1932

Abstract

Vitamin K (VK) is an essential cofactor for the post-translational conversion of peptide-bound glutamate to γ-carboxyglutamate. The resultant vitamin K–dependent proteins are known or postulated to possess a variety of biological functions, chiefly in the maintenance of hemostasis. The vitamin K cycle is a cellular pathway that drives γ-carboxylation and recycling of VK via γ-carboxyglutamyl carboxylase (GGCX) and vitamin K epoxide reductase (VKOR), respectively. In this review, we show how novel molecular biological approaches are providing new insights into the pathophysiological mechanisms caused by rare mutations of both GGCX and VKOR. We also discuss how other protein regulators influence the intermediary metabolism of VK, first through intestinal absorption and second through a pathway that converts some dietary phylloquinone to menadione, which is prenylated to menaquinone-4 (MK-4) in target tissues by UBIAD1. The contribution of MK-4 synthesis to VK functions is yet to be revealed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082117-051741
2018-08-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/nutr/38/1/annurev-nutr-082117-051741.html?itemId=/content/journals/10.1146/annurev-nutr-082117-051741&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM et al. 2004. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 20:1201–4
    [Google Scholar]
  2. 2.  Berkner KL 2005. The vitamin K-dependent carboxylase. Annu. Rev. Nutr. 25:127–49
    [Google Scholar]
  3. 3.  Beulens JW, Booth SL, van den Heuvel EG, Stoecklin E, Baka A et al. 2013. The role of menaquinones (vitamin K2) in human health. Br. J. Nutr. 110:1357–68
    [Google Scholar]
  4. 4.  Binkley NC, Krueger DC, Kawahara TN, Engelke JA, Chappell RJ et al. 2002. A high phylloquinone intake is required to achieve maximal osteocalcin gamma-carboxylation. Am. J. Clin. Nutr. 76:1055–60
    [Google Scholar]
  5. 5.  Bolton-Smith C, Price RJ, Fenton ST, Harrington DJ, Shearer MJ 2000. Compilation of a provisional UK database for the phylloquinone (vitamin K1) content of foods. Br. J. Nutr. 83:389–99
    [Google Scholar]
  6. 6.  Booth SL 2009. Roles for vitamin K beyond coagulation. Annu. Rev. Nutr. 29:89–110
    [Google Scholar]
  7. 7.  Booth SL, Centi A, Smith SR, Gundberg C 2013. The role of osteocalcin in human glucose metabolism: marker or mediator?. Nat. Rev. Endocrinol. 9:43–55
    [Google Scholar]
  8. 8.  Brenner B, Sánchez-Vega B, Wu SM, Lanir N, Stafford DW, Solera J 1998. A missense mutation in γ-glutamyl carboxylase gene causes combined deficiency of all vitamin K-dependent blood coagulation factors. Blood 92:4554–59
    [Google Scholar]
  9. 9.  Cheng W, Li W 2014. Structural insights into ubiquinone biosynthesis in membranes. Science 343:878–81
    [Google Scholar]
  10. 10.  Chung KS, Bezeaud A, Goldsmith JC, McMillan CW, Ménaché D et al. 1979. Congenital deficiency of blood clotting factors II, VII, IX, and X. Blood 53:776–87
    [Google Scholar]
  11. 11.  Cohen JC, Pertsemlidis A, Fahmi S, Esmail S, Vega GL et al. 2006. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. PNAS 103:1810–15
    [Google Scholar]
  12. 12.  Conway SJ, Izuhara K, Kudo Y, Litvin J, Markwald R et al. 2013. The role of periostin in tissue remodeling across health and disease. Cell Mol. Life Sci. 71:1279–88
    [Google Scholar]
  13. 13.  Czogalla KJ, Biswas A, Rost S, Watzka M, Oldenburg J 2014. The Arg98Trp mutation in human VKORC1 causing VKCFD2 disrupts a di-arginine-based ER retention motif. Blood 124:1354–62
    [Google Scholar]
  14. 14.  Czogalla KJ, Watzka M, Oldenburg J 2015. Structural modeling insights into human VKORC1 phenotypes. Nutrients 7:6837–51
    [Google Scholar]
  15. 15.  Davidson RT, Foley AL, Engelke JA, Suttie JW 1998. Conversion of dietary phylloquinone to tissue menaquinone-4 in rats is not dependent on gut bacteria. J. Nutr. 128:220–23
    [Google Scholar]
  16. 16.  Davies JP, Ioannou YA 2000. Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J. Biol. Chem. 275:24367–74
    [Google Scholar]
  17. 17.  Davies JP, Scott C, Oishi K, Liapis A, Ioannou YA 2005. Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J. Biol. Chem. 280:12710–20
    [Google Scholar]
  18. 18.  Davis HR Jr, Altmann SW 2009. Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter. Biochim. Biophys. Acta 1791:679–83
    [Google Scholar]
  19. 19.  Davis HR Jr, Hoos LM, Tetzloff G, Maguire M, Zhu LJ et al. 2007. Deficiency of Niemann-Pick C1 Like 1 prevents atherosclerosis in ApoE−/− mice. Arterioscler. Thromb. Vasc. Biol. 27:841–49
    [Google Scholar]
  20. 20.  Davis HR Jr, Zhu LJ, Hoos LM, Tetzloff G, Maguire M et al. 2004. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J. Biol. Chem. 279:33586–92
    [Google Scholar]
  21. 21.  De Vilder EY, Debacker J, Vanakker OM 2017. GGCX-associated phenotypes: an overview in search of genotype-phenotype correlations. Int. J. Mol. Sci 18:240
    [Google Scholar]
  22. 22.  Dowd P, Hershline R, Ham SW, Naganathan S 1995. Vitamin K and energy transduction: a base strength amplification mechanism. Science 269:1684–91
    [Google Scholar]
  23. 23.  Ferland G 2012. Vitamin K and the nervous system: an overview of its actions. Adv. Nutr. 3:204–12
    [Google Scholar]
  24. 24.  Fredericks WJ, McGarvey T, Wang H, Lal P, Puthiyaveettil R et al. 2011. The bladder tumor suppressor protein TERE1 (UBIAD1) modulates cell cholesterol: implications for tumor progression. DNA Cell Biol 11:851–64
    [Google Scholar]
  25. 25.  Fredericks WJ, Sepulveda J, Lai P, Tomaszewski JE, Lin MF et al. 2013. The tumor suppressor TERE1 (UBIAD1) prenyltransferase regulates the elevated cholesterol phenotype in castration resistant prostate cancer by controlling a program of ligand dependent SXR target genes. Oncotarget 4:1075–92
    [Google Scholar]
  26. 26.  Fregin A, Czogalla KJ, Gansler J, Rost S, Taverna M et al. 2013. A new cell culture-based assay quantifies vitamin K 2,3-epoxide reductase complex subunit 1 function and reveals warfarin resistance phenotypes not shown by the dithiothreitol-driven VKOR assay. J. Thromb. Haemost. 11:872–80
    [Google Scholar]
  27. 27.  Ge L, Qi W, Wang LJ, Miao HH, Qu YX et al. 2011. Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. PNAS 108:551–56
    [Google Scholar]
  28. 28.  Goncalves A, Margier M, Roi S, Collet X, Niot I et al. 2014. Intestinal scavenger receptors are involved in vitamin K1 absorption. J. Biol. Chem. 289:30743–52
    [Google Scholar]
  29. 29.  Goncalves A, Roi S, Nowicki M, Niot I, Reboul E 2014. Cluster-determinant 36 (CD36) impacts on vitamin E postprandial response. Mol. Nutr. Food Res. 58:2297–306
    [Google Scholar]
  30. 30.  Gundberg CM, Lian JB, Booth SL 2012. Vitamin K-dependent carboxylation of osteocalcin: friend or foe?. Adv. Nutr. 3:149–57
    [Google Scholar]
  31. 31.  Hegarty JM, Yang H, Chi NC 2013. UBIAD1-mediated vitamin K2 synthesis is required for vascular endothelial cell survival and development. Development 140:1713–19
    [Google Scholar]
  32. 32.  Hirota Y, Nakagawa K, Sawada N, Okuda N, Suhara Y et al. 2015. Functional characterization of the vitamin K2 biosynthetic enzyme UBIAD1. PLOS ONE 10:e0125737
    [Google Scholar]
  33. 33.  Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K et al. 2013. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J. Biol. Chem. 288:33071–80
    [Google Scholar]
  34. 34.  Hollander D, Rim E, Muralidhara KS 1977. Vitamin K1 intestinal absorption in vivo: influence of luminal contents on transport. Am. J. Physiol. 232:E69–74
    [Google Scholar]
  35. 35.  Huang H, Levin EJ, Liu S, Bai Y, Lockless SW et al. 2014. Structure of a membrane-embedded prenyltransferase homologous to UBIAD1. PLOS Biol 12:e1001911
    [Google Scholar]
  36. 36.  Huber AM, Davidson KW, O'Brien-Morse ME, Sadowski JA 1999. Tissue phylloquinone and menaquinones in rats are affected by age and gender. J. Nutr. 129:1039–44
    [Google Scholar]
  37. 37.  Jia L, Ma Y, Rong S, Betters JL, Xie P et al. 2010. Niemann-Pick C1-Like 1 deletion in mice prevents high-fat diet-induced fatty liver by reducing lipogenesis. J. Lipid Res. 51:3135–44
    [Google Scholar]
  38. 38.  Jin DY, Ingram BO, Stafford DW, Tie JK 2017. Molecular basis of the first reported clinical case of congenital combined deficiency of coagulation factors. Blood 130:948–51
    [Google Scholar]
  39. 39.  Krueger T, Westenfeld R, Ketteler M, Schurgers LJ, Floege J 2009. Vitamin K deficiency in CKD patients: a modifiable risk factor for vascular calcification?. Kidney Int 76:18–22
    [Google Scholar]
  40. 40.  Li T, Chang CY, Jin DY, Lin PJ, Khvorova A et al. 2004. Identification of the gene for vitamin K epoxide reductase. Nature 427:541–44
    [Google Scholar]
  41. 41.  Li PS, Fu ZY, Zhang YY, Zhang JH, Xu CQ et al. 2014. The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nat. Med. 20:80–86
    [Google Scholar]
  42. 42.  Liu S, Guo W, Han X, Dai W, Diao Z et al. 2016. Role of UBIAD1 in intracellular cholesterol metabolism and vascular cell calcification. PLOS ONE 11:e0149639
    [Google Scholar]
  43. 43.  Lunghi B, Redaelli R, Caimi TM, Corno AR, Bernardi F et al. 2011. Novel phenotype and γ-glutamyl carboxylase mutations in combined deficiency of vitamin K-dependent coagulation factors. Haemophilia 17:822–24
    [Google Scholar]
  44. 44.  Martius C 1961. The metabolic relationships between the different K vitamins and the synthesis of the ubiquinones. Am. J. Clin. Nutr. 9:97–103
    [Google Scholar]
  45. 45.  McGarvey TW, Nguyen T, Puthiyaveettil R, Tomaszewski JE, Malkowicz SB 2003. TERE1, a novel gene affecting growth regulation in prostate carcinoma. Prostate 54:144–55
    [Google Scholar]
  46. 46.  McGarvey TW, Nguyen T, Tomaszewski JE, Monson FC, Malkowicz SB 2001. Isolation and characterization of the TERE1 gene, a gene down-regulated in transitional cell carcinoma of the bladder. Oncogene 20:1042–51
    [Google Scholar]
  47. 47.  McMillan CW, Roberts HR 1966. Congenital combined deficiency of coagulation factors II, VII, IX and X. Report of a case. N. Engl. J. Med. 274:1313–15
    [Google Scholar]
  48. 48.  Morrissey JH 2016. Deeper understanding of carboxylase. Blood 127:1841–42
    [Google Scholar]
  49. 49.  Munroe PB, Olgunturk RO, Fryns JP, Van Maldergem L, Ziereisen F et al. 1999. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat. Genet. 21:142–44
    [Google Scholar]
  50. 50.  Nakagawa K, Hirota Y, Sawada N, Yuge N, Watanabe M et al. 2010. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature 468:117–21
    [Google Scholar]
  51. 51.  Nakagawa K, Sawada N, Hirota Y, Uchino Y, Suhara Y et al. 2014. Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice. PLOS ONE 9:e104078
    [Google Scholar]
  52. 52.  Narushima K, Takada T, Yamanashi Y, Suzuki H 2008. Niemann-Pick C1-like 1 mediates alpha-tocopherol transport. Mol. Pharmacol. 74:42–49
    [Google Scholar]
  53. 53.  Nickerson ML, Bosley AD, Weiss JS, Kostiha BN, Hirota Y et al. 2013. The UBIAD1 prenyltransferase links menaquinone-4 synthesis to cholesterol metabolic enzymes. Hum. Mutat. 34:317–29
    [Google Scholar]
  54. 54.  Nickerson ML, Kostiha BN, Brandt W, Fredericks W, Xu KP et al. 2010. UBIAD1 mutation alters a mitochondrial prenyltransferase to cause Schnyder corneal dystrophy. PLOS ONE 5:e10760
    [Google Scholar]
  55. 55.  Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M et al. 2008. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. J. Biol. Chem. 283:11270–79
    [Google Scholar]
  56. 56.  Oldenburg J, Marinova M, Müller-Reible C, Watzka M 2008. The vitamin K cycle. Vitam. Horm. 78:35–62
    [Google Scholar]
  57. 57.  Oldenburg J, von Brederlow B, Fregin A, Rost S, Wolz W et al. 2000. Congenital deficiency of vitamin K dependent coagulation factors in two families presents as a genetic defect of the vitamin K-epoxide-reductase-complex. Thromb. Haemost. 84:937–41
    [Google Scholar]
  58. 58.  Orr A, Dubé MP, Marcadier J, Jiang H, Federico A et al. 2007. Mutations in the UBIAD1 gene, encoding a potential prenyltransferase, are causal for Schnyder crystalline corneal dystrophy. PLOS ONE 2:e685
    [Google Scholar]
  59. 59.  Osaki R, Imaeda H, Takahashi K, Fujimoto T, Takeuchi T et al. 2013. Polymorphisms of the Niemann-Pick C1-like 1 gene in a Japanese population. Biomed. Rep. 1:156–60
    [Google Scholar]
  60. 60.  Pauli RM, Lian JB, Mosher DF, Suttie JW 1987. Association of congenital deficiency of multiple vitamin K-dependent coagulation factors and the phenotype of the warfarin embryopathy: clues to the mechanism of teratogenicity of coumarin derivatives. Am. J. Hum. Genet. 41:566–83
    [Google Scholar]
  61. 61.  Presnell SR, Stafford DW 2002. The vitamin K-dependent carboxylase. Thromb. Haemost. 87:937–46
    [Google Scholar]
  62. 62.  Reboul E, Klein A, Bietrix F, Gleize B, Malezet-Desmoulins C et al. 2006. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J. Biol. Chem. 281:4739–45
    [Google Scholar]
  63. 63.  Rishavy MA, Berkner KL 2012. Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv. Nutr. 3:135–48
    [Google Scholar]
  64. 64.  Ronden JE, Drittij-Reijnders MJ, Vermeer C, Thijssen HH 1998. Intestinal flora is not an intermediate in the phylloquinone-menaquinone-4 conversion in the rat. Biochim. Biophys. Acta 1379:69–75
    [Google Scholar]
  65. 65.  Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hörtnagel K et al. 2004. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427:537–41
    [Google Scholar]
  66. 66.  Schurgers LJ, Cranenburg EC, Vermeer C 2008. Matrix Gla-protein: the calcification inhibitor in need of vitamin K. Thromb. Haemost. 100:593–603
    [Google Scholar]
  67. 67.  Schurgers LJ, Uitto J, Reutelingsperger CP 2013. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. Trends Mol. Med. 19:217–26
    [Google Scholar]
  68. 68.  Shea MK, Booth SL 2016. Concepts and controversies in evaluating vitamin K status in population-based studies. Nutrients 8:pii:E8
    [Google Scholar]
  69. 69.  Shearer MJ 2009. Vitamin K deficiency bleeding (VKDB) in early infancy. Blood Rev 23:49–59
    [Google Scholar]
  70. 70.  Shearer MJ, Fu X, Booth SL 2012. Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv. Nutr. 3:182–95
    [Google Scholar]
  71. 71.  Shearer MJ, McBurney A, Barkhan P 1974. Studies on the absorption and metabolism of phylloquinone (vitamin K1) in man. Vitam. Horm. 32:513–42
    [Google Scholar]
  72. 72.  Shearer MJ, McBurney A, Breckenridge AM, Barkhan P 1977. Effect of warfarin on the metabolism of phylloquinone (vitamin K1): dose-response relationships in man. Clin. Sci. Mol. Med. 52:621–30
    [Google Scholar]
  73. 73.  Shearer MJ, Newman P 2008. Metabolism and cell biology of vitamin K. Thromb. Haemost. 100:530–47
    [Google Scholar]
  74. 74.  Shearer MJ, Newman P 2014. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and menaquinone-4 biosynthesis. J. Lipid Res. 55:345–62
    [Google Scholar]
  75. 75.  Simon JS, Karnoub MC, Devlin DJ, Arreaza MG, Qiu P et al. 2005. Sequence variation in NPC1L1 and association with improved LDL-cholesterol lowering in response to ezetimibe treatment. Genomics 86:648–56
    [Google Scholar]
  76. 76.  Spohn G, Kleinridders A, Wunderlich FT, Watzka M, Zaucke F VKORC1 deficiency in mice causes early postnatal lethality due to severe bleeding. Thromb. Haemost. 101:1044–50
    [Google Scholar]
  77. 77.  Sturley SL, Patterson MC, Balch W, Liscum L 2004. The pathophysiology and mechanisms of NP-C disease. Biochim. Biophys. Acta 1685:83–87
    [Google Scholar]
  78. 78.  Suttie JW 2009. Vitamin K-dependent proteins. Vitamin K in Health and Disease93–132 Boca Raton, FL: CRC Press
    [Google Scholar]
  79. 79.  Takada T, Suzuki H 2010. Molecular mechanisms of membrane transport of vitamin E. Mol. Nutr. Food Res. 54:616–22
    [Google Scholar]
  80. 80.  Takada T, Yamanashi Y, Konishi K, Yamamoto T, Toyoda Y et al. 2015. NPC1L1 is a key regulator of intestinal vitamin K absorption and a modulator of warfarin therapy. Sci. Transl. Med. 7:275ra23
    [Google Scholar]
  81. 81.  Thijssen HH, Drittij-Reijnders MJ 1994. Vitamin K distribution in rat tissues: dietary phylloquinone is a source of tissue menaquinone-4. Br. J. Nutr. 72:415–25
    [Google Scholar]
  82. 82.  Thijssen HH, Drittij-Reijnders MJ 1996. Vitamin K status in human tissues: tissue-specific accumulation of phylloquinone and menaquinone-4. Br. J. Nutr. 75:121–27
    [Google Scholar]
  83. 83.  Thijssen HH, Drittij-Reijnders MJ, Fischer MA 1996. Phylloquinone and menaquinone-4 distribution in rats: synthesis rather than uptake determines menaquinone-4 organ concentrations. J. Nutr. 126:537–43
    [Google Scholar]
  84. 84.  Thijssen HH, Vervoort LM, Schurgers LJ, Shearer MJ 2006. Menadione is a metabolite of oral vitamin K. Br. J. Nutr. 95:260–66
    [Google Scholar]
  85. 85.  Tie JK, Carneiro JD, Jin DY, Martinhago CD, Vermeer C et al. 2016. Characterization of vitamin K-dependent carboxylase mutations that cause bleeding and nonbleeding disorders. Blood 127:1847–55
    [Google Scholar]
  86. 86.  Tie JK, Jin DY, Tie K, Stafford DW 2013. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells. J. Thromb. Haemost. 11:1556–64
    [Google Scholar]
  87. 87.  Tie JK, Stafford DW 2016. Structural and functional insights into enzymes of the vitamin K cycle. J. Thromb. Haemost. 14:236–47
    [Google Scholar]
  88. 88.  Tie JK, Stafford DW 2017. Functional study of the vitamin K cycle enzymes in live cells. Methods Enzymol 584:349–94
    [Google Scholar]
  89. 89.  Tyssandier V, Reboul E, Dumas JF, Bouteloup-Demange C, Armand M et al. 2003. Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am. J. Physiol. Gastrointest. Liver Physiol. 284:G913–23
    [Google Scholar]
  90. 90.  Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM et al. 2012. Vitamin K2 is a mitochondrial electron carrier that rescues Pink1 deficiency. Science 336:1306–10
    [Google Scholar]
  91. 91.  Wang K, Ohnuma S 1999. Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem. Sci. 24:445–51
    [Google Scholar]
  92. 92.  Watzka M, Geisen C, Scheer M, Wieland R, Wiegering V et al. 2014. Bleeding and non-bleeding phenotypes in patients with GGCX gene mutations. Thromb. Res. 134:856–65
    [Google Scholar]
  93. 93.  Weinglass AB, Kohler M, Schulte U, Liu J, Nketiah EO et al. 2008. Extracellular loop C of NPC1L1 is important for binding to ezetimibe. PNAS 105:11140–45
    [Google Scholar]
  94. 94.  Weiss JS 2007. Visual morbidity in thirty-four families with Schnyder crystalline corneal dystrophy (an American Ophthalmological Society thesis). Trans. Am. Ophthalmol. Soc. 105:616–48
    [Google Scholar]
  95. 95.  Weiss JS, Kruth HS, Kuivaniemi H, Tromp G, Karkera J et al. 2008. Genetic analysis of 14 families with Schnyder crystalline corneal dystrophy reveals clues to UBIAD1 protein function. Am. J. Med. Genet. A 146A:271–83
    [Google Scholar]
  96. 96.  Weiss JS, Kruth HS, Kuivaniemi H, Tromp G, White PS et al. 2007. Mutations in the UBIAD1 gene on chromosome short arm 1, region 36, cause Schnyder crystalline corneal dystrophy. Investig. Ophthalmol. Vis. Sci. 48:5007–12
    [Google Scholar]
  97. 97.  Willems BA, Vermeer C, Reutelingsperger CP, Schurgers LJ 2014. The realm of vitamin K dependent proteins: shifting from coagulation toward calcification. Mol. Nutr. Food Res. 58:1620–35
    [Google Scholar]
  98. 98.  Xie C, Zhou ZS, Li N, Bian Y, Wang YJ et al. 2012. Ezetimibe blocks the internalization of NPC1L1 and cholesterol in mouse small intestine. J. Lipid Res. 53:2092–101
    [Google Scholar]
  99. 99.  Yamanashi Y, Takada T, Kurauchi R, Tanaka Y, Komine T, Suzuki H 2017. Transporters for the intestinal absorption of cholesterol, vitamin E, and vitamin K. J. Atheroscler. Thromb. 24:347–59
    [Google Scholar]
  100. 100.  Yamanashi Y, Takada T, Suzuki H 2007. Niemann-Pick C1-like 1 overexpression facilitates ezetimibe-sensitive cholesterol and beta-sitosterol uptake in CaCo-2 cells. J. Pharmacol. Exp. Ther. 320:559–64
    [Google Scholar]
  101. 101.  Yamanashi Y, Takada T, Suzuki H 2009. In-vitro characterization of the six clustered variants of NPC1L1 observed in cholesterol low absorbers. Pharmacogenet. Genom. 19:884–92
    [Google Scholar]
  102. 102.  Yu L, Bharadwaj S, Brown JM, Ma Y, Du W et al. 2006. Cholesterol-regulated translocation of NPC1L1 to the cell surface facilitates free cholesterol uptake. J. Biol. Chem. 281:6616–24
    [Google Scholar]
  103. 103.  Zhang JH, Ge L, Qi W, Zhang L, Miao HH et al. 2011. The N-terminal domain of NPC1L1 protein binds cholesterol and plays essential roles in cholesterol uptake. J. Biol. Chem. 286:25088–97
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082117-051741
Loading
/content/journals/10.1146/annurev-nutr-082117-051741
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error