
  88. 88.
    Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI 2005. Obesity alters gut microbial ecology. PNAS 102:11070–75
    [Google Scholar]
  89. 89.
    Li CC, Maloney CA, Cropley JE, Suter CM 2010. Epigenetic programming by maternal nutrition: shaping future generations. Epigenomics 2:539–49
    [Google Scholar]
  90. 90.
    Li D, Wang P, Hu X, Chen F 2017. Targeting the gut microbiota by dietary nutrients: a new avenue for human health. Crit. Rev. Food Sci. Nutr. 28:1–15
    [Google Scholar]
  91. 91.
    Maendar R, Punab M, Borovkova N, Lapp E, Kiiker R et al. 2015. Complementary seminovaginal microbiome in couples. Res. Microbiol. 166:440–47
    [Google Scholar]
  92. 92.
    Manco M. 2012. Gut microbiota and developmental programming of the brain: from evidence in behavioral endophenotypes to novel perspective in obesity. Front. Cell Infect. Microbiol. 2:109
    [Google Scholar]
  93. 93.
    Martin R, Miquel S, Ulmer J, Langella P, Bermudez-Humaran LG 2014. Gut ecosystem: how microbes help us. Benef. Microbes 5:219–33
    [Google Scholar]
  94. 94.
    Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW et al. 2018. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23:458–69.e5
    [Google Scholar]
  95. 95.
    Mata LJ, Urrutia JJ, Albertazzi C, Pellecer O, Arellano E 1972. Influence of recurrent infections on nutrition and growth of children in Guatemala. Am. J. Clin. Nutr. 25:1267–75
    [Google Scholar]
  96. 96.
    Maukonen J, Saarela M. 2015. Human gut microbiota: Does diet matter. ? Proc. Nutr. Soc. 74:23–36
    [Google Scholar]
  97. 97.
    Mennella JA, Pepino MY, Reed DR 2005. Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics 115:e216–22
    [Google Scholar]
  98. 98.
    Milani C, Duranti S, Bottacini F, Casey E, Turroni F et al. 2017. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 81:e00036–17
    [Google Scholar]
  99. 99.
    Million M, Diallo A, Raoult D 2017. Gut microbiota and malnutrition. Microb. Pathog. 106:127–38
    [Google Scholar]
  100. 100.
    Million M, Tidjani Alou M, Khelaifia S, Bachar D, Lagier JC et al. 2016. Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci. Rep. 6:26051
    [Google Scholar]
  101. 101.
    Monasta L, Batty GD, Cattaneo A, Lutje V, Ronfani L et al. 2010. Early-life determinants of overweight and obesity: a review of systematic reviews. Obes. Rev. 11:695–708
    [Google Scholar]
  102. 102.
    Monira S, Nakamura S, Gotoh K, Izutsu K, Watanabe H et al. 2011. Gut microbiota of healthy and malnourished children in Bangladesh. Front. Microbiol. 2:228
    [Google Scholar]
  103. 103.
    O'Connor EM. 2013. The role of gut microbiota in nutritional status. Curr. Opin. Clin. Nutr. Metab. Care 16:509–16
    [Google Scholar]
  104. 104.
    Ordovas JM, Ferguson LR, Tai ES, Mathers JC 2018. Personalised nutrition and health. BMJ 361:bmj.k2173
    [Google Scholar]
  105. 105.
    Ottman N, Smidt H, de Vos WM, Belzer C 2012. The function of our microbiota: Who is out there and what do they do. ? Front. Cell Infect. Microbiol. 2:104
    [Google Scholar]
  106. 106.
    Pannaraj PS, Li F, Cerini C, Bender JM, Yang S et al. 2017. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr 171:647–54
    [Google Scholar]
  107. 107.
    Pekmez CT, Dragsted LO, Brahe LK 2018. Gut microbiota alterations and dietary modulation in childhood malnutrition—the role of short chain fatty acids. Clin. Nutr. 38:615–30
    [Google Scholar]
  108. 108.
    Preidis GA, Ajami NJ, Wong MC, Bessard BC, Conner ME, Petrosino JF 2015. Composition and function of the undernourished neonatal mouse intestinal microbiome. J. Nutr. Biochem. 26:1050–57
    [Google Scholar]
  109. 109.
    Ramakrishna BS. 2013. Role of the gut microbiota in human nutrition and metabolism. J. Gastroenterol. Hepatol. 28:Suppl. 49–17
    [Google Scholar]
  110. 110.
    Rautava S, Luoto R, Salminen S, Isolauri E 2012. Microbial contact during pregnancy, intestinal colonization and human disease. Nat. Rev. Gastroenterol. Hepatol. 9:565–76
    [Google Scholar]
  111. 111.
    Riviere A, Selak M, Lantin D, Leroy F, De Vuyst L 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7:979
    [Google Scholar]
  112. 112.
    Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL 2010. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156:3329–41
    [Google Scholar]
  113. 113.
    Russell WR, Hoyles L, Flint HJ, Dumas M-E 2013. Colonic bacterial metabolites and human health. Curr. Opin. Microbiol. 16:246–54
    [Google Scholar]
  114. 114.
    Rutayisire E, Huang K, Liu YH, Tao FB 2016. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterology 16:86
    [Google Scholar]
  115. 115.
    Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H 2015. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 135:617–26
    [Google Scholar]
  116. 116.
    Salminen S, Endo A, Isolauri E, Scalabrin D 2016. Early gut colonization with lactobacilli and Staphylococcus in infants: the hygiene hypothesis extended. J. Pediatr. Gastroenterol. Nutr. 62:80–86
    [Google Scholar]
  117. 117.
    Salonen A, de Vos WM 2014. Impact of diet on human intestinal microbiota and health. Annu. Rev. Food Sci. Technol. 5:239–62
    [Google Scholar]
  118. 118.
    Sandell MA, Breslin PA. 2006. Variability in a taste-receptor gene determines whether we taste toxins in food. Curr. Biol. 16:R792–94
    [Google Scholar]
  119. 119.
    Sandell MA, Collado MC. 2018. Genetic variation in the TAS2R38 taste receptor contributes to the oral microbiota in North and South European locations: a pilot study. Genes Nutr 13:30
    [Google Scholar]
  120. 120.
    Sandell MA, Hoppu U, Mikkila V, Mononen N, Kahonen M et al. 2014. Genetic variation in the hTAS2R38 taste receptor and food consumption among Finnish adults. Genes Nutr 9:433
    [Google Scholar]
  121. 121.
    Schaible UE, Kaufmann SH. 2007. Malnutrition and infection: complex mechanisms and global impacts. PLOS Med 4:e115
    [Google Scholar]
  122. 122.
    Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA et al. 2010. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104:83–92
    [Google Scholar]
  123. 123.
    Savino F, Liguori SA, Fissore MF, Oggero R 2009. Breast milk hormones and their protective effect on obesity. Int. J. Pediatr. Endocrinol. 2009:327505
    [Google Scholar]
  124. 124.
    Shea MK, Cushman M, Booth SL, Burke GL, Chen H, Kritchevsky SB 2014. Associations between vitamin K status and haemostatic and inflammatory biomarkers in community-dwelling adults: the Multi-Ethnic Study of Atherosclerosis. Thromb. Haemost. 112:438–44
    [Google Scholar]
  125. 125.
    Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R et al. 2013. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339:548–54
    [Google Scholar]
  126. 126.
    Smythe PM. 1958. Changes in intestinal bacterial flora and role of infection in kwashiorkor. Lancet 2:724–27
    [Google Scholar]
  127. 127.
    Stinson LF, Payne MS, Keelan JA 2018. A critical review of the bacterial baptism hypothesis and the impact of Cesarean delivery on the infant microbiome. Front. Med. 5:135
    [Google Scholar]
  128. 128.
    Subramanian S, Blanton LV, Frese SA, Charbonneau M, Mills DA, Gordon JI 2015. Cultivating healthy growth and nutrition through the gut microbiota. Cell 161:36–48
    [Google Scholar]
  129. 129.
    Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M et al. 2014. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510:417
    [Google Scholar]
  130. 130.
    Tidjani Alou M, Million M, Traore SI, Mouelhi D, Khelaifia S et al. 2017. Gut bacteria missing in severe acute malnutrition: Can we identify potential probiotics by culturomics. ? Front. Microbiol. 8:899
    [Google Scholar]
  131. 131.
    Treesukosol Y, Moran TH. 2014. Analyses of meal patterns across dietary shifts. Appetite 75:21–29
    [Google Scholar]
  132. 132.
    van de Wouw M, Schellekens H, Dinan TG, Cryan JF 2017. Microbiota–gut–brain axis: modulator of host metabolism and appetite. J. Nutr. 147:727–45
    [Google Scholar]
  133. 133.
    Vehapoglu A, Goknar N, Turel O, Torun E, Ozgurhan G 2017. Risk factors for childhood obesity: Do the birth weight, type of delivery, and mother's overweight have an implication on current weight status. ? World J. Pediatr. 13:457–64
    [Google Scholar]
  134. 134.
    Venter CS, Vorster HH, Cummings JH 1990. Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am. J. Gastroenterol. 85:549–53
    [Google Scholar]
  135. 135.
    Videhult FK, West CE. 2016. Nutrition, gut microbiota and child health outcomes. Curr. Opin. Clin. Nutr. Metab. Care 19:208–13
    [Google Scholar]
  136. 136.
    Vonaesch P, Randremanana R, Gody JC, Collard JM, Giles-Vernick T et al. 2018. Identifying the etiology and pathophysiology underlying stunting and environmental enteropathy: study protocol of the AFRIBIOTA project. BMC Pediatr 18:236
    [Google Scholar]
  137. 137.
    Wagner VE, Dey N, Guruge J, Hsiao A, Ahern PP et al. 2016. Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition. Sci. Transl. Med. 8:366ra164
    [Google Scholar]
  138. 138.
    West CE, Renz H, Jenmalm MC, Kozyrskyj AL, Allen KJ et al. 2015. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. J. Allergy Clin. Immunol. 135:3–13
    [Google Scholar]
  139. 139.
    WHO (World Health Organ.) 2018. ICD-11 for Mortality and Morbidity Statistics (ICD-11 MMS): 2018 version. World Health Organ https://icd.who.int/browse11/l-m/en
    [Google Scholar]
  140. 140.
    WHO (World Health Organ.) 2019. Double burden of malnutrition. World Health Organization http://www.who.int/nutrition/double-burden-malnutrition/en/
    [Google Scholar]
  141. 141.
    Williams PCM, Berkley JA. 2018. Guidelines for the treatment of severe acute malnutrition: a systematic review of the evidence for antimicrobial therapy. Paediatr. Int. Child Health 38:Suppl. 1S32–49
    [Google Scholar]
  142. 142.
    Wise A, Robertson B, Choudhury B, Rautava S, Isolauri E et al. 2018. Infants are exposed to human milk oligosaccharides already in utero. Front. Pediatr. 6:270
    [Google Scholar]
  143. 143.
    Witkamp RF. 2018. The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol. Asp. Med. 64:45–67
    [Google Scholar]
  144. 144.
    Xiao XQ, Williams SM, Grayson BE, Glavas MM, Cowley MA et al. 2007. Excess weight gain during the early postnatal period is associated with permanent reprogramming of brown adipose tissue adaptive thermogenesis. Endocrinology 148:4150–59
    [Google Scholar]
  145. 145.
    Ximenez C, Torres J. 2017. Development of microbiota in infants and its role in maturation of gut mucosa and immune system. Arch. Med. Res. 48:666–80
    [Google Scholar]
  146. 146.
    Zacarias MF, Collado MC, Gómez-Gallego C, Flinck H, Aittoniemi J et al. 2018. Pregestational overweight and obesity are associated with differences in gut microbiota composition and systemic inflammation in the third trimester. PLOS ONE 13:e0200305
    [Google Scholar]
  147. 147.
    Zmora N, Suez J, Elinav E 2018. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16:35–56
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082117-051716
Loading
/content/journals/10.1146/annurev-nutr-082117-051716
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error