1932

Abstract

The involvement of the biliary tract in the pathophysiology of liver diseases and the increased attention paid to bile ducts in the bioconstruction of liver tissue for regenerative therapy have fueled intense research into the fundamental mechanisms of biliary development. Here, I review the molecular, cellular and tissular mechanisms driving differentiation and morphogenesis of the intrahepatic and extrahepatic bile ducts. This review focuses on the dynamics of the transcriptional and signaling modules that promote biliary development in human and mouse liver and discusses studies in which the use of zebrafish uncovered unexplored processes in mammalian biliary development. The review concludes by providing a framework for interpreting the mechanisms that may help us understand the origin of congenital biliary diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012418-013013
2020-01-24
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012418-013013.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012418-013013&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kaneko K, Kamimoto K, Miyajima A, Itoh T 2015. Adaptive remodeling of the biliary architecture underlies liver homeostasis. Hepatology 61:2056–66
    [Google Scholar]
  2. 2. 
    Dianat N, Dubois-Pot-Schneider H, Steichen C, Desterke C, Leclerc P et al. 2014. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 60:700–14
    [Google Scholar]
  3. 3. 
    Sampaziotis F, Cardoso de Brito M, Madrigal P, Bertero A, Saeb-Parsy K et al. 2015. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat. Biotechnol. 33:845–52
    [Google Scholar]
  4. 4. 
    De Assuncao TM, Sun Y, Jalan-Sakrikar N, Drinane MC, Huang BQ et al. 2015. Development and characterization of human-induced pluripotent stem cell–derived cholangiocytes. Lab. Investig. 95:684–96
    [Google Scholar]
  5. 5. 
    Sampaziotis F, Justin AW, Tysoe OC, Sawiak S, Godfrey EM et al. 2017. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat. Med. 23:954–63
    [Google Scholar]
  6. 6. 
    Lemaigre FP. 2009. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 137:62–79
    [Google Scholar]
  7. 7. 
    Ober EA, Lemaigre FP. 2018. Development of the liver: insights into organ and tissue morphogenesis. J. Hepatol. 68:1049–62
    [Google Scholar]
  8. 8. 
    Tanimizu N, Ichinohe N, Mitaka T 2018. Intrahepatic bile ducts guide establishment of the intrahepatic nerve network in developing and regenerating mouse liver. Development 145:dev159095
    [Google Scholar]
  9. 9. 
    Gordillo M, Evans T, Gouon-Evans V 2015. Orchestrating liver development. Development 142:2094–108
    [Google Scholar]
  10. 10. 
    Cast AE, Walter TJ, Huppert SS 2015. Vascular patterning sets the stage for macro and micro hepatic architecture. Dev. Dyn. 244:497–506
    [Google Scholar]
  11. 11. 
    Wilkins BJ, Pack M. 2013. Zebrafish models of human liver development and disease. Compr. Physiol. 3:1213–30
    [Google Scholar]
  12. 12. 
    Yao Y, Lin J, Yang P, Chen Q, Chu X et al. 2012. Fine structure, enzyme histochemistry, and immunohistochemistry of liver in zebrafish. Anat. Rec. 295:567–76
    [Google Scholar]
  13. 13. 
    Cardinale V, Wang Y, Carpino G, Cui CB, Gatto M et al. 2011. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology 54:2159–72
    [Google Scholar]
  14. 14. 
    Carpino G, Cardinale V, Onori P, Franchitto A, Berloco PB et al. 2012. Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J. Anat. 220:186–99
    [Google Scholar]
  15. 15. 
    Lanzoni G, Cardinale V, Carpino G 2016. The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: a new reference frame for disease and regeneration. Hepatology 64:277–86
    [Google Scholar]
  16. 16. 
    Si-Tayeb K, Lemaigre FP, Duncan SA 2010. Organogenesis and development of the liver. Dev. Cell 18:175–89
    [Google Scholar]
  17. 17. 
    El Sebae GK, Malatos JM, Cone ME, Rhee S, Angelo JR et al. 2018. Single-cell murine genetic fate mapping reveals bipotential hepatoblasts and novel multi-organ endoderm progenitors. Development 145:dev168658
    [Google Scholar]
  18. 18. 
    Van Eyken P, Sciot R, Callea F, Van der Steen K, Moerman P, Desmet VJ 1988. The development of the intrahepatic bile ducts in man: a keratin–immunohistochemical study. Hepatology 8:1586–95
    [Google Scholar]
  19. 19. 
    Antoniou A, Raynaud P, Cordi S, Zong Y, Tronche F et al. 2009. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 136:2325–33
    [Google Scholar]
  20. 20. 
    Yang L, Wang WH, Qiu WL, Guo Z, Bi E, Xu CR 2017. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation. Hepatology 66:1387–401
    [Google Scholar]
  21. 21. 
    Prior N, Hindley CJ, Rost F, Melendez Esteban E, Lau WWY et al. 2019. Lgr5+ stem/progenitor cells reside at the apex of the embryonic hepatoblast pool. Development 146dev174557
  22. 22. 
    Ludtke TH, Christoffels VM, Petry M, Kispert A 2009. Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology 49:969–78
    [Google Scholar]
  23. 23. 
    Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D et al. 2002. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 129:1819–28
    [Google Scholar]
  24. 24. 
    Coffinier C, Gresh L, Fiette L, Tronche F, Schutz G et al. 2002. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1β. Development 129:1829–38
    [Google Scholar]
  25. 25. 
    Carpentier R, Suner RE, Van Hul N, Kopp JL, Beaudry JB et al. 2011. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 141:1432–38
    [Google Scholar]
  26. 26. 
    Benhamouche-Trouillet S, O'Loughlin E, Liu CH, Polacheck W, Fitamant J et al. 2018. Proliferation-independent role of NF2 (merlin) in limiting biliary morphogenesis. Development 145:dev162123
    [Google Scholar]
  27. 27. 
    Gerard C, Tys J, Lemaigre FP 2017. Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin. Cell Dev. Biol. 66:43–50
    [Google Scholar]
  28. 28. 
    Clotman F, Jacquemin P, Plumb-Rudewiez N, Pierreux CE, Van der Smissen P et al. 2005. Control of liver cell fate decision by a gradient of TGFβ signaling modulated by Onecut transcription factors. Genes Dev 19:1849–54
    [Google Scholar]
  29. 29. 
    Wang W, Feng Y, Aimaiti Y, Jin X, Mao X, Li D 2018. TGFβ signaling controls intrahepatic bile duct development may through regulating the Jagged1–Notch–Sox9 signaling axis. J. Cell. Physiol. 233:5780–91
    [Google Scholar]
  30. 30. 
    Seth A, Ye J, Yu N, Guez F, Bedford DC et al. 2014. Prox1 ablation in hepatic progenitors causes defective hepatocyte specification and increases biliary cell commitment. Development 141:538–47
    [Google Scholar]
  31. 31. 
    Hunter MP, Wilson CM, Jiang X, Cong R, Vasavada H et al. 2007. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev. Biol. 308:355–67
    [Google Scholar]
  32. 32. 
    Shiojiri N, Takeshita K, Yamasaki H, Iwata T 2004. Suppression of C/EBPα expression in biliary cell differentiation from hepatoblasts during mouse liver development. J. Hepatol. 41:790–98
    [Google Scholar]
  33. 33. 
    Yamasaki H, Sada A, Iwata T, Niwa T, Tomizawa M et al. 2006. Suppression of C/EBPα expression in periportal hepatoblasts may stimulate biliary cell differentiation through increased Hnf6 and Hnf1b expression. Development 133:4233–43
    [Google Scholar]
  34. 34. 
    Takayama K, Kawabata K, Nagamoto Y, Inamura M, Ohashi K et al. 2014. CCAAT/enhancer binding protein–mediated regulation of TGFβ receptor 2 expression determines the hepatoblast fate decision. Development 141:91–100
    [Google Scholar]
  35. 35. 
    Qian NS, Liu WH, Lv WP, Xiang X, Su M et al. 2013. Upregulated microRNA-92b regulates the differentiation and proliferation of EpCAM-positive fetal liver cells by targeting C/EBPβ. PLOS ONE 8:e68004
    [Google Scholar]
  36. 36. 
    Ader T, Norel R, Levoci L, Rogler LE 2006. Transcriptional profiling implicates TGFβ/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts. Mech. Dev. 123:177–94
    [Google Scholar]
  37. 37. 
    Rogler CE, Levoci L, Ader T, Massimi A, Tchaikovskaya T et al. 2009. MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology 50:575–84
    [Google Scholar]
  38. 38. 
    Rogler CE, Matarlo JS, Kosmyna B, Fulop D, Rogler LE 2017. Knockdown of miR-23, miR-27, and miR-24 alters fetal liver development and blocks fibrosis in mice. Gene Expr 17:99–114
    [Google Scholar]
  39. 39. 
    McCright B, Lozier J, Gridley T 2002. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129:1075–82
    [Google Scholar]
  40. 40. 
    Tanimizu N, Miyajima A. 2004. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J. Cell Sci. 117:3165–74
    [Google Scholar]
  41. 41. 
    Geisler F, Nagl F, Mazur PK, Lee M, Zimber-Strobl U et al. 2008. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology 48:607–16
    [Google Scholar]
  42. 42. 
    Lozier J, McCright B, Gridley T 2008. Notch signaling regulates bile duct morphogenesis in mice. PLOS ONE 3:e1851
    [Google Scholar]
  43. 43. 
    Tchorz JS, Kinter J, Muller M, Tornillo L, Heim MH, Bettler B 2009. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology 50:871–79
    [Google Scholar]
  44. 44. 
    Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P et al. 2009. Notch signaling controls liver development by regulating biliary differentiation. Development 136:1727–39
    [Google Scholar]
  45. 45. 
    Jeliazkova P, Jors S, Lee M, Zimber-Strobl U, Ferrer J et al. 2013. Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology 57:2469–79
    [Google Scholar]
  46. 46. 
    Falix FA, Weeda VB, Labruyere WT, Poncy A, de Waart DR et al. 2014. Hepatic Notch2 deficiency leads to bile duct agenesis perinatally and secondary bile duct formation after weaning. Dev. Biol. 396:201–13
    [Google Scholar]
  47. 47. 
    Geisler F, Strazzabosco M. 2015. Emerging roles of Notch signaling in liver disease. Hepatology 61:382–92
    [Google Scholar]
  48. 48. 
    Kodama Y, Hijikata M, Kageyama R, Shimotohno K, Chiba T 2004. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 127:1775–86
    [Google Scholar]
  49. 49. 
    Hofmann JJ, Zovein AC, Koh H, Radtke F, Weinmaster G, Iruela-Arispe ML 2010. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development 137:4061–72
    [Google Scholar]
  50. 50. 
    Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S et al. 2015. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat. Biotechnol. 33:853–61
    [Google Scholar]
  51. 51. 
    Thakurdas SM, Lopez MF, Kakuda S, Fernandez-Valdivia R, Zarrin-Khameh N et al. 2016. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology 63:550–65
    [Google Scholar]
  52. 52. 
    Kaylan KB, Ermilova V, Yada RC, Underhill GH 2016. Combinatorial microenvironmental regulation of liver progenitor differentiation by Notch ligands, TGFβ, and extracellular matrix. Sci. Rep. 6:23490
    [Google Scholar]
  53. 53. 
    Raynaud P, Tate J, Callens C, Cordi S, Vandersmissen P et al. 2011. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis. Hepatology 53:1959–66
    [Google Scholar]
  54. 54. 
    Poncy A, Antoniou A, Cordi S, Pierreux CE, Jacquemin P, Lemaigre FP 2015. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev. Biol. 402:136–48
    [Google Scholar]
  55. 55. 
    Zhang N, Bai H, David KK, Dong J, Zheng Y et al. 2010. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19:27–38
    [Google Scholar]
  56. 56. 
    Lee DH, Park JO, Kim TS, Kim SK, Kim TH et al. 2016. LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development. Nat. Commun. 7:11961
    [Google Scholar]
  57. 57. 
    Yi J, Lu L, Yanger K, Wang W, Sohn BH et al. 2016. Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ. Hepatology 64:1757–72
    [Google Scholar]
  58. 58. 
    Wu N, Nguyen Q, Wan Y, Zhou T, Venter J et al. 2017. The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals. Lab. Investig. 97:843–53
    [Google Scholar]
  59. 59. 
    Lade AG, Monga SP. 2011. Beta-catenin signaling in hepatic development and progenitors: Which way does the WNT blow?. Dev. Dyn. 240:486–500
    [Google Scholar]
  60. 60. 
    Zeng G, Awan F, Otruba W, Muller P, Apte U et al. 2007. Wnt'er in liver: expression of Wnt and frizzled genes in mouse. Hepatology 45:195–204
    [Google Scholar]
  61. 61. 
    Monga SP, Monga HK, Tan X, Mule K, Pediaditakis P, Michalopoulos GK 2003. β-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology 124:202–16
    [Google Scholar]
  62. 62. 
    Hussain SZ, Sneddon T, Tan X, Micsenyi A, Michalopoulos GK, Monga SP 2004. Wnt impacts growth and differentiation in ex vivo liver development. Exp. Cell Res. 292:157–69
    [Google Scholar]
  63. 63. 
    Decaens T, Godard C, de Reynies A, Rickman DS, Tronche F et al. 2008. Stabilization of β-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology 47:247–58
    [Google Scholar]
  64. 64. 
    Cordi S, Godard C, Saandi T, Jacquemin P, Monga SP et al. 2016. Role of β-catenin in development of bile ducts. Differentiation 91:42–49
    [Google Scholar]
  65. 65. 
    Wickline ED, Awuah PK, Behari J, Ross M, Stolz DB, Monga SP 2011. Hepatocyte γ-catenin compensates for conditionally deleted β-catenin at adherens junctions. J. Hepatol. 55:1256–62
    [Google Scholar]
  66. 66. 
    Tan X, Yuan Y, Zeng G, Apte U, Thompson MD et al. 2008. β-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology 47:1667–79
    [Google Scholar]
  67. 67. 
    So J, Khaliq M, Evason K, Ninov N, Martin BL et al. 2018. Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating notch activity. Hepatology 67:2352–66
    [Google Scholar]
  68. 68. 
    Kiyohashi K, Kakinuma S, Kamiya A, Sakamoto N, Nitta S et al. 2013. Wnt5a signaling mediates biliary differentiation of fetal hepatic stem/progenitor cells in mice. Hepatology 57:2502–13
    [Google Scholar]
  69. 69. 
    Yanai M, Tatsumi N, Hasunuma N, Katsu K, Endo F, Yokouchi Y 2008. FGF signaling segregates biliary cell-lineage from chick hepatoblasts cooperatively with BMP4 and ECM components in vitro. Dev. Dyn. 237:1268–83
    [Google Scholar]
  70. 70. 
    Couvelard A, Bringuier AF, Dauge MC, Nejjari M, Darai E et al. 1998. Expression of integrins during liver organogenesis in humans. Hepatology 27:839–47
    [Google Scholar]
  71. 71. 
    Tanimizu N, Kikkawa Y, Mitaka T, Miyajima A 2012. α1- and α5-containing laminins regulate the development of bile ducts via β1 integrin signals. J. Biol. Chem. 287:28586–97
    [Google Scholar]
  72. 72. 
    Lubarsky B, Krasnow MA. 2003. Tube morphogenesis: making and shaping biological tubes. Cell 112:19–28
    [Google Scholar]
  73. 73. 
    Andrew DJ, Ewald AJ. 2010. Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev. Biol. 341:34–55
    [Google Scholar]
  74. 74. 
    Tanimizu N, Kaneko K, Itoh T, Ichinohe N, Ishii M et al. 2016. Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice. Hepatology 64:175–88
    [Google Scholar]
  75. 75. 
    Takashima Y, Terada M, Kawabata M, Suzuki A 2015. Dynamic three-dimensional morphogenesis of intrahepatic bile ducts in mouse liver development. Hepatology 61:1003–11
    [Google Scholar]
  76. 76. 
    Roskams T, Desmet V. 2008. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat. Rec. 291:628–35
    [Google Scholar]
  77. 77. 
    Tanimizu N, Miyajima A, Mostov KE 2009. Liver progenitor cells fold up a cell monolayer into a double-layered structure during tubular morphogenesis. Mol. Biol. Cell 20:2486–94
    [Google Scholar]
  78. 78. 
    Hick AC, van Eyll JM, Cordi S, Forez C, Passante L et al. 2009. Mechanism of primitive duct formation in the pancreas and submandibular glands: a role for SDF-1. BMC Dev. Biol. 9:66
    [Google Scholar]
  79. 79. 
    Lorent K, Moore JC, Siekmann AF, Lawson N, Pack M 2010. Reiterative use of the notch signal during zebrafish intrahepatic biliary development. Dev. Dyn. 239:855–64
    [Google Scholar]
  80. 80. 
    Sparks EE, Huppert KA, Brown MA, Washington MK, Huppert SS 2010. Notch signaling regulates formation of the three-dimensional architecture of intrahepatic bile ducts in mice. Hepatology 51:1391–400
    [Google Scholar]
  81. 81. 
    Vanderpool C, Sparks EE, Huppert KA, Gannon M, Means AL, Huppert SS 2012. Genetic interactions between hepatocyte nuclear factor-6 and notch signaling regulate mouse intrahepatic bile duct development in vivo. Hepatology 55:233–43
    [Google Scholar]
  82. 82. 
    Just PA, Poncy A, Charawi S, Dahmani R, Traore M et al. 2015. LKB1 and Notch pathways interact and control biliary morphogenesis. PLOS ONE 10:e0145400
    [Google Scholar]
  83. 83. 
    Terada T, Nakanuma Y. 1994. Expression of tenascin, type IV collagen and laminin during human intrahepatic bile duct development and in intrahepatic cholangiocarcinoma. Histopathology 25:143–50
    [Google Scholar]
  84. 84. 
    Demarez C, Gerard C, Cordi S, Poncy A, Achouri Y et al. 2018. MicroRNA-337–3p controls hepatobiliary gene expression and transcriptional dynamics during hepatic cell differentiation. Hepatology 67:313–27
    [Google Scholar]
  85. 85. 
    Mamidi A, Prawiro C, Seymour PA, de Lichtenberg KH, Jackson A et al. 2018. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564:114–18
    [Google Scholar]
  86. 86. 
    Dimri M, Bilogan C, Pierce LX, Naegele G, Vasanji A et al. 2017. Three-dimensional structural analysis reveals a Cdk5-mediated kinase cascade regulating hepatic biliary network branching in zebrafish. Development 144:2595–605
    [Google Scholar]
  87. 87. 
    Tanimizu N, Miyajima A, Mostov KE 2007. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture. Mol. Biol. Cell 18:1472–79
    [Google Scholar]
  88. 88. 
    Tanimizu N, Mitaka T. 2013. Role of grainyhead-like 2 in the formation of functional tight junctions. Tissue Barriers 1:e23495
    [Google Scholar]
  89. 89. 
    Senga K, Mostov KE, Mitaka T, Miyajima A, Tanimizu N 2012. Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25. Mol. Biol. Cell 23:2845–55
    [Google Scholar]
  90. 90. 
    Cheung ID, Bagnat M, Ma TP, Datta A, Evason K et al. 2012. Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b. Dev. Biol. 361:68–78
    [Google Scholar]
  91. 91. 
    Woods A, Heslegrave AJ, Muckett PJ, Levene AP, Clements M et al. 2011. LKB1 is required for hepatic bile acid transport and canalicular membrane integrity in mice. Biochem. J. 434:49–60
    [Google Scholar]
  92. 92. 
    Porat-Shliom N, Tietgens AJ, Van Itallie CM, Vitale-Cross L, Jarnik M et al. 2016. Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo. Hepatology 64:1317–29
    [Google Scholar]
  93. 93. 
    Pradhan-Sundd T, Zhou L, Vats R, Jiang A, Molina L et al. 2018. Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis. Hepatology 67:2320–37
    [Google Scholar]
  94. 94. 
    Kesavan G, Sand FW, Greiner TU, Johansson JK, Kobberup S et al. 2009. Cdc42-mediated tubulogenesis controls cell specification. Cell 139:791–801
    [Google Scholar]
  95. 95. 
    Borbath I, Lemaigre FP, Jacquemin P 2018. Liver and pancreas: Do similar embryonic development and tissue organization lead to similar mechanisms of tumorigenesis. ? Gene Expr 18:149–55
    [Google Scholar]
  96. 96. 
    Cui S, Capecci LM, Matthews RP 2011. Disruption of planar cell polarity activity leads to developmental biliary defects. Dev. Biol. 351:229–41
    [Google Scholar]
  97. 97. 
    Wilson DH, Mellin RP, Younger NT, Jarman EJ, Raven A et al. 2018. Non-canonical Wnt signalling initiates scarring in biliary disease. bioRxiv 276196 https://doi.org/10.1101/276196
    [Crossref]
  98. 98. 
    Villasenor A, Stainier DYR. 2017. On the development of the hepatopancreatic ductal system. Semin. Cell Dev. Biol. 66:69–80
    [Google Scholar]
  99. 99. 
    Ando H. 2010. Embryology of the biliary tract. Dig. Surg. 27:87–89
    [Google Scholar]
  100. 100. 
    Terada T. 2014. Development of extrahepatic bile duct excluding gall bladder in human fetuses: histological, histochemical, and immunohistochemical analysis. Microsc. Res. Tech. 77:832–40
    [Google Scholar]
  101. 101. 
    Tan CE, Moscoso GJ. 1994. The developing human biliary system at the porta hepatis level between 29 days and 8 weeks of gestation: a way to understanding biliary atresia. Part 1. Pathol. Int. 44:587–99
    [Google Scholar]
  102. 102. 
    Tan CE, Moscoso GJ. 1994. The developing human biliary system at the porta hepatis level between 11 and 25 weeks of gestation: a way to understanding biliary atresia. Part 2. Pathol. Int. 44:600–10
    [Google Scholar]
  103. 103. 
    Lindner HH, Green RB. 1964. Embryology and surgical anatomy of the extrahepatic biliary tract. Surg. Clin. North Am. 44:1273–85
    [Google Scholar]
  104. 104. 
    Spence JR, Lange AW, Lin SC, Kaestner KH, Lowy AM et al. 2009. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev. Cell 17:62–74
    [Google Scholar]
  105. 105. 
    Field HA, Ober EA, Roeser T, Stainier DY 2003. Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev. Biol. 253:279–90
    [Google Scholar]
  106. 106. 
    Field HA, Dong PD, Beis D, Stainier DY 2003. Formation of the digestive system in zebrafish. II. Pancreas morphogenesis. Dev. Biol. 261:197–208
    [Google Scholar]
  107. 107. 
    Uemura M, Hara K, Shitara H, Ishii R, Tsunekawa N et al. 2010. Expression and function of mouse Sox17 gene in the specification of gallbladder/bile-duct progenitors during early foregut morphogenesis. Biochem. Biophys. Res. Commun. 391:357–63
    [Google Scholar]
  108. 108. 
    Sumazaki R, Shiojiri N, Isoyama S, Masu M, Keino-Masu K et al. 2004. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat. Genet. 36:83–87
    [Google Scholar]
  109. 109. 
    Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M et al. 2006. Ectopic pancreas formation in Hes1-knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J. Clin. Investig. 116:1484–93
    [Google Scholar]
  110. 110. 
    Villasenor A, Gauvrit S, Collins MM, Parajes S, Maischein H-M, Stainier DY 2018. Hhex regulates the specification and growth of the hepatopancreatic ductal system. bioRxiv 330779. https://doi.org/10.1101/330779
    [Crossref]
  111. 111. 
    Dong PD, Munson CA, Norton W, Crosnier C, Pan X et al. 2007. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat. Genet. 39:397–402
    [Google Scholar]
  112. 112. 
    Manfroid I, Ghaye A, Naye F, Detry N, Palm S et al. 2012. Zebrafish sox9b is crucial for hepatopancreatic duct development and pancreatic endocrine cell regeneration. Dev. Biol. 366:268–78
    [Google Scholar]
  113. 113. 
    Uemura M, Ozawa A, Nagata T, Kurasawa K, Tsunekawa N et al. 2013. Sox17 haploinsufficiency results in perinatal biliary atresia and hepatitis in C57BL/6 background mice. Development 140:639–48
    [Google Scholar]
  114. 114. 
    Delous M, Yin C, Shin D, Ninov N, Debrito Carten J et al. 2012. sox9b is a key regulator of pancreaticobiliary ductal system development. PLOS Genet 8:e1002754
    [Google Scholar]
  115. 115. 
    Kalinichenko VV, Zhou Y, Bhattacharyya D, Kim W, Shin B et al. 2002. Haploinsufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development. J. Biol. Chem. 277:12369–74
    [Google Scholar]
  116. 116. 
    Yamashita R, Takegawa Y, Sakumoto M, Nakahara M, Kawazu H et al. 2009. Defective development of the gall bladder and cystic duct in Lgr4− hypomorphic mice. Dev. Dyn. 238:993–1000
    [Google Scholar]
  117. 117. 
    Cui S, Leyva-Vega M, Tsai EA, EauClaire SF, Glessner JT et al. 2013. Evidence from human and zebrafish that GPC1 is a biliary atresia susceptibility gene. Gastroenterology 144:1107–15.e3
    [Google Scholar]
  118. 118. 
    Terada T, Nakanuma Y. 1993. Development of human intrahepatic peribiliary glands: histological, keratin immunohistochemical, and mucus histochemical analyses. Lab. Investig. 68:261–69
    [Google Scholar]
  119. 119. 
    Nakanuma Y, Katayanagi K, Terada T, Saito K 1994. Intrahepatic peribiliary glands of humans. I. Anatomy, development and presumed functions. J. Gastroenterol. Hepatol. 9:75–79
    [Google Scholar]
  120. 120. 
    Spitz L, Petropoulos A. 1979. The development of the glands of the common bile duct. J. Pathol. 128:213–20
    [Google Scholar]
  121. 121. 
    DiPaola F, Shivakumar P, Pfister J, Walters S, Sabla G, Bezerra JA 2013. Identification of intramural epithelial networks linked to peribiliary glands that express progenitor cell markers and proliferate after injury in mice. Hepatology 58:1486–96
    [Google Scholar]
  122. 122. 
    Matsui S, Harada K, Miyata N, Okochi H, Miyajima A, Tanaka M 2018. Characterization of peribiliary gland–constituting cells based on differential expression of trophoblast cell surface protein 2 in biliary tract. Am. J. Pathol. 188:2059–73
    [Google Scholar]
  123. 123. 
    Kamath BM, Piccoli DA. 2003. Heritable disorders of the bile ducts. Gastroenterol. Clin. North Am. 32:857–75
    [Google Scholar]
  124. 124. 
    Johnson CA, Gissen P, Sergi C 2003. Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J. Med. Genet. 40:311–19
    [Google Scholar]
  125. 125. 
    Lee-Law PY, van de Laarschot LFM, Banales JM, Drenth JPH 2019. Genetics of polycystic liver diseases. Curr. Opin. Gastroenterol. 35:65–72
    [Google Scholar]
  126. 126. 
    Raynaud P, Carpentier R, Antoniou A, Lemaigre FP 2011. Biliary differentiation and bile duct morphogenesis in development and disease. Int. J. Biochem. Cell Biol. 43:245–56
    [Google Scholar]
  127. 127. 
    Desmet VJ. 1992. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation.”. Hepatology 16:1069–83
    [Google Scholar]
  128. 128. 
    Clotman F, Libbrecht L, Killingsworth MC, Loo CC, Roskams T, Lemaigre FP 2008. Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome. Liver Int 28:377–84
    [Google Scholar]
  129. 129. 
    Beaudry JB, Cordi S, Demarez C, Lepreux S, Pierreux CE, Lemaigre FP 2015. Proliferation-independent initiation of biliary cysts in polycystic liver diseases. PLOS ONE 10:e0132295
    [Google Scholar]
  130. 130. 
    Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST 2019. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15:199–219
    [Google Scholar]
  131. 131. 
    Spirli C, Locatelli L, Morell CM, Fiorotto R, Morton SD et al. Protein kinase A–dependent pSer675-β-catenin, a novel signaling defect in a mouse model of congenital hepatic fibrosis. Hepatology 58:1713–23
    [Google Scholar]
  132. 132. 
    Schaub JR, Huppert KA, Kurial SNT, Hsu BY, Cast AE et al. 2018. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 557:247–51
    [Google Scholar]
  133. 133. 
    Gissen P, Arias IM. 2015. Structural and functional hepatocyte polarity and liver disease. J. Hepatol. 63:1023–37
    [Google Scholar]
  134. 134. 
    Gissen P, Johnson CA, Morgan NV, Stapelbroek JM, Forshew T et al. 2004. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis–renal dysfunction–cholestasis (ARC) syndrome. Nat. Genet. 36:400–4
    [Google Scholar]
  135. 135. 
    Cullinane AR, Straatman-Iwanowska A, Zaucker A, Wakabayashi Y, Bruce CK et al. 2010. Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat. Genet. 42:303–12
    [Google Scholar]
  136. 136. 
    Cassiman D, Barlow A, Vander Borght S, Libbrecht L, Pachnis V 2006. Hepatic stellate cells do not derive from the neural crest. J. Hepatol. 44:1098–104
    [Google Scholar]
  137. 137. 
    Matthews RP, Plumb-Rudewiez N, Lorent K, Gissen P, Johnson CA et al. 2005. Zebrafish vps33b, an ortholog of the gene responsible for human arthrogryposis–renal dysfunction–cholestasis syndrome, regulates biliary development downstream of the onecut transcription factor hnf6. Development 132:5295–306
    [Google Scholar]
  138. 138. 
    Lakshminarayanan B, Davenport M. 2016. Biliary atresia: a comprehensive review. J. Autoimmun. 73:1–9
    [Google Scholar]
  139. 139. 
    Asai A, Miethke A, Bezerra JA 2015. Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat. Rev. Gastroenterol. Hepatol. 12:342–52
    [Google Scholar]
  140. 140. 
    Ningappa M, So J, Glessner J, Ashokkumar C, Ranganathan S 2015. The role of ARF6 in biliary atresia. PLOS ONE 10:e0138381
    [Google Scholar]
  141. 141. 
    Berauer JP, Mezina AI, Okou DT, Sabo A, Muzny DM et al. 2019. Identification of polycystic kidney disease 1 like 1 gene variants in children with the biliary atresia splenic malformation syndrome. Hepatology 70:899–910
    [Google Scholar]
  142. 142. 
    Lorent K, Gong W, Koo KA, Waisbourd-Zinman O, Karjoo S et al. 2015. Identification of a plant isoflavonoid that causes biliary atresia. Sci. Transl. Med. 7:286ra67
    [Google Scholar]
  143. 143. 
    Zhao X, Lorent K, Wilkins BJ, Marchione DM, Gillespie K et al. 2016. Glutathione antioxidant pathway activity and reserve determine toxicity and specificity of the biliary toxin biliatresone in zebrafish. Hepatology 64:894–907
    [Google Scholar]
  144. 144. 
    Waisbourd-Zinman O, Koh H, Tsai S, Lavrut PM, Dang C et al. 2016. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology 64:880–93
    [Google Scholar]
  145. 145. 
    Singham J, Yoshida EM, Scudamore CH 2009. Choledochal cysts. Part 1 of 3: classification and pathogenesis. Can. J. Surg. 52:434–40
    [Google Scholar]
  146. 146. 
    Sadler KC, Amsterdam A, Soroka C, Boyer J, Hopkins N 2005. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132:3561–72
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012418-013013
Loading
/content/journals/10.1146/annurev-pathmechdis-012418-013013
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error