1932

Abstract

Alzheimer's disease (AD) is a pervasive, relentlessly progressive neurodegenerative disorder that includes both hereditary and sporadic forms linked by common underlying neuropathologic changes and neuropsychological manifestations. While a clinical diagnosis is often made on the basis of initial memory dysfunction that progresses to involve multiple cognitive domains, definitive diagnosis requires autopsy examination of the brain to identify amyloid plaques and neurofibrillary degeneration. Over the past 100 years, there has been remarkable progress in our understanding of the underlying pathophysiologic processes, pathologic changes, and clinical phenotypes of AD, largely because genetic pathways that include but expand beyond amyloid processing have been uncovered. This review discusses the current state of understanding of the genetics of AD with a focus on how these advances are both shaping our understanding of the disease and informing novel avenues and approaches for development of potential therapeutic targets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032551
2021-01-24
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/16/1/annurev-pathmechdis-012419-032551.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032551&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alzheimer A. 1907. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr. Psych.-Gerichtl. Med. 64:146–48
    [Google Scholar]
  2. 2. 
    Maurer K, Volk S, Gerbaldo H 1997. Auguste D and Alzheimer's disease. Lancet 349:1546–49
    [Google Scholar]
  3. 3. 
    Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ et al. 2012. National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach. Acta Neuropathol 123:1–11
    [Google Scholar]
  4. 4. 
    Roth M. 1955. The natural history of mental disorder in old age. J. Ment. Sci. 101:281–301
    [Google Scholar]
  5. 5. 
    Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F et al. 1991. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349:704–6
    [Google Scholar]
  6. 6. 
    Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D et al. 1991. Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844–46
    [Google Scholar]
  7. 7. 
    Murrell J, Farlow M, Ghetti B, Benson MD 1991. A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science 254:97–99
    [Google Scholar]
  8. 8. 
    Mullan M, Tsuji S, Miki T, Katsuya T, Naruse S et al. 1993. Clinical comparison of Alzheimer's disease in pedigrees with the codon 717 Val→Ile mutation in the amyloid precursor protein gene. Neurobiol. Aging 14:407–19
    [Google Scholar]
  9. 9. 
    Hardy J. 2017. The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the “amyloid cascade hypothesis. .” FEBS J 284:1040–44
    [Google Scholar]
  10. 10. 
    Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G et al. 1995. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375:754–60
    [Google Scholar]
  11. 11. 
    Campion D, Flaman JM, Brice A, Hannequin D, Dubois B et al. 1995. Mutations of the presenilin I gene in families with early-onset Alzheimer's disease. Hum. Mol. Genet. 4:2373–77
    [Google Scholar]
  12. 12. 
    Cacace R, Sleegers K, Van Broeckhoven C 2016. Molecular genetics of early-onset Alzheimer's disease revisited. Alzheimer's Dement 12:733–48
    [Google Scholar]
  13. 13. 
    Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J et al. 1995. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269:973–77
    [Google Scholar]
  14. 14. 
    Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M et al. 1995. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376:775–78
    [Google Scholar]
  15. 15. 
    Finckh U, Müller-Thomsen T, Mann U, Eggers C, Marksteiner J et al. 2000. High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes. Am. J. Hum. Genet. 66:110–17
    [Google Scholar]
  16. 16. 
    Pericak-Vance MA, Bebout JL, Gaskell PC Jr, Yamaoka LH, Hung WY et al. 1991. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am. J. Hum. Genet. 48:1034–50
    [Google Scholar]
  17. 17. 
    Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K 1991. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541:163–66
    [Google Scholar]
  18. 18. 
    Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J et al. 1993. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. PNAS 90:1977–81
    [Google Scholar]
  19. 19. 
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC et al. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–23
    [Google Scholar]
  20. 20. 
    Arboleda-Velasquez JF, Lopera F, O'Hare M, Delgado-Tirado S, Marino C et al. 2019. Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report. Nat. Med. 25:1680–83
    [Google Scholar]
  21. 21. 
    Scherzer CR, Offe K, Gearing M, Rees HD, Fang G et al. 2004. Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch. Neurol. 61:1200–5
    [Google Scholar]
  22. 22. 
    Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T et al. 2007. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 39:168–77
    [Google Scholar]
  23. 23. 
    Lee JH, Cheng R, Honig LS, Vonsattel JP, Clark L, Mayeux R 2008. Association between genetic variants in SORL1 and autopsy-confirmed Alzheimer disease. Neurology 70:887–89
    [Google Scholar]
  24. 24. 
    Lee JH, Cheng R, Schupf N, Manly J, Lantigua R et al. 2007. The association between genetic variants in SORL1 and Alzheimer disease in an urban, multiethnic, community-based cohort. Arch. Neurol. 64:501–6
    [Google Scholar]
  25. 25. 
    Strang KH, Golde TE, Giasson BI 2019. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab. Investig. 99:912–28
    [Google Scholar]
  26. 26. 
    Roks G, Dermaut B, Heutink P, Julliams A, Backhovens H et al. 1999. Mutation screening of the tau gene in patients with early-onset Alzheimer's disease. Neurosci. Lett. 277:137–39
    [Google Scholar]
  27. 27. 
    Baker M, Litvan I, Houlden H, Adamson J, Dickson D et al. 1999. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum. Mol. Genet. 8:711–15
    [Google Scholar]
  28. 28. 
    Kalinderi K, Fidani L, Bostantjopoulou S 2009. From 1997 to 2007: a decade journey through the H1 haplotype on 17q21 chromosome. Parkinsonism Relat. Disord. 15:2–5
    [Google Scholar]
  29. 29. 
    Sun W, Jia J. 2009. The +347 C promoter allele up-regulates MAPT expression and is associated with Alzheimer's disease among the Chinese Han. Neurosci. Lett. 450:340–43
    [Google Scholar]
  30. 30. 
    Colonna M. 2003. TREMs in the immune system and beyond. Nat. Rev. Immunol. 3:445–53
    [Google Scholar]
  31. 31. 
    Chouery E, Delague V, Bergougnoux A, Koussa S, Serre JL, Megarbane A 2008. Mutations in TREM2 lead to pure early-onset dementia without bone cysts. Hum. Mutat. 29:E194–204
    [Google Scholar]
  32. 32. 
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E et al. 2013. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368:117–27
    [Google Scholar]
  33. 33. 
    Carmona S, Zahs K, Wu E, Dakin K, Bras J, Guerreiro R 2018. The role of TREM2 in Alzheimer's disease and other neurodegenerative disorders. Lancet Neurol 17:721–30
    [Google Scholar]
  34. 34. 
    Colonna M, Wang Y. 2016. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat. Rev. Neurosci. 17:201–7
    [Google Scholar]
  35. 35. 
    Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE 2007. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39:17–23
    [Google Scholar]
  36. 36. 
    Jun G, Naj AC, Beecham GW, Wang LS, Buros J et al. 2010. Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch. Neurol. 67:1473–84
    [Google Scholar]
  37. 37. 
    Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V et al. 2019. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51:414–30
    [Google Scholar]
  38. 38. 
    Marioni RE, Harris SE, Zhang Q, McRae AF, Hagenaars SP et al. 2018. GWAS on family history of Alzheimer's disease. Transl. Psychiatry 8:99
    [Google Scholar]
  39. 39. 
    Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN et al. 2011. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat. Genet 43:436–41
    [Google Scholar]
  40. 40. 
    Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H et al. 2012. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71:362–81
    [Google Scholar]
  41. 41. 
    Latimer CS, Burke BT, Liachko NF, Currey HN, Kilgore MD et al. 2019. Resistance and resilience to Alzheimer's disease pathology are associated with reduced cortical pTau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol. Commun. 7:91
    [Google Scholar]
  42. 42. 
    Brettschneider J, Del Tredici K, Lee VM-Y, Trojanowski JQ 2015. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16:109–20
    [Google Scholar]
  43. 43. 
    Tomlinson BE, Blessed G, Roth M 1968. Observations on the brains of non-demented old people. J. Neurol. Sci. 7:331–56
    [Google Scholar]
  44. 44. 
    Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B et al. 2018. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease. Alzheimer's Dement 14:535–62
    [Google Scholar]
  45. 45. 
    Thal DR, Rub U, Orantes M, Braak H 2002. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–800
    [Google Scholar]
  46. 46. 
    Zhang YW, Thompson R, Zhang H, Xu H 2011. APP processing in Alzheimer's disease. Mol. Brain 4:3
    [Google Scholar]
  47. 47. 
    Hardy JA, Higgins GA. 1992. Alzheimer's disease: the amyloid cascade hypothesis. Science 256:184–85
    [Google Scholar]
  48. 48. 
    Nolan A, Resende EDF, Peterson C, Neylan K, Spina S et al. 2019. Astrocytic tau deposition is frequent in typical and atypical Alzheimer disease presentations. J. Neuropathol. Exp. Neurol. 78:1112–23
    [Google Scholar]
  49. 49. 
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K 2006. Staging of Alzheimer disease–associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404
    [Google Scholar]
  50. 50. 
    Braak H, Braak E. 1991. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–59
    [Google Scholar]
  51. 51. 
    Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW 2011. Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–96
    [Google Scholar]
  52. 52. 
    Kovacs GG. 2015. Neuropathology of tauopathies: principles and practice. Neuropathol. Appl. Neurobiol. 41:3–23
    [Google Scholar]
  53. 53. 
    Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL et al. 2014. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–66
    [Google Scholar]
  54. 54. 
    Kovacs GG, Ferrer I, Grinberg LT, Alafuzoff I, Attems J et al. 2016. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol 131:87–102
    [Google Scholar]
  55. 55. 
    Buee L, Delacourte A. 1999. Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick's disease. Brain Pathol 9:681–93
    [Google Scholar]
  56. 56. 
    Schellenberg GD, Montine TJ. 2012. The genetics and neuropathology of Alzheimer's disease. Acta Neuropathol 124:305–23
    [Google Scholar]
  57. 57. 
    Wolfe MS. 2007. When loss is gain: Reduced presenilin proteolytic function leads to increased Aβ42/Aβ40. EMBO Rep 8:136–40
    [Google Scholar]
  58. 58. 
    Halliday G, Brooks W, Arthur H, Creasey H, Broe GA 1997. Further evidence for an association between a mutation in the APP gene and Lewy body formation. Neurosci. Lett. 227:49–52
    [Google Scholar]
  59. 59. 
    Leverenz JB, Fishel MA, Peskind ER, Montine TJ, Nochlin D et al. 2006. Lewy body pathology in familial Alzheimer disease: evidence for disease- and mutation-specific pathologic phenotype. Arch. Neurol. 63:370–76
    [Google Scholar]
  60. 60. 
    Jayadev S, Leverenz JB, Steinbart E, Stahl J, Klunk W et al. 2010. Alzheimer's disease phenotypes and genotypes associated with mutations in presenilin 2. Brain 133:1143–54
    [Google Scholar]
  61. 61. 
    Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA et al. 2019. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142:1503–27
    [Google Scholar]
  62. 62. 
    Sonnen JA, Larson EB, Crane PK, Haneuse S, Li G et al. 2007. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann. Neurol. 62:406–13
    [Google Scholar]
  63. 63. 
    Beecham GW, Hamilton K, Naj AC, Martin ER, Huentelman M et al. 2014. Genome-wide association meta-analysis of neuropathologic features of Alzheimer's disease and related dementias. PLOS Genet 10:e1004606
    [Google Scholar]
  64. 64. 
    Ringman JM, Diaz-Olavarrieta C, Rodriguez Y, Chavez M, Fairbanks L et al. 2005. Neuropsychological function in nondemented carriers of presenilin-1 mutations. Neurology 65:552–58
    [Google Scholar]
  65. 65. 
    Storandt M, Balota DA, Aschenbrenner AJ, Morris JC 2014. Clinical and psychological characteristics of the initial cohort of the Dominantly Inherited Alzheimer Network (DIAN). Neuropsychology 28:19–29
    [Google Scholar]
  66. 66. 
    Tang M, Ryman DC, McDade E, Jasielec MS, Buckles VD et al. 2016. Neurological manifestations of autosomal dominant familial Alzheimer's disease: a comparison of the published literature with the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS). Lancet Neurol 15:1317–25
    [Google Scholar]
  67. 67. 
    Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A et al. 2012. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367:795–804
    [Google Scholar]
  68. 68. 
    Dickerson BC, Wolk DAAlzheimer's Dis. Neuroimag. Initiat 2011. Dysexecutive versus amnesic phenotypes of very mild Alzheimer's disease are associated with distinct clinical, genetic and cortical thinning characteristics. J. Neurol. Neurosurg. Psychiatry 82:45–51
    [Google Scholar]
  69. 69. 
    Saeed U, Mirza SS, MacIntosh BJ, Herrmann N, Keith J et al. 2018. APOE-ε4 associates with hippocampal volume, learning, and memory across the spectrum of Alzheimer's disease and dementia with Lewy bodies. Alzheimer's Dement 14:1137–47
    [Google Scholar]
  70. 70. 
    Wolk DA, Dickerson BCAlzheimer's Dis. Neuroimag. Initiat 2010. Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer's disease. PNAS 107:10256–61
    [Google Scholar]
  71. 71. 
    Hoyt BD, Massman PJ, Schatschneider C, Cooke N, Doody RS 2005. Individual growth curve analysis of APOEε4-associated cognitive decline in Alzheimer disease. Arch. Neurol. 62:454–59
    [Google Scholar]
  72. 72. 
    Stern Y, Brandt J, Albert M, Jacobs DM, Liu X et al. 1997. The absence of an apolipoprotein ε4 allele is associated with a more aggressive form of Alzheimer's disease. Ann. Neurol. 41:615–20
    [Google Scholar]
  73. 73. 
    Cosentino S, Scarmeas N, Helzner E, Glymour MM, Brandt J et al. 2008. APOEε4 allele predicts faster cognitive decline in mild Alzheimer disease. Neurology 70:1842–49
    [Google Scholar]
  74. 74. 
    Allan CL, Ebmeier KP. 2011. The influence of ApoE4 on clinical progression of dementia: a meta-analysis. Int. J. Geriatr. Psychiatry 26:520–26
    [Google Scholar]
  75. 75. 
    Martins CA, Oulhaj A, de Jager CA, Williams JH 2005. APOE alleles predict the rate of cognitive decline in Alzheimer disease: a nonlinear model. Neurology 65:1888–93
    [Google Scholar]
  76. 76. 
    Han SD, Bondi MW. 2008. Revision of the apolipoprotein E compensatory mechanism recruitment hypothesis. Alzheimer's Dement 4:251–54
    [Google Scholar]
  77. 77. 
    Weissberger GH, Nation DA, Nguyen CP, Bondi MW, Han SD 2018. Meta-analysis of cognitive ability differences by apolipoprotein E genotype in young humans. Neurosci. Biobehav. Rev 94:49–58
    [Google Scholar]
  78. 78. 
    Kassam I, Gagnon F, Cusimano MD 2016. Association of the APOE-ε4 allele with outcome of traumatic brain injury in children and youth: a meta-analysis and meta-regression. J. Neurol. Neurosurg. Psychiatry 87:433–40
    [Google Scholar]
  79. 79. 
    Li X, Hildebrandt A, Sommer W, Wilhelm O, Reuter M et al. 2019. Cognitive performance in young APOE ε4 carriers: a latent variable approach for assessing the genotype–phenotype relationship. Behav. Genet. 49:455–68
    [Google Scholar]
  80. 80. 
    Bussy A, Snider BJ, Coble D, Xiong C, Fagan AM et al. 2019. Effect of apolipoprotein E4 on clinical, neuroimaging, and biomarker measures in noncarrier participants in the Dominantly Inherited Alzheimer Network. Neurobiol. Aging 75:42–50
    [Google Scholar]
  81. 81. 
    Flory JD, Manuck SB, Ferrell RE, Ryan CM, Muldoon MF 2000. Memory performance and the apolipoprotein E polymorphism in a community sample of middle-aged adults. Am. J. Med. Genet. 96:707–11
    [Google Scholar]
  82. 82. 
    O'Donoghue MC, Murphy SE, Zamboni G, Nobre AC, Mackay CE 2018. APOE genotype and cognition in healthy individuals at risk of Alzheimer's disease: a review. Cortex 104:103–23
    [Google Scholar]
  83. 83. 
    López-Higes R, Rodríguez-Rojo IC, Prados JM, Montejo P, Del-Río D et al. 2017. APOE ε4 modulation of training outcomes in several cognitive domains in a sample of cognitively intact older adults. J. Alzheimer's Dis. 58:1201–15
    [Google Scholar]
  84. 84. 
    Kelly DA, Seidenberg M, Reiter K, Nielson KA, Woodard JL et al. 2018. Differential 5-year brain atrophy rates in cognitively declining and stable APOE-ε4 elders. Neuropsychology 32:647–53
    [Google Scholar]
  85. 85. 
    Caselli RJ, Reiman EM, Osborne D, Hentz JG, Baxter LC et al. 2004. Longitudinal changes in cognition and behavior in asymptomatic carriers of the APOE e4 allele. Neurology 62:1990–95
    [Google Scholar]
  86. 86. 
    Yaffe K, Cauley J, Sands L, Browner W 1997. Apolipoprotein E phenotype and cognitive decline in a prospective study of elderly community women. Arch. Neurol. 54:1110–14
    [Google Scholar]
  87. 87. 
    Lange KL, Bondi MW, Salmon DP, Galasko D, Delis DC et al. 2002. Decline in verbal memory during preclinical Alzheimer's disease: examination of the effect of APOE genotype. J. Int. Neuropsychol. Soc. 8:943–55
    [Google Scholar]
  88. 88. 
    Shen S, Zhou W, Chen X, Zhang JAlzheimer's Dis. Neuroimag. Initiat 2019. Sex differences in the association of APOE ε4 genotype with longitudinal hippocampal atrophy in cognitively normal older people. Eur. J. Neurol. 26:1362–69
    [Google Scholar]
  89. 89. 
    Wang X, Zhou W, Ye T, Lin X, Zhang JAlzheimer's Dis. Neuroimag. Initiat 2019. Sex difference in the association of APOE4 with memory decline in mild cognitive impairment. J. Alzheimer's Dis. 69:1161–69
    [Google Scholar]
  90. 90. 
    Ishioka YL, Gondo Y, Fuku N, Inagaki H, Masui Y et al. 2016. Effects of the APOE ε4 allele and education on cognitive function in Japanese centenarians. Age 38:495–503
    [Google Scholar]
  91. 91. 
    Wang HX, Gustafson DR, Kivipelto M, Pedersen NL, Skoog I et al. 2012. Education halves the risk of dementia due to apolipoprotein ε4 allele: a collaborative study from the Swedish Brain Power Initiative. Neurobiol. Aging 33:1007e1–7
    [Google Scholar]
  92. 92. 
    Kantarci K, Lowe V, Przybelski SA, Weigand SD, Senjem ML et al. 2012. APOE modifies the association between Aβ load and cognition in cognitively normal older adults. Neurology 78:232–40
    [Google Scholar]
  93. 93. 
    Tai LM, Thomas R, Marottoli FM, Koster KP, Kanekiyo T et al. 2016. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol 131:709–23
    [Google Scholar]
  94. 94. 
    Zhen J, Lin T, Huang X, Zhang H, Dong S et al. 2018. Association of ApoE genetic polymorphism and type 2 diabetes with cognition in non-demented aging Chinese adults: a community based cross-sectional study. Aging Dis 9:346–57
    [Google Scholar]
  95. 95. 
    Merritt VC, Clark AL, Sorg SF, Evangelista ND, Werhane ML et al. 2018. Apolipoprotein E (APOE) ε4 genotype is associated with reduced neuropsychological performance in military veterans with a history of mild traumatic brain injury. J. Clin. Exp. Neuropsychol. 40:1050–61
    [Google Scholar]
  96. 96. 
    Fan J, Tao W, Li X, Li H, Zhang J et al. 2019. The contribution of genetic factors to cognitive impairment and dementia: apolipoprotein E gene, gene interactions, and polygenic risk. Int. J. Mol. Sci. 20:1177
    [Google Scholar]
  97. 97. 
    Houlihan LM, Harris SE, Luciano M, Gow AJ, Starr JM et al. 2009. Replication study of candidate genes for cognitive abilities: the Lothian Birth Cohort 1936. Genes Brain Behav 8:238–47
    [Google Scholar]
  98. 98. 
    Seshadri S, DeStefano AL, Au R, Massaro JM, Beiser AS et al. 2007. Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham Study. BMC Med. Genet. 8:Suppl. 1S15
    [Google Scholar]
  99. 99. 
    Li H, Lv C, Yang C, Wei D, Chen K et al. 2017. SORL1 rs1699102 polymorphism modulates age-related cognitive decline and gray matter volume reduction in non-demented individuals. Eur. J. Neurol. 24:187–94
    [Google Scholar]
  100. 100. 
    Chou CT, Liao YC, Lee WJ, Wang SJ, Fuh JL 2016. SORL1 gene, plasma biomarkers, and the risk of Alzheimer's disease for the Han Chinese population in Taiwan. Alzheimer's Res. Ther. 8:53
    [Google Scholar]
  101. 101. 
    Liu F, Ikram MA, Janssens AC, Schuur M, de Koning I et al. 2009. A study of the SORL1 gene in Alzheimer's disease and cognitive function. J. Alzheimer's Dis. 18:51–64
    [Google Scholar]
  102. 102. 
    Reynolds CA, Zavala C, Gatz M, Vie L, Johansson B et al. 2013. Sortilin receptor 1 predicts longitudinal cognitive change. Neurobiol. Aging 34:1710e11–18
    [Google Scholar]
  103. 103. 
    Liang Y, Li H, Lv C, Shu N, Chen K et al. 2015. Sex moderates the effects of the Sorl1 gene rs2070045 polymorphism on cognitive impairment and disruption of the cingulum integrity in healthy elderly. Neuropsychopharmacology 40:1519–27
    [Google Scholar]
  104. 104. 
    Nettiksimmons J, Tranah G, Evans DS, Yokoyama JS, Yaffe K 2016. Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. Age 38:41
    [Google Scholar]
  105. 105. 
    Korthauer LE, Awe E, Frahmand M, Driscoll I 2018. Genetic risk for age-related cognitive impairment does not predict cognitive performance in middle age. J. Alzheimer's Dis. 64:459–71
    [Google Scholar]
  106. 106. 
    Di Maria E, Cammarata S, Parodi MI, Borghi R, Benussi L et al. 2010. The H1 haplotype of the tau gene (MAPT) is associated with mild cognitive impairment. J. Alzheimer's Dis. 19:909–14
    [Google Scholar]
  107. 107. 
    Samaranch L, Cervantes S, Barabash A, Alonso A, Cabranes JA et al. 2010. The effect of MAPT H1 and APOE ε4 on transition from mild cognitive impairment to dementia. J. Alzheimer's Dis. 22:1065–71
    [Google Scholar]
  108. 108. 
    Staffaroni AM, Bajorek L, Casaletto KB, Cobigo Y, Goh SM et al. 2019. Assessment of executive function declines in presymptomatic and mildly symptomatic familial frontotemporal dementia: NIH-EXAMINER as a potential clinical trial endpoint. Alzheimer's Dement 16:11–21
    [Google Scholar]
  109. 109. 
    Gerstenecker A, Roberson ED, Schellenberg GD, Standaert DG, Shprecher DR et al. 2017. Genetic influences on cognition in progressive supranuclear palsy. Mov. Disord. 32:1764–71
    [Google Scholar]
  110. 110. 
    Mata IF, Leverenz JB, Weintraub D, Trojanowski JQ, Hurtig HI et al. 2014. APOE, MAPT, and SNCA genes and cognitive performance in Parkinson disease. JAMA Neurol 71:1405–12
    [Google Scholar]
  111. 111. 
    Engelman CD, Darst BF, Bilgel M, Vasiljevic E, Koscik RL et al. 2018. The effect of rare variants in TREM2 and PLD3 on longitudinal cognitive function in the Wisconsin Registry for Alzheimer's Prevention. Neurobiol. Aging 66:177e1–5
    [Google Scholar]
  112. 112. 
    Andrews SJ, Das D, Anstey KJ, Easteal S 2017. Late onset Alzheimer's disease risk variants in cognitive decline: the PATH Through Life study. J. Alzheimer's Dis. 57:423–36
    [Google Scholar]
  113. 113. 
    Cruz-Sanabria F, Bonilla-Vargas K, Estrada K, Mancera O, Vega E et al. 2018. Analysis of cognitive performance and polymorphisms of SORL1, PVRL2, CR1, TOMM40, APOE, PICALM, GWAS_14q, CLU, and BIN1 in patients with mild cognitive impairment and cognitively healthy controls. Neurologia https://doi.org/10.1016/j.nrl.2018.07.002
    [Crossref] [Google Scholar]
  114. 114. 
    Franzmeier N, Rubinski A, Neitzel J, Ewers MAlzheimer's Dis. Neuroimag. Initiat 2019. The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory. Nat. Commun. 10:1766
    [Google Scholar]
  115. 115. 
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE et al. 2003. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39:409–21
    [Google Scholar]
  116. 116. 
    Oakley H, Cole SL, Logan S, Maus E, Shao P et al. 2006. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26:10129–40
    [Google Scholar]
  117. 117. 
    Youssef SA, Capucchio MT, Rofina JE, Chambers JK, Uchida K et al. 2016. Pathology of the aging brain in domestic and laboratory animals, and animal models of human neurodegenerative diseases. Vet. Pathol. 53:327–48
    [Google Scholar]
  118. 118. 
    Wisniewski HM, Ghetti B, Terry RD 1973. Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J. Neuropathol. Exp. Neurol. 32:566–84
    [Google Scholar]
  119. 119. 
    Johnstone EM, Chaney MO, Norris FH, Pascual R, Little SP 1991. Conservation of the sequence of the Alzheimer's disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Mol. Brain Res. 10:299–305
    [Google Scholar]
  120. 120. 
    Bons N, Rieger F, Prudhomme D, Fisher A, Krause KH 2006. Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer's disease. Genes Brain Behav 5:120–30
    [Google Scholar]
  121. 121. 
    Cork LC, Powers RE, Selkoe DJ, Davies P, Geyer JJ, Price DL 1988. Neurofibrillary tangles and senile plaques in aged bears. J. Neuropathol. Exp. Neurol. 47:629–41
    [Google Scholar]
  122. 122. 
    Nelson PT, Greenberg SG, Saper CB 1994. Neurofibrillary tangles in the cerebral cortex of sheep. Neurosci. Lett. 170:187–90
    [Google Scholar]
  123. 123. 
    Ruehl WW, Bruyette DS, DePaoli A, Cotman CW, Head E et al. 1995. Canine cognitive dysfunction as a model for human age-related cognitive decline, dementia and Alzheimer's disease: clinical presentation, cognitive testing, pathology and response to 1-deprenyl therapy. Prog. Brain Res. 106:217–25
    [Google Scholar]
  124. 124. 
    Sarasa M, Pesini P. 2009. Natural non-transgenic animal models for research in Alzheimer's disease. Curr. Alzheimer's Res. 6:171–78
    [Google Scholar]
  125. 125. 
    Struble RG, Price DL Jr, Cork LC, Price DL 1985. Senile plaques in cortex of aged normal monkeys. Brain Res 361:267–75
    [Google Scholar]
  126. 126. 
    Latimer CS, Shively CA, Keene CD, Jorgensen MJ, Andrews RN et al. 2019. A nonhuman primate model of early Alzheimer's disease pathologic change: implications for disease pathogenesis. Alzheimer's Dement 15:93–105
    [Google Scholar]
  127. 127. 
    Kobayashi DT, Chen KS. 2005. Behavioral phenotypes of amyloid-based genetically modified mouse models of Alzheimer's disease. Genes Brain Behav 4:173–96
    [Google Scholar]
  128. 128. 
    Games D, Adams D, Alessandrini R, Barbour R, Berthelette P et al. 1995. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–27
    [Google Scholar]
  129. 129. 
    Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y et al. 1996. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102
    [Google Scholar]
  130. 130. 
    Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C et al. 1997. Two amyloid precursor protein transgenic mouse models with Alzheimer disease–like pathology. PNAS 94:13287–92
    [Google Scholar]
  131. 131. 
    Chishti MA, Yang DS, Janus C, Phinney AL, Horne P et al. 2001. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 276:21562–70
    [Google Scholar]
  132. 132. 
    Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G et al. 1999. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. PNAS 96:3228–33
    [Google Scholar]
  133. 133. 
    Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S 1997. Skeletal and CNS defects in presenilin-1-deficient mice. Cell 89:629–39
    [Google Scholar]
  134. 134. 
    Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K et al. 1999. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. PNAS 96:11872–77
    [Google Scholar]
  135. 135. 
    Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S et al. 1998. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4:97–100
    [Google Scholar]
  136. 136. 
    Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S et al. 2001. Mice deficient in BACE1, the Alzheimer's beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat. Neurosci. 4:231–32
    [Google Scholar]
  137. 137. 
    Harrison SM, Harper AJ, Hawkins J, Duddy G, Grau E et al. 2003. BACE1 (beta-secretase) transgenic and knockout mice: identification of neurochemical deficits and behavioral changes. Mol. Cell Neurosci. 24:646–55
    [Google Scholar]
  138. 138. 
    Moechars D, Lorent K, De Strooper B, Dewachter I, Van Leuven F 1996. Expression in brain of amyloid precursor protein mutated in the alpha-secretase site causes disturbed behavior, neuronal degeneration and premature death in transgenic mice. EMBO J 15:1265–74
    [Google Scholar]
  139. 139. 
    Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM 2005. Intraneuronal Aβ causes the onset of early Alzheimer's disease–related cognitive deficits in transgenic mice. Neuron 45:675–88
    [Google Scholar]
  140. 140. 
    Oddo S, Vasilevko V, Caccamo A, Kitazawa M, Cribbs DH, LaFerla FM 2006. Reduction of soluble Aβ and tau, but not soluble Aβ alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. J. Biol. Chem. 281:39413–23
    [Google Scholar]
  141. 141. 
    Ohno M, Cole SL, Yasvoina M, Zhao J, Citron M et al. 2007. BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiol. Dis. 26:134–45
    [Google Scholar]
  142. 142. 
    Youmans KL, Tai LM, Nwabuisi-Heath E, Jungbauer L, Kanekiyo T et al. 2012. APOE4-specific changes in Aβ accumulation in a new transgenic mouse model of Alzheimer disease. J. Biol. Chem. 287:41774–86
    [Google Scholar]
  143. 143. 
    LaFerla FM, Green KN. 2012. Animal models of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2:a006320
    [Google Scholar]
  144. 144. 
    Rosenberg JB, Kaplitt MG, De BP, Chen A, Flagiello T et al. 2018. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer's disease. Hum. Gene Ther. Clin. Dev. 29:24–47
    [Google Scholar]
  145. 145. 
    Klein RL, Dayton RD, Tatom JB, Henderson KM, Henning PP 2008. AAV8, 9, Rh10, Rh43 vector gene transfer in the rat brain: effects of serotype, promoter and purification method. Mol. Ther. 16:89–96
    [Google Scholar]
  146. 146. 
    Ubhi K, Rockenstein E, Doppler E, Mante M, Adame A et al. 2009. Neurofibrillary and neurodegenerative pathology in APP-transgenic mice injected with AAV2-mutant TAU: neuroprotective effects of Cerebrolysin. Acta Neuropathol 117:699–712
    [Google Scholar]
  147. 147. 
    Chu J, Giannopoulos PF, Ceballos-Diaz C, Golde TE, Pratico D 2012. Adeno-associated virus-mediated brain delivery of 5-lipoxygenase modulates the AD-like phenotype of APP mice. Mol. Neurodegener. 7:1
    [Google Scholar]
  148. 148. 
    Drummond ES, Muhling J, Martins RN, Wijaya LK, Ehlert EM, Harvey AR 2013. Pathology associated with AAV mediated expression of beta amyloid or C100 in adult mouse hippocampus and cerebellum. PLOS ONE 8:e59166
    [Google Scholar]
  149. 149. 
    Combs B, Kneynsberg A, Kanaan NM 2016. Gene therapy models of Alzheimer's disease and other dementias. Methods Mol. Biol. 1382:339–66
    [Google Scholar]
  150. 150. 
    Ittner LM, Klugmann M, Ke YD 2019. Adeno-associated virus–based Alzheimer's disease mouse models and potential new therapeutic avenues. Br. J. Pharmacol. 176:3649–65
    [Google Scholar]
  151. 151. 
    Zhao L, Gottesdiener AJ, Parmar M, Li M, Kaminsky SM et al. 2016. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer's disease mouse models. Neurobiol. Aging 44:159–72
    [Google Scholar]
  152. 152. 
    Wang QH, Wang YR, Zhang T, Jiao SS, Liu YH et al. 2016. Intramuscular delivery of p75NTR ectodomain by an AAV vector attenuates cognitive deficits and Alzheimer's disease-like pathologies in APP/PS1 transgenic mice. J. Neurochem. 138:163–73
    [Google Scholar]
  153. 153. 
    Yang J, Kou J, Lalonde R, Fukuchi KI 2017. Intracranial IL-17A overexpression decreases cerebral amyloid angiopathy by upregulation of ABCA1 in an animal model of Alzheimer's disease. Brain Behav. Immun. 65:262–73
    [Google Scholar]
  154. 154. 
    He Y, Pan S, Xu M, He R, Huang W et al. 2017. Adeno-associated virus 9–mediated Cdk5 inhibitory peptide reverses pathologic changes and behavioral deficits in the Alzheimer's disease mouse model. FASEB J 31:3383–92
    [Google Scholar]
  155. 155. 
    Patterson C, Feightner JW, Garcia A, Hsiung G-YR, MacKnight C, Sadovnick AD 2008. Diagnosis and treatment of dementia. 1. Risk assessment and primary prevention of Alzheimer disease. CMAJ 178:548–56
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032551
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032551
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error