1932

Abstract

Small RNAs (sRNAs), including microRNAs (miRNAs), are noncoding RNA (ncRNA) molecules involved in gene regulation. sRNAs play important roles in development; however, their significance in nutritional control and as metabolic modulators is still emerging. The mechanisms by which diet impacts metabolic genes through miRNAs remain an important area of inquiry. Recent work has established how miRNAs are transported in body fluids often within exosomes, which are small cell-derived vesicles that function in intercellular communication. The abundance of other recently identified ncRNAs and new insights regarding ncRNAs as dietary bioactive compounds could remodel our understanding about how foods impact gene expression. Although controversial, some groups have shown that dietary RNAs from plants and animals (i.e., milk) are functional in consumers. In the future, regulating sRNAs either directly through dietary delivery or indirectly by altered expression of endogenous sRNA may be part of nutritional interventions for regulating metabolism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-122319-035633
2020-08-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/nutr/40/1/annurev-nutr-122319-035633.html?itemId=/content/journals/10.1146/annurev-nutr-122319-035633&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aguilar-Lozano A, Baier S, Grove R, Shu J, Giraud D et al. 2018. Concentrations of purine metabolites are elevated in fluids from adults and infants and in livers from mice fed diets depleted of bovine milk exosomes and their RNA cargos. J. Nutr. 148:1886–94
    [Google Scholar]
  2. 2. 
    Aizawa S, Fujiwara Y, Contu VR, Hase K, Takahashi M et al. 2016. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes. Autophagy 12:565–78
    [Google Scholar]
  3. 3. 
    Allegra A, Alonci A, Campo S, Penna G, Petrungaro A et al. 2012. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int. J. Oncol. 41:1897–912
    [Google Scholar]
  4. 4. 
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC et al. 2011. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. PNAS 108:5003–8
    [Google Scholar]
  5. 5. 
    Aryal B, Singh AK, Rotllan N, Price N, Fernández-Hernando C 2017. MicroRNAs and lipid metabolism. Curr. Opin. Lipidol. 28:273–80
    [Google Scholar]
  6. 6. 
    Auerbach A, Vyas G, Li A, Halushka M, Witwer K 2016. Uptake of dietary milk miRNAs by adult humans: a validation study. F1000Research 5:721
    [Google Scholar]
  7. 7. 
    Bader AG. 2012. miR-34—a microRNA replacement therapy is headed to the clinic. Front. Genet. 3:120
    [Google Scholar]
  8. 8. 
    Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J 2014. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J. Nutr. 144:1495–500
    [Google Scholar]
  9. 9. 
    Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A et al. 2007. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines. J. Biol. Chem. 282:19575–88
    [Google Scholar]
  10. 10. 
    Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215–33
    [Google Scholar]
  11. 11. 
    Beermann J, Piccoli M-T, Viereck J, Thum T 2016. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev. 96:1297–325
    [Google Scholar]
  12. 12. 
    Berindan-Neagoe I, del C, Monroig P, Pasculli B, Calin GA 2014. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J. Clin. 64:311–36
    [Google Scholar]
  13. 13. 
    Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H et al. 2003. Dicer is essential for mouse development. Nat. Genet. 35:215–17
    [Google Scholar]
  14. 14. 
    Bloch S, Węgrzyn A, Węgrzyn G, Nejman-Faleńczyk B 2017. Small and smaller—sRNAs and micro-RNAs in the regulation of toxin gene expression in prokaryotic cells: a mini-review. Toxins 9:181
    [Google Scholar]
  15. 15. 
    Braukmann F, Jordan D, Miska E 2017. Artificial and natural RNA interactions between bacteria and C. elegans. . RNA Biol 14:415–20
    [Google Scholar]
  16. 16. 
    Bryniarski K, Ptak W, Jayakumar A, Püllmann K, Caplan MJ et al. 2013. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J. Allergy Clin. Immunol. 132:170–81
    [Google Scholar]
  17. 17. 
    Bryniarski K, Ptak W, Martin E, Nazimek K, Szczepanik M et al. 2015. Free extracellular miRNA functionally targets cells by transfecting exosomes from their companion cells. PLOS ONE 10:e0122991
    [Google Scholar]
  18. 18. 
    Bührke A, Bär C, Thum T 2018. Non-coding RNA: innovative regulators with therapeutic perspective. Herz 43:115–22
    [Google Scholar]
  19. 19. 
    Cavalieri D, Rizzetto L, Tocci N, Rivero D, Asquini E et al. 2016. Plant microRNAs as novel immunomodulatory agents. Sci. Rep. 6:25761
    [Google Scholar]
  20. 20. 
    Cech TR, Steitz JA. 2014. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157:77–94
    [Google Scholar]
  21. 21. 
    Chai C, Rivkin M, Berkovits L, Simerzin A, Zorde-Khvalevsky E et al. 2017. Metabolic circuit involving free fatty acids, microRNA 122, and triglyceride synthesis in liver and muscle tissues. Gastroenterology 153:1404–15
    [Google Scholar]
  22. 22. 
    Chan SY, Snow JW. 2016. Uptake and impact of natural diet-derived small RNA in invertebrates: implications for ecology and agriculture. RNA Biol 14:4402–14
    [Google Scholar]
  23. 23. 
    Chan SY, Snow JW. 2017. Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. Genes Nutr 12:13
    [Google Scholar]
  24. 24. 
    Chen T, Xi Q-Y, Ye R-S, Cheng X, Qi Q-E et al. 2014. Exploration of microRNAs in porcine milk exosomes. BMC Genom 15:100
    [Google Scholar]
  25. 25. 
    Chen X, Gao C, Li H, Huang L, Sun Q et al. 2010. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 20:1128–37
    [Google Scholar]
  26. 26. 
    Chen Y, Pfeifer A. 2017. Brown fat-derived exosomes: small vesicles with big impact. Cell Metab 25:759–60
    [Google Scholar]
  27. 27. 
    Cheng M, Yang J, Zhao X, Zhang E, Zeng Q et al. 2019. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat. Commun. 10:959
    [Google Scholar]
  28. 28. 
    Chin AR, Fong MY, Somlo G, Wu J, Swiderski P et al. 2016. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 26:217–28
    [Google Scholar]
  29. 29. 
    Chong MM, Zhang G, Cheloufi S, Neubert TA, Hannon GJ, Littman DR 2010. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev 24:1951–60
    [Google Scholar]
  30. 30. 
    Chow RD, Chen S. 2018. Sno-derived RNAs are prevalent molecular markers of cancer immunity. Oncogene 37:6442–62
    [Google Scholar]
  31. 31. 
    Dai Y, Ghosh S, Shin B-C, Devaskar SU 2019. Role of microRNA-122 in hepatic lipid metabolism of the weanling female rat offspring exposed to prenatal and postnatal caloric restriction. J. Nutr. Biochem. 73:108220
    [Google Scholar]
  32. 32. 
    Das S, Extracellular RNA Communication Consortium, Ansel KM, Bitzer M, Breakefield XO et al. 2019. The Extracellular RNA Communication Consortium: establishing foundational knowledge and technologies for extracellular RNA research. Cell 177:231–42
    [Google Scholar]
  33. 33. 
    de la Torre Gomez C, Goreham RV, Bech Serra JJ, Nann T, Kussmann M 2018. “Exosomics”—a review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk. Front. Genet. 9:92
    [Google Scholar]
  34. 34. 
    de Rie D, Abugessaisa I, Alam T, Arner E, Arner P et al. 2017. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat. Biotechnol. 35:872–78
    [Google Scholar]
  35. 35. 
    Deiuliis JA. 2016. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int. J. Obes. 40:88–101
    [Google Scholar]
  36. 36. 
    Deng Z, Rong Y, Teng Y, Mu J, Zhuang X et al. 2017. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol. Ther. 25:1641–54
    [Google Scholar]
  37. 37. 
    Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS 2018. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J. Anim. Sci. Technol. 60:25
    [Google Scholar]
  38. 38. 
    Dickinson B, Zhang Y, Petrick JS, Heck G, Ivashuta S, Marshall WS 2013. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat. Biotechnol. 31:965–67
    [Google Scholar]
  39. 39. 
    Dumortier O, Hinault C, Van Obberghen E 2013. MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab 18:312–24
    [Google Scholar]
  40. 40. 
    Dutta T, Srivastava S. 2018. Small RNA-mediated regulation in bacteria: a growing palette of diverse mechanisms. Gene 656:60–72
    [Google Scholar]
  41. 41. 
    Ebert MS, Sharp PA. 2012. Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–24
    [Google Scholar]
  42. 42. 
    el Azzouzi H, Leptidis S, Dirkx E, Hoeks J, van Bree B et al. 2013. The hypoxia-inducible microRNA cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. Cell Metab 18:341–54
    [Google Scholar]
  43. 43. 
    El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E 2008. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells. Diabetes 57:2708–17
    [Google Scholar]
  44. 44. 
    Esteller M. 2011. Non-coding RNAs in human disease. Nat. Rev. Genet. 12:861–74
    [Google Scholar]
  45. 45. 
    Fabbri M. 2012. TLRs as miRNA receptors. Cancer Res 72:6333–37
    [Google Scholar]
  46. 46. 
    Fabbri M, Paone A, Calore F, Galli R, Gaudio E et al. 2012. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. PNAS 109:E2110–16
    [Google Scholar]
  47. 47. 
    Fan Y, Habib M, Xia J 2018. Xeno-miRNet: a comprehensive database and analytics platform to explore xeno-miRNAs and their potential targets. PeerJ 6:e5650
    [Google Scholar]
  48. 48. 
    Farmer LM, Hirschi KD. 2017. MicroRNAs: bioactive molecules at the nexus of nutrition and disease. Nutrigenomics and Proteomics in Health and Disease: Towards a Systems‐Level Understanding of Gene–Diet Interactions, M Kussmann, PJ Stover 170–200 Hoboken, NJ: Wiley. , 2nd ed..
    [Google Scholar]
  49. 49. 
    Fatica A, Bozzoni I. 2014. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15:7–21
    [Google Scholar]
  50. 50. 
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. . Nature 391:806–11
    [Google Scholar]
  51. 51. 
    Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ et al. 2012. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–81
    [Google Scholar]
  52. 52. 
    Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L, Etheridge A et al. 2016. Sources and functions of extracellular small RNAs in human circulation. Annu. Rev. Nutr. 36:301–36
    [Google Scholar]
  53. 53. 
    Frost RJA, Olson EN. 2011. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. PNAS 108:21075–80
    [Google Scholar]
  54. 54. 
    Gao C, Liu L, Zhou Y, Bian Z, Wang S, Wang Y 2019. Novel drug delivery systems of Chinese medicine for the treatment of inflammatory bowel disease. Chin. Med. 14:23
    [Google Scholar]
  55. 55. 
    Glinge C, Clauss S, Boddum K, Jabbari R, Jabbari J et al. 2017. Stability of circulating blood-based microRNAs–pre-analytic methodological considerations. PLOS ONE 12:e0167969
    [Google Scholar]
  56. 56. 
    Golan-Gerstl R, Elbaum Shiff Y, Moshayoff V, Schecter D, Leshkowitz D, Reif S 2017. Characterization and biological function of milk-derived miRNAs. Mol. Nutr. Food Res. 61:101700009
    [Google Scholar]
  57. 57. 
    Goody D, Pfeifer A. 2019. BAT exosomes: metabolic crosstalk with other organs and biomarkers for BAT activity. Handb. Exp. Pharmacol. 251:337–46
    [Google Scholar]
  58. 58. 
    Gottschling D-C, Döring F. 2019. Is C. elegans a suitable model for nutritional science. Genes Nutr 14:1
    [Google Scholar]
  59. 59. 
    Greene J, Baird AM, Brady L, Lim M, Gray SG et al. 2017. Circular RNAs: biogenesis, function and role in human diseases. Front. Mol. Biosci. 4:38
    [Google Scholar]
  60. 60. 
    Grueter CE, van Rooij E, Johnson BA, Deleon SM, Sutherland LB et al. 2012. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149:671–83
    [Google Scholar]
  61. 61. 
    Guay C, Kruit JK, Rome S, Menoud V, Mulder NL et al. 2019. Lymphocyte-derived exosomal microRNAs promote pancreatic β cell death and may contribute to type 1 diabetes development. Cell Metab 29:348–61.e6
    [Google Scholar]
  62. 62. 
    Gupta R, Walvekar AS, Liang S, Rashida Z, Shah P, Laxman S 2019. A tRNA modification balances carbon and nitrogen metabolism by regulating phosphate homeostasis. eLife 8:e44795
    [Google Scholar]
  63. 63. 
    Ha M, Kim VN. 2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15:509–24
    [Google Scholar]
  64. 64. 
    Han Y-N, Li Y, Xia S-Q, Zhang Y-Y, Zheng J-H, Li W 2017. PIWI proteins and PIWI-interacting RNA: emerging roles in cancer. Cell. Physiol. Biochem. 44:1–20
    [Google Scholar]
  65. 65. 
    Hartig SM, Hamilton MP, Bader DA, McGuire SE 2015. The miRNA interactome in metabolic homeostasis. Trends Endocrinol. Metab. 26:733–45
    [Google Scholar]
  66. 66. 
    Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA 2010. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16:673–95
    [Google Scholar]
  67. 67. 
    Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ et al. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83:8604–10
    [Google Scholar]
  68. 68. 
    Hirschi KD. 2012. New foods for thought. Trends Plant Sci 17:123–25
    [Google Scholar]
  69. 69. 
    Hirschi KD. 2017. Navigating dietary small RNAs. Genes Nutr 12:16
    [Google Scholar]
  70. 70. 
    Hirschi KD. 2018. Uptake of dietary milk microRNAs by adult humans: rules for the game of hide and seek. J. Nutr. 148:5–6
    [Google Scholar]
  71. 71. 
    Hirschi KD, Pruss GJ, Vance V 2015. Dietary delivery: a new avenue for microRNA therapeutics. Trends Biotechnol 33:431–32
    [Google Scholar]
  72. 72. 
    Hong P, Yang H, Wu Y, Li K, Tang Z 2019. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res. Ther. 10:242
    [Google Scholar]
  73. 73. 
    Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T et al. 2013. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat. Commun. 4:2883
    [Google Scholar]
  74. 74. 
    Howard KM, Jati Kusuma R, Baier SR, Friemel T, Markham L et al. 2015. Loss of miRNAs during processing and storage of cow's (Bos taurus) milk. J. Agric. Food Chem. 63:588–92
    [Google Scholar]
  75. 75. 
    Huang Y, Yan Y, Xv W, Qian G, Li C et al. 2018. A new insight into the roles of miRNAs in metabolic syndrome. BioMed. Res. Int. 2018:7372636
    [Google Scholar]
  76. 76. 
    Hutten S, Kehlenbach RH. 2007. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17:193–201
    [Google Scholar]
  77. 77. 
    Islam W, Noman A, Qasim M, Wang L 2018. Plant responses to pathogen attack: small RNAs in focus. Int. J. Mol. Sci. 19:515
    [Google Scholar]
  78. 78. 
    Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M 2012. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J. Dairy Sci. 95:4831–41
    [Google Scholar]
  79. 79. 
    Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M 2013. Purification of RNA from milk whey. Methods Mol. Biol. 1024:191–201
    [Google Scholar]
  80. 80. 
    Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T et al. 2015. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J. Dairy Sci. 98:2920–33
    [Google Scholar]
  81. 81. 
    Jonas S, Izaurralde E. 2015. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16:421–33
    [Google Scholar]
  82. 82. 
    Ju S, Mu J, Dokland T, Zhuang X, Wang Q et al. 2013. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol. Ther. 21:1345–57
    [Google Scholar]
  83. 83. 
    Kasai A, Kakihara S, Miura H, Okada R, Hayata-Takano A et al. 2016. Double in situ hybridization for microRNAs and mRNAs in brain tissues. Front. Mol. Neurosci. 9:126
    [Google Scholar]
  84. 84. 
    Kibria G, Ramos EK, Wan Y, Gius DR, Liu H 2018. Exosomes as a drug delivery system in cancer therapy: potential and challenges. Mol. Pharm. 15:3625–33
    [Google Scholar]
  85. 85. 
    Kim Y-K, Kim B, Kim VN 2016. Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis. PNAS 113:E1881–89
    [Google Scholar]
  86. 86. 
    Kita S, Maeda N, Shimomura I 2019. Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J. Clin. Investig. 129:4041–49
    [Google Scholar]
  87. 87. 
    Kornfeld JW, Bruning JC. 2014. Regulation of metabolism by long, non-coding RNAs. Front. Genet. 5:57
    [Google Scholar]
  88. 88. 
    Ku HY, Lin H. 2014. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Nat. Sci. Rev. 1:205–18
    [Google Scholar]
  89. 89. 
    Kusuma RJ, Manca S, Friemel T, Sukreet S, Nguyen C, Zempleni J 2016. Human vascular endothelial cells transport foreign exosomes from cow's milk by endocytosis. Am. J. Physiol. Cell Physiol. 310:C800–7
    [Google Scholar]
  90. 90. 
    Lambert M, Benmoussa A, Provost P 2019. Small non-coding RNAs derived from eukaryotic ribosomal RNA. Noncoding RNA 5:16
    [Google Scholar]
  91. 91. 
    Li C, Zamore PD. 2019. RNA interference and small RNA analysis. Cold Spring Harb. Protoc. 2019:top097436. https://doi.org/10.1101/pdb.top097436
    [Crossref] [Google Scholar]
  92. 92. 
    Li J, Lei L, Ye F, Zhou Y, Chang H, Zhao G 2019. Nutritive implications of dietary microRNAs: facts, controversies, and perspectives. Food Funct 10:3044–56
    [Google Scholar]
  93. 93. 
    Li L, Zhu D, Huang L, Zhang J, Bian Z et al. 2012. Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLOS ONE 7:e46957
    [Google Scholar]
  94. 94. 
    Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P 2018. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci. Rep. 8:14644
    [Google Scholar]
  95. 95. 
    Li Z, Xu R, Li N 2018. MicroRNAs from plants to animals, do they define a new messenger for communication. Nutr. Metab 15: 68. Erratum. 2018. Nutr. Metab 15–74
    [Google Scholar]
  96. 96. 
    Liang G, Zhu Y, Sun B, Shao Y, Jing A et al. 2014. Assessing the survival of exogenous plant microRNA in mice. Food Sci. Nutr. 2:380–88
    [Google Scholar]
  97. 97. 
    Liang J, Wen J, Huang Z, Chen XP, Zhang BX, Chu L 2019. Small nucleolar RNAs: insight into their function in cancer. Front. Oncol. 9:587
    [Google Scholar]
  98. 98. 
    Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z et al. 2016. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 19:32–43
    [Google Scholar]
  99. 99. 
    Liu S, Wu Z, Guo S, Meng X, Chang X 2018. Polyphenol-rich extract from wild Lonicera caerulea berry reduces cholesterol accumulation by mediating the expression of hepatic miR-33 and miR-122, HMGCR, and CYP7A1 in rats. J. Funct. Foods 40:648–58
    [Google Scholar]
  100. 100. 
    Locati MD, Pagano JFB, Abdullah F, Ensink WA, van Olst M et al. 2018. Identifying small RNAs derived from maternal- and somatic-type rRNAs in zebrafish development. Genome 61:371–78
    [Google Scholar]
  101. 101. 
    Lu TX, Hartner J, Lim E-J, Fabry V, Mingler MK et al. 2011. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-γ pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J. Immunol. 187:3362–73
    [Google Scholar]
  102. 102. 
    Lukasik A, Brzozowska I, Zielenkiewicz U, Zielenkiewicz P 2017. Detection of plant miRNAs abundance in human breast milk. Int. J. Mol. Sci. 19:37
    [Google Scholar]
  103. 103. 
    Lukasik A, Zielenkiewicz P. 2014. In silico identification of plant miRNAs in mammalian breast milk exosomes—a small step forward. PLOS ONE 9:e99963
    [Google Scholar]
  104. 104. 
    Luo Y, Wang P, Wang X, Wang Y, Mu Z et al. 2017. Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci. Rep. 7:645
    [Google Scholar]
  105. 105. 
    Luz I, Cooks T. 2019. Extracellular vesicles: What secrets do they hold inside. Cell Death Dis 10:406
    [Google Scholar]
  106. 106. 
    Manca S, Upadhyaya B, Mutai E, Desaulniers AT, Cederberg RA et al. 2018. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci. Rep. 8:11321
    [Google Scholar]
  107. 107. 
    Mantilla-Escalante DC, López de Las Hazas M-C, Gil-Zamorano J, Del Pozo-Acebo L, Crespo MC et al. 2019. Postprandial circulating miRNAs in response to a dietary fat challenge. Nutrients 11:1326
    [Google Scholar]
  108. 108. 
    Marques-Rocha JL, Milagro FI, Mansego ML, Zulet MA, Bressan J, Martinez JA 2016. Expression of inflammation-related miRNAs in white blood cells from subjects with metabolic syndrome after 8 wk of following a Mediterranean diet–based weight loss program. Nutrition 32:48–55
    [Google Scholar]
  109. 109. 
    McMahon M, Contreras A, Holm M, Uechi T, Forester CM et al. 2019. A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. eLife 8:e48847
    [Google Scholar]
  110. 110. 
    Mendell JT, Olson EN. 2012. MicroRNAs in stress signaling and human disease. Cell 148:1172–87
    [Google Scholar]
  111. 111. 
    Micó V, Berninches L, Tapia J, Daimiel L 2017. NutrimiRAging: micromanaging nutrient sensing pathways through nutrition to promote healthy aging. Int. J. Mol. Sci. 18:915
    [Google Scholar]
  112. 112. 
    Mlotshwa S, Pruss GJ, MacArthur JL, Endres MW, Davis C et al. 2015. A novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Cell Res 25:521–24
    [Google Scholar]
  113. 113. 
    Morris KV, Mattick JS. 2014. The rise of regulatory RNA. Nat. Rev. Genet. 15:423–37
    [Google Scholar]
  114. 114. 
    Mu J, Zhuang X, Wang Q, Jiang H, Deng Z-B et al. 2014. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res. 58:1561–73
    [Google Scholar]
  115. 115. 
    Naar AM. 2018. miR-33: a metabolic conundrum. Trends Endocrinol. Metab. 29:667–68
    [Google Scholar]
  116. 116. 
    Nazimek K, Nowak B, Marcinkiewicz J, Ptak M, Ptak W, Bryniarski K 2014. Enhanced generation of reactive oxygen intermediates by suppressor T cell-derived exosome-treated macrophages. Folia Med. Crac. 54:37–52
    [Google Scholar]
  117. 117. 
    Nordgren TM, Heires AJ, Zempleni J, Swanson BJ, Wichman C, Romberger DJ 2019. Bovine milk-derived extracellular vesicles enhance inflammation and promote M1 polarization following agricultural dust exposure in mice. J. Nutr. Biochem. 64:110–20
    [Google Scholar]
  118. 118. 
    Obata Y, Kita S, Koyama Y, Fukuda S, Takeda H et al. 2018. Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight 3:e99680
    [Google Scholar]
  119. 119. 
    Oberbauer V, Schaefer MR. 2018. tRNA-derived small RNAs: biogenesis, modification, function and potential impact on human disease development. Genes 9:607
    [Google Scholar]
  120. 120. 
    O'Brien J, Hayder H, Zayed Y, Peng C 2018. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9:402
    [Google Scholar]
  121. 121. 
    Oe S, Kimura T, Yamada H 2019. Regulatory non-coding RNAs in nervous system development and disease. Front. Biosci. 24:1203–40
    [Google Scholar]
  122. 122. 
    Oie S, Matsuzaki K, Yokoyama W, Tokunaga S, Waku T et al. 2014. Hepatic rRNA transcription regulates high-fat-diet-induced obesity. Cell Rep 7:807–20
    [Google Scholar]
  123. 123. 
    Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD 2019. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20:89–108
    [Google Scholar]
  124. 124. 
    Panagiotou G, Nielsen J. 2009. Nutritional systems biology: definitions and approaches. Annu. Rev. Nutr. 29:329–39
    [Google Scholar]
  125. 125. 
    Paraskevopoulou MD, Hatzigeorgiou AG. 2016. Analyzing miRNA-lncRNA interactions. Methods Mol. Biol. 1402:271–86
    [Google Scholar]
  126. 126. 
    Parry HA, Mobley CB, Mumford PW, Romero MA, Haun CT et al. 2019. Bovine milk extracellular vesicles (EVs) modification elicits skeletal muscle growth in rats. Front. Physiol. 10:436
    [Google Scholar]
  127. 127. 
    Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M et al. 2018. Interplay between miRNAs and human diseases. J. Cell. Physiol. 233:2007–18
    [Google Scholar]
  128. 128. 
    Pegtel DM, Gould SJ. 2019. Exosomes. Annu. Rev. Biochem. 88:487–514
    [Google Scholar]
  129. 129. 
    Petrick JS, Brower-Toland B, Jackson AL, Kier LD 2013. Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: a scientific review. Regul. Toxicol. Pharmacol. 66:167–76
    [Google Scholar]
  130. 130. 
    Philip A, Ferro VA, Tate RJ 2015. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol. Nutr. Food Res. 59:1962–72
    [Google Scholar]
  131. 131. 
    Pospisilik JA, Schramek D, Schnidar H, Cronin SJ, Nehme NT et al. 2010. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140:148–60
    [Google Scholar]
  132. 132. 
    Poy MN, Hausser J, Trajkovski M, Braun M, Collins S et al. 2009. miR-375 maintains normal pancreatic α- and β-cell mass. PNAS 106:5813–18
    [Google Scholar]
  133. 133. 
    Price NL, Singh AK, Rotllan N, Goedeke L, Wing A et al. 2018. Genetic ablation of miR-33 increases food intake, enhances adipose tissue expansion, and promotes obesity and insulin resistance. Cell Rep 22:2133–45
    [Google Scholar]
  134. 134. 
    Rodosthenous RS, Burris HH, Sanders AP, Just AC, Dereix AE et al. 2017. Second trimester extracellular microRNAs in maternal blood and fetal growth: an exploratory study. Epigenetics 12:804–10
    [Google Scholar]
  135. 135. 
    Roland MCP, Friis CM, Godang K, Bollerslev J, Haugen G, Henriksen T 2014. Maternal factors associated with fetal growth and birthweight are independent determinants of placental weight and exhibit differential effects by fetal sex. PLOS ONE 9:e87303
    [Google Scholar]
  136. 136. 
    Ross SA, Davis CD. 2014. The emerging role of microRNAs and nutrition in modulating health and disease. Annu. Rev. Nutr. 34:305–36
    [Google Scholar]
  137. 137. 
    Sadik N, Cruz L, Gurtner A, Rodosthenous RS, Dusoswa SA et al. 2018. Extracellular RNAs: a new awareness of old perspectives. Methods Mol. Biol. 1740:1–15
    [Google Scholar]
  138. 138. 
    Sarropoulos I, Marin R, Cardoso-Moreira M, Kaessmann H 2019. Developmental dynamics of lnc-RNAs across mammalian organs and species. Nature 571:510–14
    [Google Scholar]
  139. 139. 
    Schwarzenbach H, da Silva AM, Calin G, Pantel K 2015. Data normalization strategies for microRNA quantification. Clin. Chem. 61:1333–42
    [Google Scholar]
  140. 140. 
    Shao D, Lian Z, Di Y, Zhang L, Rajoka MSR et al. 2018. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci. Food 2:13
    [Google Scholar]
  141. 141. 
    Shi J, Ko EA, Sanders KM, Chen Q, Zhou T 2018. SPORTS1.0: a tool for annotating and profiling non-coding RNAs optimized for rRNA- and tRNA-derived small RNAs. Genom. Proteom. Bioinform. 16:144–51
    [Google Scholar]
  142. 142. 
    Shih JD, Hunter CP. 2011. SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17:1057–65
    [Google Scholar]
  143. 143. 
    Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY 2013. Ineffective delivery of diet-derived micro-RNAs to recipient animal organisms. RNA Biol 10:1107–16
    [Google Scholar]
  144. 144. 
    Somiya M, Yoshioka Y, Ochiya T 2018. Biocompatibility of highly purified bovine milk-derived extracellular vesicles. J. Extracell. Vesicles 7:1440132
    [Google Scholar]
  145. 145. 
    Spinler JK, Karri V, Hirschi KD 2019. Planting the microbiome. Trends Microbiol 27:90–93
    [Google Scholar]
  146. 146. 
    Stokowy T, Eszlinger M, Świerniak M, Fujarewicz K, Jarząb B et al. 2014. Analysis options for high-throughput sequencing in miRNA expression profiling. BMC Res. Notes 7:144
    [Google Scholar]
  147. 147. 
    Sun J, Aswath K, Schroeder SG, Lippolis JD, Reinhardt TA, Sonstegard TS 2015. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genom 16:806
    [Google Scholar]
  148. 148. 
    Sundaram GM. 2019. Dietary non-coding RNAs from plants: fairy tale or treasure. Noncoding RNA Res 4:63–68
    [Google Scholar]
  149. 149. 
    Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS 2009. Small RNAs derived from snoRNAs. RNA 15:1233–40
    [Google Scholar]
  150. 150. 
    Takahashi M, Contu VR, Kabuta C, Hase K, Fujiwara Y et al. 2017. SIDT2 mediates gymnosis, the uptake of naked single-stranded oligonucleotides into living cells. RNA Biol 14:1534–43
    [Google Scholar]
  151. 151. 
    Takaoka Y, Shimizu Y, Hasegawa H, Ouchi Y, Qiao S et al. 2012. Forced expression of miR-143 represses ERK5/c-Myc and p68/p72 signaling in concert with miR-145 in gut tumors of ApcMin mice. PLOS ONE 7:e42137
    [Google Scholar]
  152. 152. 
    Taubert S, Van Gilst MR, Hansen M, Yamamoto KR 2006. A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. . Genes Dev 20:1137–49
    [Google Scholar]
  153. 153. 
    Teng Y, Ren Y, Sayed M, Hu X, Lei C et al. 2018. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 24:637–52.e8
    [Google Scholar]
  154. 154. 
    Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M et al. 2017. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542:450–55 Corrigendum. 2017. Nature 545 252
    [Google Scholar]
  155. 155. 
    Title AC, Denzler R, Stoffel M 2015. Uptake and function studies of maternal milk-derived microRNAs. J. Biol. Chem. 290:23680–91
    [Google Scholar]
  156. 156. 
    Tosar JP, Rovira C, Naya H, Cayota A 2014. Mining of public sequencing databases supports a non-dietary origin for putative foreign miRNAs: underestimated effects of contamination in NGS. RNA 20:754–57
    [Google Scholar]
  157. 157. 
    Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A et al. 2011. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–53
    [Google Scholar]
  158. 158. 
    Treiber T, Treiber N, Meister G 2019. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 20:5–20
    [Google Scholar]
  159. 159. 
    Tüfekci KU, Oner MG, Meuwissen RL, Genç S 2014. The role of microRNAs in human diseases. Methods Mol. Biol. 1107:33–50
    [Google Scholar]
  160. 160. 
    Vienberg S, Geiger J, Madsen S, Dalgaard LT 2017. MicroRNAs in metabolism. Acta Physiol 219:346–61
    [Google Scholar]
  161. 161. 
    Visconti A, Le Roy CI, Rosa F, Rossi N, Martin TC et al. 2019. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10:4505
    [Google Scholar]
  162. 162. 
    Wang H, La Russa M, Qi LS 2016. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85:227–64
    [Google Scholar]
  163. 163. 
    Wang J, Chen J, Sen S 2016. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol. 231:25–30
    [Google Scholar]
  164. 164. 
    Wang K, Li H, Yuan Y, Etheridge A, Zhou Y et al. 2012. The complex exogenous RNA spectra in human plasma: an interface with human gut biota. PLOS ONE 7:e51009
    [Google Scholar]
  165. 165. 
    Wang W, Hang C, Zhang Y, Chen M, Meng X et al. 2017. Dietary miR-451 protects erythroid cells from oxidative stress via increasing the activity of Foxo3 pathway. Oncotarget 8:107109–24
    [Google Scholar]
  166. 166. 
    Wang XW, Hu LF, Hao J, Liao LQ, Chiu YT et al. 2019. A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat. Cell Biol. 21:522–30
    [Google Scholar]
  167. 167. 
    Watson AK, Witwer KW. 2012. Do platform-specific factors explain microRNA profiling disparities. Clin. Chem. 58:472–74
    [Google Scholar]
  168. 168. 
    Witwer KW. 2014. Diet-responsive mammalian miRNAs are likely endogenous. J. Nutr. 144:1880–81
    [Google Scholar]
  169. 169. 
    Witwer KW. 2015. Contamination or artifacts may explain reports of plant miRNAs in humans. J. Nutr. Biochem. 26:1685
    [Google Scholar]
  170. 170. 
    Witwer KW. 2018. Alternative miRNAs? Human sequences misidentified as plant miRNAs in plant studies and in human plasma. F1000Research 7:244
    [Google Scholar]
  171. 171. 
    Witwer KW, Hirschi KD. 2014. Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration. Bioessays 36:394–406
    [Google Scholar]
  172. 172. 
    Witwer KW, Zhang CY. 2017. Diet-derived microRNAs: unicorn or silver bullet. Genes Nutr 12:15
    [Google Scholar]
  173. 173. 
    Woith E, Melzig MF. 2019. Extracellular vesicles from fresh and dried plants—simultaneous purification and visualization using gel electrophoresis. Int. J. Mol. Sci. 20:357
    [Google Scholar]
  174. 174. 
    Wolf T, Baier SR, Zempleni J 2015. The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells. J. Nutr. 145:2201–6
    [Google Scholar]
  175. 175. 
    Xiao J, Feng S, Wang X, Long K, Luo Y et al. 2018. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ 6:e5186
    [Google Scholar]
  176. 176. 
    Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R 2018. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci. 75:467–84
    [Google Scholar]
  177. 177. 
    Yamashita T, Takahashi Y, Takakura Y 2018. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol. Pharm. Bull. 41:835–42
    [Google Scholar]
  178. 178. 
    Yang F, Vought BW, Satterlee JS, Walker AK, Sun Z-YJ et al. 2006. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442:700–4
    [Google Scholar]
  179. 179. 
    Yang J, Farmer LM, Agyekum AAA, Elbaz-Younes I, Hirschi KD 2015. Detection of an abundant plant-based small RNA in healthy consumers. PLOS ONE 10:e0137516
    [Google Scholar]
  180. 180. 
    Yang J, Farmer LM, Agyekum AAA, Hirschi KD 2015. Detection of dietary plant-based small RNAs in animals. Cell Res 25:517–20
    [Google Scholar]
  181. 181. 
    Yang J, Hirschi KD, Farmer LM 2015. Dietary RNAs: new stories regarding oral delivery. Nutrients 7:3184–99
    [Google Scholar]
  182. 182. 
    Yang J, Hotz T, Broadnax L, Yarmarkovich M, Elbaz-Younes I, Hirschi KD 2016. Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911. Sci. Rep. 6:26834
    [Google Scholar]
  183. 183. 
    Yang J, Kongchan N, Primo Planta C, Neilson JR, Hirschi KD 2017. The atypical genesis and bioavailability of the plant-based small RNA MIR2911: bulking up while breaking down. Mol. Nutr. Food Res. 61:1600974 https://doi.org/10.1002/mnfr.201600974
    [Crossref] [Google Scholar]
  184. 184. 
    Yang W-M, Jeong H-J, Park S-Y, Lee W 2014. Saturated fatty acid-induced miR-195 impairs insulin signaling and glycogen metabolism in HepG2 cells. FEBS Lett 588:3939–46
    [Google Scholar]
  185. 185. 
    Youssef OA, Safran SA, Nakamura T, Nix DA, Hotamisligil GS, Bass BL 2015. Potential role for snoRNAs in PKR activation during metabolic stress. PNAS 112:5023–28
    [Google Scholar]
  186. 186. 
    Yu C, Xue J, Zhu W, Jiao Y, Zhang S, Cao J 2015. Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells. Tumour Biol 36:81–94
    [Google Scholar]
  187. 187. 
    Yu Y, Jia T, Chen X 2017. The ‘how’ and ‘where’ of plant microRNAs. New Phytol 216:1002–17
    [Google Scholar]
  188. 188. 
    Zempleni J, Baier SR, Hirschi KD 2015. Diet-responsive microRNAs are likely exogenous. J. Biol. Chem. 290:25197
    [Google Scholar]
  189. 189. 
    Zempleni J, Sukreet S, Zhou F, Wu D, Mutai E 2019. Milk-derived exosomes and metabolic regulation. Annu. Rev. Anim. Biosci. 7:245–62
    [Google Scholar]
  190. 190. 
    Zhang H, Li Y, Liu Y, Liu H, Wang H et al. 2016. Role of plant microRNA in cross-species regulatory networks of humans. BMC Syst. Biol. 10:60
    [Google Scholar]
  191. 191. 
    Zhang L, Chen T, Yin Y, Zhang C-Y, Zhang Y-L 2019. Dietary microRNA—a novel functional component of food. Adv. Nutr. 10:711–21
    [Google Scholar]
  192. 192. 
    Zhang L, Hou D, Chen X, Li D, Zhu L et al. 2012. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–26
    [Google Scholar]
  193. 193. 
    Zhang X, Schulze PC. 2016. MicroRNAs in heart failure: non-coding regulators of metabolic function. Biochim. Biophys. Acta 1862:2276–87
    [Google Scholar]
  194. 194. 
    Zhang Y, Chen Q. 2019. The expanding repertoire of hereditary information carriers. Development 146:6dev170902
    [Google Scholar]
  195. 195. 
    Zhao Q, Liu Y, Zhang N, Hu M, Zhang H et al. 2018. Evidence for plant-derived xenomiRs based on a large-scale analysis of public small RNA sequencing data from human samples. PLOS ONE 13:e0187519
    [Google Scholar]
  196. 196. 
    Zhou Q, Li M, Wang X, Li Q, Wang T et al. 2012. Immune-related microRNAs are abundant in breast milk exosomes. Int. J. Biol. Sci. 8:118–23
    [Google Scholar]
  197. 197. 
    Zhou Z, Li X, Liu J, Dong L, Chen Q et al. 2015. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res 25:39–49
    [Google Scholar]
  198. 198. 
    Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP et al. 2011. The Lin28/let-7 axis regulates glucose metabolism. Cell 147:81–94
    [Google Scholar]
  199. 199. 
    Zhuang X, Deng Z-B, Mu J, Zhang L, Yan J et al. 2015. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J. Extracell. Vesicles 4:28713
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-122319-035633
Loading
/content/journals/10.1146/annurev-nutr-122319-035633
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error