1932

Abstract

The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-120420-025558
2021-10-11
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/nutr/41/1/annurev-nutr-120420-025558.html?itemId=/content/journals/10.1146/annurev-nutr-120420-025558&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adina-Zada A, Zeczycki TN, St. Maurice M, Jitrapakdee S, Cleland WW, Attwood PV 2012. Allosteric regulation of the biotin-dependent enzyme pyruvate carboxylase by acetyl-CoA. Biochem. Soc. Trans. 40:567–72
    [Google Scholar]
  2. 2. 
    Ajioka RS, Phillips JD, Kushner JP. 2006. Biosynthesis of heme in mammals. Biochim. Biophys. Acta Mol. Cell Res. 1763:723–36
    [Google Scholar]
  3. 3. 
    Alger JR, Sherry AD, Malloy CR. 2018. tcaSIM: a simulation program for optimal design of 13C tracer experiments for analysis of metabolic flux by NMR and mass spectroscopy. Curr. Metab. 6:176–87
    [Google Scholar]
  4. 4. 
    Álvarez Z, Hyroššová P, Perales JC, Alcántara S. 2016. Neuronal progenitor maintenance requires lactate metabolism and PEPCK-M-directed cataplerosis. Cereb. Cortex 26:1046–58
    [Google Scholar]
  5. 5. 
    Alves TC, Pongratz RL, Zhao X, Yarborough O, Sereda S et al. 2015. Integrated, step-wise, mass-isotopomeric flux analysis of the TCA cycle. Cell Metab 22:936–47
    [Google Scholar]
  6. 6. 
    Amaral AI, Hadera MG, Tavares JM, Kotter MR, Sonnewald U. 2016. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells. Glia 64:21–34
    [Google Scholar]
  7. 7. 
    Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2007. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab. Eng. 9:68–86
    [Google Scholar]
  8. 8. 
    Arinze IJ. 2005. Facilitating understanding of the purine nucleotide cycle and the one-carbon pool. Part I. The purine nucleotide cycle. Biochem. Mol. Biol. Educ. 33:165–68
    [Google Scholar]
  9. 9. 
    Battezzati A, Caumo A, Martino F, Sereni LP, Coppa J et al. 2004. Nonhepatic glucose production in humans. Am. J. Physiol. Endocrinol. Metab. 286:E129–129
    [Google Scholar]
  10. 10. 
    Beale EG, Harvey BJ, Forest C. 2007. Pck1 and Pck2 as candidate diabetes and obesity genes. Cell Biochem. Biophys. 48:89–95
    [Google Scholar]
  11. 11. 
    Befroy DE, Perry RJ, Jain N, Dufour S, Cline GW et al. 2014. Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy. Nat. Med. 20:98–102
    [Google Scholar]
  12. 12. 
    Bergman RN, Iyer MS. 2017. Indirect regulation of endogenous glucose production by insulin: the single gateway hypothesis revisited. Diabetes 66:1742–47
    [Google Scholar]
  13. 13. 
    Berndt N, Kolbe E, Gajowski R, Eckstein J, Ott F et al. 2020. Functional consequences of metabolic zonation in murine livers: new insights for an old story. Hepatology 73:795–810
    [Google Scholar]
  14. 14. 
    Beylot M, Soloviev MV, David F, Landau BR, Brunengraber H. 1995. Tracing hepatic gluconeogenesis relative to citric acid cycle activity in vitro and in vivo: comparisons in the use of [3-13C]lactate, [2-13C]acetate, and α-keto[3-13C]isocaproate. J. Biol. Chem 270:1509–14
    [Google Scholar]
  15. 15. 
    Bowtell JL, Marwood S, Bruce M, Constantin-Teodosiu D, Greenhaff PL. 2007. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle. Sports Med 37:1071–88
    [Google Scholar]
  16. 16. 
    Browning JD, Baxter J, Satapati S, Burgess SC. 2012. The effect of short-term fasting on liver and skeletal muscle lipid, glucose, and energy metabolism in healthy women and men. J. Lipid Res. 53:577–86
    [Google Scholar]
  17. 17. 
    Browning JD, Weis B, Davis J, Satapati S, Merritt M et al. 2008. Alterations in hepatic glucose and energy metabolism as a result of calorie and carbohydrate restriction. Hepatology 48:1487–96
    [Google Scholar]
  18. 18. 
    Burch JS, Marcero JR, Maschek JA, Cox JE, Jackson LK et al. 2018. Glutamine via α-ketoglutarate dehydrogenase provides succinyl-CoA for heme synthesis during erythropoiesis. Blood 132:987–98
    [Google Scholar]
  19. 19. 
    Burgess SC, Hausler N, Merritt M, Jeffrey FM, Storey C et al. 2004. Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J. Biol. Chem. 279:48941–49
    [Google Scholar]
  20. 20. 
    Burgess SC, He T, Yan Z, Lindner J, Sherry AD et al. 2007. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab 5:313–20
    [Google Scholar]
  21. 21. 
    Burgess SC, Leone TC, Wende AR, Croce MA, Chen Z et al. 2006. Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α)-deficient mice. J. Biol. Chem. 281:19000–8
    [Google Scholar]
  22. 22. 
    Cappel DA, Deja S, Duarte JAG, Kucejova B, Inigo M et al. 2019. Pyruvate-carboxylase-mediated anaplerosis promotes antioxidant capacity by sustaining TCA cycle and redox metabolism in liver. Cell Metab 29:1291–305.e8
    [Google Scholar]
  23. 23. 
    Cardaci S, Zheng L, MacKay G, van den Broek NJ, MacKenzie ED et al. 2015. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat. Cell Biol. 17:1317–26
    [Google Scholar]
  24. 24. 
    Cerdán S. 2017. Twenty-seven years of cerebral pyruvate recycling. Neurochem. Res. 42:1621–28
    [Google Scholar]
  25. 25. 
    Chakravarty K, Cassuto H, Reshef L, Hanson RW, Cox MM. 2005. Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Crit. Rev. Biochem. Mol. Biol. 40:129–54
    [Google Scholar]
  26. 26. 
    Chen X, Iqbal N, Boden G. 1999. The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J. Clin. Investig. 103:365–72
    [Google Scholar]
  27. 27. 
    Chen Z, Tian R, She Z, Cai J, Li H. 2020. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 152:116–41
    [Google Scholar]
  28. 28. 
    Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES et al. 2011. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. PNAS 108:8674–79
    [Google Scholar]
  29. 29. 
    Chevalier S, Burgess SC, Malloy CR, Gougeon R, Marliss EB, Morais JA. 2006. The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole-body protein catabolism. Diabetes 55:675–81
    [Google Scholar]
  30. 30. 
    Clayton PT, Hyland K, Brand M, Leonard JV. 1986. Mitochondrial phosphoenolpyruvate carboxykinase deficiency. Eur. J. Pediatr. 145:46–50
    [Google Scholar]
  31. 31. 
    Consoli A, Kennedy F, Miles J, Gerich J. 1987. Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man. J. Clin. Investig. 80:1303–10
    [Google Scholar]
  32. 32. 
    Consoli A, Nurjhan N, Reilly JJ Jr., Bier DM, Gerich JE. 1990. Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism. J. Clin. Investig. 86:2038–45
    [Google Scholar]
  33. 33. 
    Cotter DG, Ercal B, Huang X, Leid JM, d'Avignon DA et al. 2014. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J. Clin. Investig. 124:5175–90
    [Google Scholar]
  34. 34. 
    Crown SB, Ahn WS, Antoniewicz MR. 2012. Rational design of ¹³C-labeling experiments for metabolic flux analysis in mammalian cells. BMC Syst. Biol. 6:43
    [Google Scholar]
  35. 35. 
    d'Avignon DA, Puchalska P, Ercal B, Chang Y, Martin SE et al. 2018. Hepatic ketogenic insufficiency reprograms hepatic glycogen metabolism and the lipidome. JCI Insight 3:e99762
    [Google Scholar]
  36. 36. 
    Dai W, Xu L, Yu X, Zhang G, Guo H et al. 2020. OGDHL silencing promotes hepatocellular carcinoma by reprogramming glutamine metabolism. J. Hepatol. 72:909–23
    [Google Scholar]
  37. 37. 
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. 2008. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20
    [Google Scholar]
  38. 38. 
    Deja S, Fu X, Fletcher JA, Kucejova B, Browning JD et al. 2020. Simultaneous tracers and a unified model of positional and mass isotopomers for quantification of metabolic flux in liver. Metab. Eng. 59:1–14
    [Google Scholar]
  39. 39. 
    Des Rosiers C, Donato LD, Comte B, Laplante A, Marcoux C et al. 1995. Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver. J. Biol. Chem. 270:10027–36
    [Google Scholar]
  40. 40. 
    Dozin B, Magnuson MA, Nikodem VM. 1985. Tissue-specific regulation of two functional malic enzyme mRNAs by triiodothyronine. Biochemistry 24:5581–86
    [Google Scholar]
  41. 41. 
    Edgerton DS, Ramnanan CJ, Grueter CA, Johnson KMS, Lautz M et al. 2009. Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo. Diabetes 58:2766–75
    [Google Scholar]
  42. 42. 
    Egnatchik RA, Leamy AK, Sacco SA, Cheah YE, Shiota M, Young JD. 2019. Glutamate-oxaloacetate transaminase activity promotes palmitate lipotoxicity in rat hepatocytes by enhancing anaplerosis and citric acid cycle flux. J. Biol. Chem. 294:3081–90
    [Google Scholar]
  43. 43. 
    Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A et al. 2014. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Investig. 124:499–508
    [Google Scholar]
  44. 44. 
    Fischer H, Esbjörnsson M, Sabina RL, Strömberg A, Peyrard-Janvid M, Norman B 2007. AMP deaminase deficiency is associated with lower sprint cycling performance in healthy subjects. J. Appl. Physiol. 103:315–22
    [Google Scholar]
  45. 45. 
    Fletcher JA, Deja S, Satapati S, Fu X, Burgess SC, Browning JD. 2019. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight 4:e127737
    [Google Scholar]
  46. 46. 
    Frederick DW, Loro E, Liu L, Davila A Jr., Chellappa K et al. 2016. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab 24:269–82
    [Google Scholar]
  47. 47. 
    Frezza C, Pollard PJ, Gottlieb E. 2011. Inborn and acquired metabolic defects in cancer. J. Mol. Med. 89:213–20
    [Google Scholar]
  48. 48. 
    Friedman B, Goodman EH Jr., Saunders HL, Kostos V, Weinhouse S. 1971. Estimation of pyruvate recycling during gluconeogenesis in perfused rat liver. Metabolism 20:2–12
    [Google Scholar]
  49. 49. 
    Gibala MJ, Young ME, Taegtmeyer H. 2000. Anaplerosis of the citric acid cycle: role in energy metabolism of heart and skeletal muscle. Acta Physiol. Scand. 168:657–65
    [Google Scholar]
  50. 50. 
    Goedeke L, Peng L, Montalvo-Romeral V, Butrico GM, Dufour S et al. 2019. Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates. Sci. Transl. Med. 11:eaay0284
    [Google Scholar]
  51. 51. 
    Gómez-Valadés AG, Méndez-Lucas A, Vidal-Alabró A, Blasco FX, Chillon M et al. 2008. Pck1 gene silencing in the liver improves glycemia control, insulin sensitivity, and dyslipidemia in db/db mice. Diabetes 57:2199–210
    [Google Scholar]
  52. 52. 
    Groen AK, van Roermund CW, Vervoorn RC, Tager JM. 1986. Control of gluconeogenesis in rat liver cells. Flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon. Biochem. J. 237:379–89
    [Google Scholar]
  53. 53. 
    Haijes HA, Jans JJM, Tas SY, Verhoeven-Duif NM, van Hasselt PM. 2019. Pathophysiology of propionic and methylmalonic acidemias. Part 1. Complications. J. Inherit. Metab. Dis. 42:730–44
    [Google Scholar]
  54. 54. 
    Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F et al. 2007. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J. Biol. Chem. 282:32844–55
    [Google Scholar]
  55. 55. 
    Hasenour CM, Rahim M, Young JD. 2020. In vivo estimates of liver metabolic flux assessed by 13C-propionate and 13C-lactate are impacted by tracer recycling and equilibrium assumptions. Cell Rep 32:107986
    [Google Scholar]
  56. 56. 
    Homedan C, Laafi J, Schmitt C, Gueguen N, Lefebvre T et al. 2014. Acute intermittent porphyria causes hepatic mitochondrial energetic failure in a mouse model. Int. J. Biochem. Cell Biol. 51:93–101
    [Google Scholar]
  57. 57. 
    Hughey CC, James FD, Bracy DP, Donahue EP, Young JD et al. 2017. Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice. J. Biol. Chem. 292:20125–40
    [Google Scholar]
  58. 58. 
    Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X et al. 2017. Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–18
    [Google Scholar]
  59. 59. 
    Jensen MV, Gooding JR, Ferdaoussi M, Dai XQ, Peterson BS et al. 2017. Metabolomics applied to islet nutrient sensing mechanisms. Diabetes Obes. Metab. 19:Suppl. 190–94
    [Google Scholar]
  60. 60. 
    Jensen MV, Joseph JW, Ronnebaum SM, Burgess SC, Sherry AD, Newgard CB. 2008. Metabolic cycling in control of glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab. 295:E1287–1287
    [Google Scholar]
  61. 61. 
    Jesinkey SR, Madiraju AK, Alves TC, Yarborough OH, Cardone RL et al. 2019. Mitochondrial GTP links nutrient sensing to β cell health, mitochondrial morphology, and insulin secretion independent of OxPhos. Cell Rep 28:759–72.e10
    [Google Scholar]
  62. 62. 
    Jia Y, He J, Wang L, Su L, Lei L et al. 2018. Dapagliflozin aggravates renal injury via promoting gluconeogenesis in db/db mice. Cell. Physiol. Biochem. 45:1747–58
    [Google Scholar]
  63. 63. 
    Jiang W, Wang S, Xiao M, Lin Y, Zhou L et al. 2011. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol. Cell 43:33–44
    [Google Scholar]
  64. 64. 
    Jones JG, Naidoo R, Sherry AD, Jeffrey FMH, Cottam GL, Malloy CR. 1997. Measurement of gluconeogenesis and pyruvate recycling in the rat liver: a simple analysis of glucose and glutamate isotopomers during metabolism of [1,2,3-13C3]propionate. FEBS Lett 412:131–37
    [Google Scholar]
  65. 65. 
    Jones JG, Solomon MA, Sherry AD, Jeffrey FM, Malloy CR. 1998. 13C NMR measurements of human gluconeogenic fluxes after ingestion of [U-13C]propionate, phenylacetate, and acetaminophen. Am. J. Physiol. Endocrinol. Metab. 275:E843–843
    [Google Scholar]
  66. 66. 
    Karaca M, Martin-Levilain J, Grimaldi M, Li L, Dizin E et al. 2018. Liver glutamate dehydrogenase controls whole-body energy partitioning through amino acid–derived gluconeogenesis and ammonia homeostasis. Diabetes 67:1949–61
    [Google Scholar]
  67. 67. 
    Katz J, Wals P, Lee W. 1993. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C- labeled lactate. J. Biol. Chem. 268:25509–21
    [Google Scholar]
  68. 68. 
    Kelleher JK. 1986. Gluconeogenesis from labeled carbon: estimating isotope dilution. Am. J. Physiol. Endocrinol. Metab. 250:E296–296
    [Google Scholar]
  69. 69. 
    Koliaki C, Roden M. 2016. Alterations of mitochondrial function and insulin sensitivity in human obesity and diabetes mellitus. Annu. Rev. Nutr. 36:337–67
    [Google Scholar]
  70. 70. 
    Kolwicz SC Jr., Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R. 2012. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ. Res. 111:728–38
    [Google Scholar]
  71. 71. 
    Kornberg H 1966. Anaplerotic sequences and their role in metabolism. Essays in Biochemistry P Campbell, G Greville 1–31 London: Academic
    [Google Scholar]
  72. 72. 
    Kornberg HL. 1965. Anaplerotic sequences in microbial metabolism. Angew. Chem. Int. Ed. Engl. 4:558–65
    [Google Scholar]
  73. 73. 
    Krebs HA, Hems R, Weidemann MJ, Speake RN. 1966. The fate of isotopic carbon in kidney cortex synthesizing glucose from lactate. Biochem. J. 101:242–49
    [Google Scholar]
  74. 74. 
    Krebs HA, Veech RL. 1969. Equilibrium relations between pyridine nucleotides and adenine nucleotides and their roles in the regulation of metabolic processes. Adv. Enzyme Regul. 7:397–413
    [Google Scholar]
  75. 75. 
    Kucejova B, Duarte J, Satapati S, Fu X, Ilkayeva O et al. 2016. Hepatic mTORC1 opposes impaired insulin action to control mitochondrial metabolism in obesity. Cell Rep 16:508–19
    [Google Scholar]
  76. 76. 
    Kumashiro N, Beddow SA, Vatner DF, Majumdar SK, Cantley JL et al. 2013. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes 62:2183–94
    [Google Scholar]
  77. 77. 
    Lahey R, Carley AN, Wang X, Glass CE, Accola KD et al. 2018. Enhanced redox state and efficiency of glucose oxidation with miR based suppression of maladaptive NADPH-dependent malic enzyme 1 expression in hypertrophied hearts. Circ. Res. 122:836–45
    [Google Scholar]
  78. 78. 
    Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. 2014. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146:726–35
    [Google Scholar]
  79. 79. 
    Landau BR, Schumann WC, Chandramouli V, Magnusson I, Kumaran K, Wahren J. 1993. 14C-labeled propionate metabolism in vivo and estimates of hepatic gluconeogenesis relative to Krebs cycle flux. Am. J. Physiol. Endocrinol. Metab. 265:E636–636
    [Google Scholar]
  80. 80. 
    Latorre-Muro P, Baeza J, Armstrong EA, Hurtado-Guerrero R, Corzana F et al. 2018. Dynamic acetylation of phosphoenolpyruvate carboxykinase toggles enzyme activity between gluconeogenic and anaplerotic reactions. Mol. Cell 71:718–32.e9
    [Google Scholar]
  81. 81. 
    Lee MH, DeBerardinis RJ, Wen X, Corbin IR, Sherry AD et al. 2019. Active pyruvate dehydrogenase and impaired gluconeogenesis in orthotopic hepatomas of rats. Metabolism 101:153993
    [Google Scholar]
  82. 82. 
    Lee WD, Mukha D, Aizenshtein E, Shlomi T. 2019. Spatial-fluxomics provides a subcellular-compartmentalized view of reductive glutamine metabolism in cancer cells. Nat. Commun. 10:1351
    [Google Scholar]
  83. 83. 
    Leithner K, Triebl A, Trötzmüller M, Hinteregger B, Leko P et al. 2018. The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells. PNAS 115:6225–30
    [Google Scholar]
  84. 84. 
    Liu MX, Jin L, Sun SJ, Liu P, Feng X et al. 2018. Metabolic reprogramming by Pck1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. Oncogene 37:1637–53
    [Google Scholar]
  85. 85. 
    Luukkonen PK, Dufour S, Lyu K, Zhang XM, Hakkarainen A et al. 2020. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. PNAS 117:7347–54
    [Google Scholar]
  86. 86. 
    Magnusson I, Schumann WC, Bartsch GE, Chandramouli V, Kumaran K et al. 1991. Noninvasive tracing of Krebs cycle metabolism in liver. J. Biol. Chem. 266:6975–84
    [Google Scholar]
  87. 87. 
    Marin-Valencia I, Roe CR, Pascual JM. 2010. Pyruvate carboxylase deficiency: mechanisms, mimics and anaplerosis. Mol. Genet. Metab. 101:9–17
    [Google Scholar]
  88. 88. 
    Martínez-Reyes I, Chandel NS 2020. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11:102
    [Google Scholar]
  89. 89. 
    Mazuel L, Blanc J, Repond C, Bouchaud V, Raffard G et al. 2017. A neuronal MCT2 knockdown in the rat somatosensory cortex reduces both the NMR lactate signal and the BOLD response during whisker stimulation. PLOS ONE 12:e0174990
    [Google Scholar]
  90. 90. 
    McClure WR, Lardy HA. 1971. Rat liver pyruvate carboxylase. J. Biol. Chem. 246:3591–96
    [Google Scholar]
  91. 91. 
    McCommis KS, Chen Z, Fu X, McDonald WG, Colca JR et al. 2015. Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling. Cell Metab 22:682–94
    [Google Scholar]
  92. 92. 
    McCommis KS, Finck BN. 2019. Treating hepatic steatosis and fibrosis by modulating mitochondrial pyruvate metabolism. Cell Mol. Gastroenterol. Hepatol. 7:275–84
    [Google Scholar]
  93. 93. 
    Mendes AC, Caldeira MM, Silva C, Burgess SC, Merritt ME et al. 2006. Hepatic UDP-glucose 13C isotopomers from [U-13C]glucose: a simple analysis by 13C NMR of urinary menthol glucuronide. Magn. Reson. Med. 56:1121–25
    [Google Scholar]
  94. 94. 
    Mendez-Lucas A, Duarte JA, Sunny NE, Satapati S, He T et al. 2013. PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis. J. Hepatol. 59:105–13
    [Google Scholar]
  95. 95. 
    Montal ED, Bhalla K, Dewi RE, Ruiz CF, Haley JA et al. 2019. Inhibition of phosphoenolpyruvate carboxykinase blocks lactate utilization and impairs tumor growth in colorectal cancer. Cancer Metab 7:8
    [Google Scholar]
  96. 96. 
    Montal ED, Dewi R, Bhalla K, Ou L, Hwang BJ et al. 2015. PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth. Mol. Cell 60:571–83
    [Google Scholar]
  97. 97. 
    Moore MC, Cherrington AD, Cline G, Pagliassotti MJ, Jones EM et al. 1991. Sources of carbon for hepatic glycogen synthesis in the conscious dog. J. Clin. Investig. 88:578–87
    [Google Scholar]
  98. 98. 
    Morken TS, Brekke E, Håberg A, Widerøe M, Brubakk AM, Sonnewald U. 2014. Altered astrocyte-neuronal interactions after hypoxia-ischemia in the neonatal brain in female and male rats. Stroke 45:2777–85
    [Google Scholar]
  99. 99. 
    Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB et al. 2011. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–88
    [Google Scholar]
  100. 100. 
    Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A et al. 2020. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370:364–68
    [Google Scholar]
  101. 101. 
    Neinast M, Murashige D, Arany Z. 2019. Branched chain amino acids. Annu. Rev. Physiol. 81:139–64
    [Google Scholar]
  102. 102. 
    Neinast MD, Jang C, Hui S, Murashige DS, Chu Q et al. 2019. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab 29:417–29.e4
    [Google Scholar]
  103. 103. 
    Noack S, Nöh K, Moch M, Oldiges M, Wiechert W. 2011. Stationary versus non-stationary 13C-MFA: a comparison using a consistent dataset. J. Biotechnol. 154:179–90
    [Google Scholar]
  104. 104. 
    Novak CM, Escande C, Gerber SM, Chini EN, Zhang M et al. 2009. Endurance capacity, not body size, determines physical activity levels: role of skeletal muscle PEPCK. PLOS ONE 4:e5869
    [Google Scholar]
  105. 105. 
    Owczarek A, Gieczewska K, Jarzyna R, Jagielski AK, Kiersztan A et al. 2020. Hypoxia increases the rate of renal gluconeogenesis via hypoxia-inducible factor 1–dependent activation of phosphoenolpyruvate carboxykinase expression. Biochimie 171/172:31–37
    [Google Scholar]
  106. 106. 
    Owen OE, Kalhan SC, Hanson RW. 2002. The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 277:30409–12
    [Google Scholar]
  107. 107. 
    Oz G, Berkich DA, Henry PG, Xu Y, LaNoue K et al. 2004. Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J. Neurosci. 24:11273–79
    [Google Scholar]
  108. 108. 
    Parker SJ, Metallo CM. 2015. Metabolic consequences of oncogenic IDH mutations. Pharmacol. Ther. 152:54–62
    [Google Scholar]
  109. 109. 
    Peng R, Zhang M, Wang H, Lin J, Wang H et al. 2020. Advances into understanding the vital role of the mitochondrial citrate carrier (CIC) in metabolic diseases. Pharmacol. Res. 161:105132
    [Google Scholar]
  110. 110. 
    Peoc'h K, Nicolas, G, Schmitt C, Mirmiran A, Daher R et al. 2019. Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias. Mol. Genet. Metab. 128:190–97
    [Google Scholar]
  111. 111. 
    Perry RJ, Camporez JG, Kursawe R, Titchenell PM, Zhang D et al. 2015. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160:745–58
    [Google Scholar]
  112. 112. 
    Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. 2015. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 21:805–21
    [Google Scholar]
  113. 113. 
    Potts A, Uchida A, Deja S, Berglund ED, Kucejova B et al. 2018. Cytosolic phosphoenolpyruvate carboxykinase as a cataplerotic pathway in the small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 315:G249–249
    [Google Scholar]
  114. 114. 
    Pound KM, Sorokina N, Ballal K, Berkich DA, Fasano M et al. 2009. Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ. Res. 104:805–12
    [Google Scholar]
  115. 115. 
    Previs SF, Brunengraber DZ, Brunengraber H. 2009. Is there glucose production outside of the liver and kidney?. Annu. Rev. Nutr. 29:43–57
    [Google Scholar]
  116. 116. 
    Ramnanan CJ, Edgerton DS, Rivera N, Irimia-Dominguez J, Farmer B et al. 2010. Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes 59:1302–11
    [Google Scholar]
  117. 117. 
    Rauckhorst AJ, Gray LR, Sheldon RD, Fu X, Pewa AD et al. 2017. The mitochondrial pyruvate carrier mediates high fat diet–induced increases in hepatic TCA cycle capacity. Mol. Metab. 6:1468–79
    [Google Scholar]
  118. 118. 
    Rebrin K, Steil GM, Mittelman SD, Bergman RN. 1996. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J. Clin. Investig. 98:741–49
    [Google Scholar]
  119. 119. 
    Roden M, Stingl H, Chandramouli V, Schumann W, Hofer A et al. 2000. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 49:701–7
    [Google Scholar]
  120. 120. 
    Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET et al. 2019. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat. Metab. 1:16–33
    [Google Scholar]
  121. 121. 
    Samuel VT, Beddow SA, Iwasaki T, Zhang X-M, Chu X et al. 2009. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes. PNAS 106:12121–26
    [Google Scholar]
  122. 122. 
    Satapati S, Kucejova B, Duarte JA, Fletcher JA, Reynolds L et al. 2015. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J. Clin. Investig. 125:4447–62
    [Google Scholar]
  123. 123. 
    Schousboe A, Waagepetersen HS, Sonnewald U. 2019. Astrocytic pyruvate carboxylation: status after 35 years. J. Neurosci. Res. 97:890–96
    [Google Scholar]
  124. 124. 
    Shah AM, Wondisford FE. 2020. Tracking the carbons supplying gluconeogenesis. J. Biol. Chem. 295:14419–29
    [Google Scholar]
  125. 125. 
    Sherry AD, Jeffrey FMH, Malloy CR. 2004. Analytical solutions of 13C isotopomer analysis of complex metabolic conditions: substrate oxidation, multiple pyruvate cycles, and gluconeogenesis. Metab. Eng. 6:12–24
    [Google Scholar]
  126. 126. 
    Sovik O. 1989. Inborn errors of amino acid and fatty acid metabolism with hypoglycemia as a major clinical manifestation. Acta Paediatr. Scand. 78:161–70
    [Google Scholar]
  127. 127. 
    Stark R, Guebre-Egziabher F, Zhao X, Feriod C, Dong J et al. 2014. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis. J. Biol. Chem. 289:7257–63
    [Google Scholar]
  128. 128. 
    Strisower EH, Kohler GD, Chaikoff IL. 1952. Incorporation of acetate carbon into glucose by liver slices from normal and alloxan-diabetic rats. J. Biol. Chem. 198:115–26
    [Google Scholar]
  129. 129. 
    Stumvoll M, Meyer C, Perriello G, Kreider M, Welle S, Gerich J. 1998. Human kidney and liver gluconeogenesis: evidence for organ substrate selectivity. Am. J. Physiol. Endocrinol. Metab. 274:E817–817
    [Google Scholar]
  130. 130. 
    Sunny NE, Parks EJ, Browning JD, Burgess SC. 2011. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14:804–10
    [Google Scholar]
  131. 131. 
    Tanaka S, Sugiura Y, Saito H, Sugahara M, Higashijima Y et al. 2018. Sodium-glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney Int 94:912–25
    [Google Scholar]
  132. 132. 
    Thyfault JP, Rector RS. 2020. Exercise combats hepatic steatosis: potential mechanisms and clinical implications. Diabetes 69:517–24
    [Google Scholar]
  133. 133. 
    Titchenell PM, Chu Q, Monks BR, Birnbaum MJ. 2015. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat. Commun. 6:7078
    [Google Scholar]
  134. 134. 
    Turer A, Altamirano F, Schiattarella GG, May H, Gillette TG et al. 2019. Remodeling of substrate consumption in the murine sTAC model of heart failure. J. Mol. Cell Cardiol. 134:144–53
    [Google Scholar]
  135. 135. 
    Utter MF, Keech DB. 1963. Pyruvate carboxylase. I. Nature of the reaction. J. Biol. Chem. 238:2603–8
    [Google Scholar]
  136. 136. 
    Valera A, Pujol A, Pelegrin M, Bosch F 1994. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. PNAS 91:9151–54
    [Google Scholar]
  137. 137. 
    Veech RL, Eggleston LV, Krebs HA. 1969. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem. J. 115:609–19
    [Google Scholar]
  138. 138. 
    Vieira P, Cameron J, Rahikkala E, Keski-Filppula R, Zhang LH et al. 2017. Novel homozygous Pck1 mutation causing cytosolic phosphoenolpyruvate carboxykinase deficiency presenting as childhood hypoglycemia, an abnormal pattern of urine metabolites and liver dysfunction. Mol. Genet. Metab. 120:337–41
    [Google Scholar]
  139. 139. 
    Vily-Petit J, Soty-Roca M, Silva M, Raffin M, Gautier-Stein A et al. 2020. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease. Gut 69:2193–202
    [Google Scholar]
  140. 140. 
    Von Glutz G, Walter P. 1976. Regulation of pyruvate carboxylation by acetyl-CoA in rat liver mitochondria. FEBS Lett 72:299–303
    [Google Scholar]
  141. 141. 
    Wallace M, Metallo CM. 2020. Tracing insights into de novo lipogenesis in liver and adipose tissues. Semin. Cell Dev. Biol. 108:65–71
    [Google Scholar]
  142. 142. 
    Walton ME, Ebert D, Haller RG. 2003. Relative rates of anaplerotic flux in rested and contracted rat skeletal muscle measured by 13C NMR spectroscopy. J. Physiol. 548:541–48
    [Google Scholar]
  143. 143. 
    Wang Y, Kwon H, Su X, Wondisford FE. 2020. Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting. Mol. Metab. 31:36–44
    [Google Scholar]
  144. 144. 
    Wehbe Z, Tucci S. 2020. Therapeutic potential of triheptanoin in metabolic and neurodegenerative diseases. J. Inherit. Metab. Dis. 43:385–91
    [Google Scholar]
  145. 145. 
    Williams HC, Farmer BC, Piron MA, Walsh AE, Bruntz RC et al. 2020. APOE alters glucose flux through central carbon pathways in astrocytes. Neurobiol. Dis. 136:104742
    [Google Scholar]
  146. 146. 
    Williamson JR, Kreisberg RA, Felts PW 1966. Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. PNAS 56:247–54
    [Google Scholar]
  147. 147. 
    Yoshino K, Munakata H, Kuge O, Ito A, Ogishima T. 2007. Haeme-regulated degradation of δ-aminolevulinate synthase 1 in rat liver mitochondria. J. Biochem. 142:453–58
    [Google Scholar]
  148. 148. 
    Young JD. 2014. INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30:1333–35
    [Google Scholar]
  149. 149. 
    Yuan X, Wang L, Tandon N, Sun H, Tian J et al. 2020. Triheptanoin mitigates brain ATP depletion and mitochondrial dysfunction in a mouse model of Alzheimer's disease. J. Alzheimer's Dis. 78:425–37
    [Google Scholar]
  150. 150. 
    Zhang W, Bu SY, Mashek MT, OS I, Sibai Z et al. 2016. Integrated regulation of hepatic lipid and glucose metabolism by adipose triacylglycerol lipase and FoxO proteins. Cell Rep 15:349–59
    [Google Scholar]
  151. 151. 
    Zhang Y, Taufalele PV, Cochran JD, Robillard-Frayne I, Marx JM et al. 2020. Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nat. Metab. 2:1248–64
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-120420-025558
Loading
/content/journals/10.1146/annurev-nutr-120420-025558
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error