1932

Abstract

Over the last four decades, the cancer biology field has concentrated on cellular and microenvironmental drivers of metastasis. Despite this focus, mortality rates upon diagnosis of metastatic disease remain essentially unchanged. Would a small change in perspective help? Knowing what constitutes an inhospitable, rather than hospitable, microenvironment could provide the inspiration necessary to develop better therapies and preventative strategies. In this review, we canvas the literature for hints about what characteristics four common antimetastatic niches—skeletal muscle, spleen, thyroid, and yellow bone marrow—have in common. We posit that thorough molecular and mechanistic characterization of antimetastatic tissues may inspire reimagined therapies that inhibit metastatic development and/or progression in an enduring manner.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032647
2021-01-24
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/16/1/annurev-pathmechdis-012419-032647.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032647&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Poste G, Fidler IJ. 1980. The pathogenesis of cancer metastasis. Nature 283:139–46
    [Google Scholar]
  2. 2. 
    Fidler IJ. 2003. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat. Rev. Cancer 3:453–58
    [Google Scholar]
  3. 3. 
    Paget S. 1889. The distribution of secondary growths in cancer of the breast. Lancet 133:3421571–73
    [Google Scholar]
  4. 4. 
    Hart IR, Fidler IJ. 1980. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res 40:72281–87
    [Google Scholar]
  5. 5. 
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A et al. 2015. Tumour exosome integrins determine organotropic metastasis. Nature 527:7578329–35
    [Google Scholar]
  6. 6. 
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L et al. 2005. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:7069820–27
    [Google Scholar]
  7. 7. 
    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H et al. 2015. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17:6816–26
    [Google Scholar]
  8. 8. 
    Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B et al. 2012. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18:6883–91
    [Google Scholar]
  9. 9. 
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM et al. 2003. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:6537–49
    [Google Scholar]
  10. 10. 
    Bos PD, Zhang XHF, Nadal C, Shu W, Gomis RR et al. 2009. Genes that mediate breast cancer metastasis to the brain. Nature 459:72491005–9
    [Google Scholar]
  11. 11. 
    Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W et al. 2005. Genes that mediate breast cancer metastasis to lung. Nature 436:7050518–24
    [Google Scholar]
  12. 12. 
    Ewing J. 1922. Metastasis. Neoplastic Diseases: A Treatise on Tumours76–88 Philadelphia/London: W. B. Saunders Co.
    [Google Scholar]
  13. 13. 
    Coman DR, DeLong RP. 1951. The role of the vertebral venous system in the metastasis of cancer to the spinal column: experiments with tumor-cell suspensions in rats and rabbits. Cancer 4:3610–18
    [Google Scholar]
  14. 14. 
    Weiss L, Bronk J, Pickren JW, Lane WW 1981. Metastatic patterns and target organ arterial blood flow. Invasion Metastasis 1:2126–35
    [Google Scholar]
  15. 15. 
    Follain G, Osmani N, Azevedo AS, Allio G, Mercier L et al. 2018. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev. Cell 45:133–52.e12
    [Google Scholar]
  16. 16. 
    Riihimäki M, Hemminki A, Sundquist K, Sundquist J, Hemminki K 2016. Metastatic spread in patients with gastric cancer. Oncotarget 7:3252307–16
    [Google Scholar]
  17. 17. 
    Weiss L, Grundmann E, Torhorst J, Hartveit F, Moberg I et al. 1986. Haematogenous metastastic patterns in colonic carcinoma: an analysis of 1541 necropsies. J. Pathol. 150:3195–203
    [Google Scholar]
  18. 18. 
    Zeidman I, Buss J. 1952. Transpulmonary passage of tumor cell emboli. Cancer Res 12:731–33
    [Google Scholar]
  19. 19. 
    diSibio G, French SW. 2008. Metastatic patterns of cancers results from a large autopsy study. Arch. Pathol. Lab. Med. 132:931–39
    [Google Scholar]
  20. 20. 
    Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z et al. 2018. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20:3332–43
    [Google Scholar]
  21. 21. 
    Wculek SK, Malanchi I. 2015. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528:7582413–17
    [Google Scholar]
  22. 22. 
    Duda DG, Duyverman AMMJ, Kohno M, Snuderl M, Steller EJA et al. 2010. Malignant cells facilitate lung metastasis by bringing their own soil. PNAS 107:5021677–82
    [Google Scholar]
  23. 23. 
    Wortzel I, Dror S, Kenific CM, Lyden D 2019. Exosome-mediated metastasis: communication from a distance. Dev. Cell 49:3347–60
    [Google Scholar]
  24. 24. 
    Psaila B, Lyden D. 2009. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 9:285–93
    [Google Scholar]
  25. 25. 
    Oskarsson T, Acharyya S, Zhang XHF, Vanharanta S, Tavazoie SF et al. 2011. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17:7867–74
    [Google Scholar]
  26. 26. 
    Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S et al. 2009. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:7225102–6
    [Google Scholar]
  27. 27. 
    Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA et al. 2012. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:737985–89
    [Google Scholar]
  28. 28. 
    O'Connell JT, Sugimoto H, Cooke VG, MacDonald BA, Mehta AI et al. 2011. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. PNAS 108:3816002–7
    [Google Scholar]
  29. 29. 
    Willis RA. 1952. The Spread of Tumours in the Human Body London: Butterworth & Co.
  30. 30. 
    Lam KY, Victor F. 2000. Metastatic tumors to the spleen: a 25-year clinicopathologic study. Arch. Pathol. Lab. Med. 124:526–30
    [Google Scholar]
  31. 31. 
    Nixon IJ, Coca-Pelaz A, Kaleva AI, Triantafyllou A, Angelos P et al. 2017. Metastasis to the thyroid gland: a critical review. Ann. Surg. Oncol. 24:1533–39
    [Google Scholar]
  32. 32. 
    Surov A, Hainz M, Holzhausen H-J, Arnold D, Katzer M et al. 2010. Skeletal muscle metastases: primary tumours, prevalence, and radiological features. Eur. Radiol. 20:3649–58
    [Google Scholar]
  33. 33. 
    Haygood TM, Wong J, Lin JC, Li S, Matamoros A et al. 2012. Skeletal muscle metastases: a three-part study of a not-so-rare entity. Skelet. Radiol. 41:8899–909
    [Google Scholar]
  34. 34. 
    Klein CA. 2009. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9:302–12
    [Google Scholar]
  35. 35. 
    Hosseini H, Obradovic MMS, Hoffmann M, Harper KL, Sosa MS et al. 2016. Early dissemination seeds metastasis in breast cancer. Nature 540:7634552–58
    [Google Scholar]
  36. 36. 
    Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF et al. 2016. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540:7634588–92
    [Google Scholar]
  37. 37. 
    Hüsemann Y, Geigl JB, Schubert F, Musiani P, Meyer M et al. 2008. Systemic spread is an early step in breast cancer. Cancer Cell 13:158–68
    [Google Scholar]
  38. 38. 
    Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM et al. 2012. EMT and dissemination precede pancreatic tumor formation. Cell 148:1–2349–61
    [Google Scholar]
  39. 39. 
    Eyles J, Puaux AL, Wang X, Toh B, Prakash C et al. 2010. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Investig. 120:62030–39
    [Google Scholar]
  40. 40. 
    Rhim AD, Thege FI, Santana SM, Lannin TB, Saha TN et al. 2014. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 146:3647–51
    [Google Scholar]
  41. 41. 
    Schardt JA, Meyer M, Hartmann CH, Schubert F, Schmidt-Kittler O et al. 2005. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8:3227–39
    [Google Scholar]
  42. 42. 
    Barnhill RL, Piepkorn MW, Cochran AJ, Flynn E, Karaoli T, Folkman J 1998. Tumor vascularity, proliferation, and apoptosis in human melanoma micrometastases and macrometastases. Arch. Dermatol. 134:8991–94
    [Google Scholar]
  43. 43. 
    Meltzer A. 1990. Dormancy and breast cancer. J. Surg. Oncol. 43:3181–88
    [Google Scholar]
  44. 44. 
    Karrison TG, Ferguson DJ, Meier P 1999. Dormancy of mammary carcinoma after mastectomy. J. Natl. Cancer Inst. 91:180–85
    [Google Scholar]
  45. 45. 
    Rinker-Schaeffer CW, Welch DR, Sokoloff M 2000. Defining the biologic role of genes that regulate prostate cancer metastasis. Curr. Opin. Urol. 10:5397–401
    [Google Scholar]
  46. 46. 
    Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ et al. 2013. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15:7807–17
    [Google Scholar]
  47. 47. 
    Seely S. 1980. Possible reasons for the high resistance of muscle to cancer. Med. Hypotheses 6:2133–37
    [Google Scholar]
  48. 48. 
    Weiss L, Orr FW, Honn KV 1988. Interactions of cancer cells with the microvasculature during metastasis. FASEB J 2:112–21
    [Google Scholar]
  49. 49. 
    Weiss L. 1992. Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin. Exp. Metastasis 10:191–99
    [Google Scholar]
  50. 50. 
    Morris VL, MacDonald IC, Koop S, Schmidt EE, Chambers AF, Groom AC 1993. Early interactions of cancer cells with the microvasculature in mouse liver and muscle during hematogenous metastasis: videomicroscopic analysis. Clin. Exp. Metastasis 11:5377–90
    [Google Scholar]
  51. 51. 
    Weiss L. 1989. Biomechanical destruction of cancer cells in skeletal muscle: a rate-regulator for hematogenous metastasis. Clin. Exp. Metastasis 7:5483–91
    [Google Scholar]
  52. 52. 
    Weiss L, Nannmark U, Johansson BR, Bagge U 1992. Lethal deformation of cancer cells in the microcirculation: a potential rate regulator of hematogenous metastasis. Int. J. Cancer 50:1103–7
    [Google Scholar]
  53. 53. 
    Sancricca C. 2010. Vessel-associated stem cells from skeletal muscle: from biology to future uses in cell therapy. World J. Stem Cells 2:339–49
    [Google Scholar]
  54. 54. 
    Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R et al. 2006. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444:7119574–79
    [Google Scholar]
  55. 55. 
    Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L et al. 1985. Plasticity of the differentiated state. Science 230:4727758–66
    [Google Scholar]
  56. 56. 
    Parlakian A, Gomaa I, Solly S, Arandel L, Mahale A et al. 2010. Skeletal muscle phenotypically converts and selectively inhibits metastatic cells in mice. PLOS ONE 5:2e9299
    [Google Scholar]
  57. 57. 
    Djaldetti M, Sredni B, Zigelman R, Verber M, Fishman P 1996. Muscle cells produce a low molecular weight factor with anti-cancer activity. Clin. Exp. Metastasis 14:3189–96
    [Google Scholar]
  58. 58. 
    Fishman P, Bar-Yehuda S, Vagman L 1998. Adenosine and other low molecular weight factors released by muscle cells inhibit tumor cell growth. Cancer Res 58:3181–87
    [Google Scholar]
  59. 59. 
    Bar-Yehuda S, Barer F, Volfsson L, Fishman P 2001. Resistance of muscle to tumor metastases: a role for A3 adenosine receptor agonists. Neoplasia 3:2125–31
    [Google Scholar]
  60. 60. 
    Dumont NA, Wang YX, Rudnicki MA 2015. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142:1572–81
    [Google Scholar]
  61. 61. 
    Mauro A. 1961. Satellite cell of skeletal muscle fibers. J. Cell Biol. 9:2493–95
    [Google Scholar]
  62. 62. 
    Schultz E. 1996. Satellite cell proliferative compartments in growing skeletal muscles. Dev. Biol. 175:184–94
    [Google Scholar]
  63. 63. 
    Kuang S, Kuroda K, Le Grand F, Rudnicki MA 2007. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:5999–1010
    [Google Scholar]
  64. 64. 
    Baghdadi MB, Castel D, Machado L, Fukada S-I, Birk DE et al. 2018. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature 557:714–18
    [Google Scholar]
  65. 65. 
    Brö D, Vasyutina E, Czajkowski MT, Griger J, Rassek C et al. 2012. Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on Notch signals. Dev. Cell 23:469–81
    [Google Scholar]
  66. 66. 
    Kuroda K, Tani S, Tamura K, Minoguchi S, Kurooka H, Honjo T 1999. Delta-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J. Biol. Chem. 274:117238–44
    [Google Scholar]
  67. 67. 
    Delfini MC, Hirsinger E, Pourquie O, Duprez D 2000. Delta 1-activated Notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 127:235213–24
    [Google Scholar]
  68. 68. 
    Kopan R, Ilagan MXG. 2009. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–33
    [Google Scholar]
  69. 69. 
    Danza G, Di Serio C, Ambrosio MR, Sturli N, Lonetto G et al. 2013. Notch3 is activated by chronic hypoxia and contributes to the progression of human prostate cancer. Int. J. Cancer 133:112577–86
    [Google Scholar]
  70. 70. 
    Hayashi T, Gust KM, Wyatt AW, Goriki A, Jäger W et al. 2016. Not all NOTCH is created equal: the oncogenic role of NOTCH2 in bladder cancer and its implications for targeted therapy. Clin. Cancer Res. 22:122981–92
    [Google Scholar]
  71. 71. 
    Ai Q, Ma X, Huang Q, Liu S, Shi T et al. 2012. High-level expression of Notch1 increased the risk of metastasis in T1 stage clear cell renal cell carcinoma. PLOS ONE 7:4e35022
    [Google Scholar]
  72. 72. 
    O'Neill CF, Urs S, Cinelli C, Lincoln A, Nadeau RJ et al. 2007. Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am. J. Pathol. 171:31023–36
    [Google Scholar]
  73. 73. 
    Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD et al. 2001. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 61:73200–5
    [Google Scholar]
  74. 74. 
    Goel AJ, Rieder MK, Arnold HH, Radice GL, Krauss RS 2017. Niche cadherins control the quiescence-to-activation transition in muscle stem cells. Cell Rep 21:82236–50
    [Google Scholar]
  75. 75. 
    Kalluri R, Weinberg RA. 2009. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 119:1420–28
    [Google Scholar]
  76. 76. 
    Niess AM. 2007. Response and adaptation of skeletal muscle to exercise—the role of reactive oxygen species. Front. Biosci. 12:124826
    [Google Scholar]
  77. 77. 
    Jackson MJ. 2011. Control of reactive oxygen species production in contracting skeletal muscle. Antioxid. Redox Signal. 15:92477–86
    [Google Scholar]
  78. 78. 
    Powers SK, Ji LL, Kavazis AN, Jackson MJ 2011. Reactive oxygen species: impact on skeletal muscle. Compr. Physiol. 1:2941–69
    [Google Scholar]
  79. 79. 
    Khassaf M, McArdle A, Esanu C, Vasilaki A, McArdle F et al. 2003. Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J. Physiol. 549:2645–52
    [Google Scholar]
  80. 80. 
    McClung JM, Judge AR, Talbert EE, Powers SK 2009. Calpain-1 is required for hydrogen peroxide-induced myotube atrophy. Am. J. Physiol. Cell Physiol. 296:2C363–71
    [Google Scholar]
  81. 81. 
    McArdle A, Pattwell D, Vasilaki A, Griffiths RD, Jackson MJ 2001. Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am. J. Physiol. Cell Physiol. 280:621–27
    [Google Scholar]
  82. 82. 
    McArdle F, Spiers S, Aldemir H, Vasilaki A, Beaver A et al. 2004. Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice. J. Physiol. 561:1233–44
    [Google Scholar]
  83. 83. 
    Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE et al. 2015. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527:7577186–91
    [Google Scholar]
  84. 84. 
    Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK et al. 2015. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 7:308308re8
    [Google Scholar]
  85. 85. 
    Nguyen A, Loo JM, Mital R, Weinberg EM, Man FY et al. 2016. PKLR promotes colorectal cancer liver colonization through induction of glutathione synthesis. J. Clin. Investig. 126:2681–94
    [Google Scholar]
  86. 86. 
    Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ 1992. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. PNAS 89:199064–68
    [Google Scholar]
  87. 87. 
    Bissell MJ, Hall HG, Parry G 1982. How does the extracellular matrix direct gene expression. J. Theor. Biol. 99:131–68
    [Google Scholar]
  88. 88. 
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI et al. 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:3241–54
    [Google Scholar]
  89. 89. 
    Levental KR, Yu H, Kass L, Lakins JN, Egeblad M et al. 2009. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:5891–906
    [Google Scholar]
  90. 90. 
    Rizwan A, Bulte C, Kalaichelvan A, Cheng M, Krishnamachary B et al. 2015. Metastatic breast cancer cells in lymph nodes increase nodal collagen density. Sci. Rep. 5:110002
    [Google Scholar]
  91. 91. 
    Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ 2006. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4:138
    [Google Scholar]
  92. 92. 
    Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I et al. 2010. Metastatic growth from dormant cells induced by a Col-I-enriched fibrotic environment. Cancer Res 70:145706–16
    [Google Scholar]
  93. 93. 
    Bissell MJ, Hall HG, Parry G 1982. How does the extracellular matrix direct gene expression. J. Theor. Biol. 99:131–68
    [Google Scholar]
  94. 94. 
    Sanes JR. 2003. The basement membrane/basal lamina of skeletal muscle. J. Biol. Chem. 278:12601–4
    [Google Scholar]
  95. 95. 
    Boudreau N, Sympson CJ, Werb Z, Bissell MJ 1995. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:5199891–93
    [Google Scholar]
  96. 96. 
    Spencer VA, Costes S, Inman JL, Xu R, Chen J et al. 2011. Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J. Cell Sci. 124:1123–32
    [Google Scholar]
  97. 97. 
    Fiore APZP, Spencer VA, Mori H, Carvalho HF, Bissell MJ, Bruni-Cardoso A 2017. Laminin-111 and the level of nuclear actin regulate epithelial quiescence via exportin-6. Cell Rep 19:102102–15
    [Google Scholar]
  98. 98. 
    Albrengues J, Shields MA, Ng D, Park CG, Ambrico A et al. 2018. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361:6409eaao4227
    [Google Scholar]
  99. 99. 
    Compérat E, Bardier-Dupas A, Camparo P, Capron F, Charlotte F 2007. Splenic metastases: clinicopathologic presentation, differential diagnosis, and pathogenesis. Arch. Pathol. Lab. Med. 131:965–69
    [Google Scholar]
  100. 100. 
    Okuyama T. 2001. Isolated splenic metastasis of sigmoid colon cancer: a case report. Jpn. J. Clin. Oncol. 31:7341–45
    [Google Scholar]
  101. 101. 
    Genç V, Akbari M, Karaca AS, Çakmak A, Ekıncı C, Gürel M 2010. Why is isolated spleen metastasis a rare entity. Turk. J. Gastroenterol. 21:4452–53
    [Google Scholar]
  102. 102. 
    Efared B, Mazti A, Atsame-Ebang G, Tahiri L, El Bouhaddouti H et al. 2016. An unusual site of metastasis: splenic metastastasis from a colon cancer. J. Surg. Case Rep. 10:rjw175
    [Google Scholar]
  103. 103. 
    Warren S, Davis A. 1934. Studies on tumor metastasis. The metastasis of carcinoma to the spleen. Am. J. Cancer 21:3517–33
    [Google Scholar]
  104. 104. 
    Abi Saad GS, Hussein M, El-Saghir NS, Termos S, Sharara AI, Shamseddine A 2011. Isolated splenic metastasis from colorectal cancer. Int. J. Clin. Oncol. 16:306–13
    [Google Scholar]
  105. 105. 
    Berge T. 1974. Splenic metastases. Acta Pathol. Microbiol. Scand. 82A:4499–506
    [Google Scholar]
  106. 106. 
    Müller A, Homey B, Soto H, Ge N, Catron D et al. 2001. Involvement of chemokine receptors in breast cancer metastasis. Nature 410:682450–56
    [Google Scholar]
  107. 107. 
    Miller JN, Milton GW. 1965. An experimental comparison between tumour growth in the spleen and liver. J. Pathol. Bacteriol. 90:2515–21
    [Google Scholar]
  108. 108. 
    Iype S, Akbar MA, Krishna G 2002. Isolated splenic metastasis from carcinoma of the breast. Postgr. Med. J. 78:173–74
    [Google Scholar]
  109. 109. 
    O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA et al. 1994. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:2315–28
    [Google Scholar]
  110. 110. 
    Saboo SS, Krajewski KM, O'Regan KN, Giardino A, Brown JR et al. 2012. Spleen in haematological malignancies: spectrum of imaging findings. Br. J. Radiol. 85:81–92
    [Google Scholar]
  111. 111. 
    Chiabrando D, Vinchi F, Fiorito V, Mercurio S, Tolosano E 2014. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front. Pharmacol. 5:61
    [Google Scholar]
  112. 112. 
    Kovtunovych G, Eckhaus MA, Ghosh MC, Ollivierre-Wilson H, Rouault TA 2010. Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution. Blood 116:266054–62
    [Google Scholar]
  113. 113. 
    Everse J, Hsia N. 1997. The toxicities of native and modified hemoglobins. Free Radic. Biol. Med. 22:61075–99
    [Google Scholar]
  114. 114. 
    Nixon IJ, Whitcher M, Glick J, Palmer FL, Shaha AR et al. 2011. Surgical management of metastases to the thyroid gland. Ann. Surg. Oncol. 18:3800–4
    [Google Scholar]
  115. 115. 
    Plonczak AM, Dimarco AN, Dina R, Gujral DJ, Palazzo FF 2017. Breast cancer metastases to the thyroid gland—an uncommon sentinel for diffuse metastatic disease: a case report and review of the literature. J. Med. Case Rep. 11:269
    [Google Scholar]
  116. 116. 
    Khalil J, Elomrani F, Benoulaid M, Elkacemi H, Kebdani T et al. 2015. Isolated thyroid metastasis revealed an unknown lung adenocarcinoma: a case report. J. Med. Case Rep. 9:1221
    [Google Scholar]
  117. 117. 
    Chung AY, Tran TB, Brumund KT, Weisman RA, Bouvet M 2012. Metastases to the thyroid: a review of the literature from the last decade. Thyroid 22:3258–68
    [Google Scholar]
  118. 118. 
    Cordes M, Kuwert T. 2014. Metastases of non-thyroidal tumors to the thyroid gland: a regional survey in Middle Franconia. Exp. Clin. Endocrinol. Diabetes 122:273–76
    [Google Scholar]
  119. 119. 
    Chung HR. 2014. Iodine and thyroid function. Ann. Pediatr. Endocrinol. Metab. 19:18–12
    [Google Scholar]
  120. 120. 
    Schmitz G. 2001. The oxidation of iodine to iodate by hydrogen peroxide. Phys. Chem. Chem. Phys. 3:214741–46
    [Google Scholar]
  121. 121. 
    Poncin S, Gérard A-C, Boucquey M, Senou M, Calderon PB et al. 2008. Oxidative stress in the thyroid gland: from harmlessness to hazard depending on the iodine content. Endocrinology 149:1424–33
    [Google Scholar]
  122. 122. 
    Uyttersprot N, Pelgrims N, Carrasco N, Gervy C, Maenhaut C et al. 1997. Moderate doses of iodide in vivo inhibit cell proliferation and the expression of thyroperoxidase and Na+/I symporter mRNAs in dog thyroid. Mol. Cell. Endocrinol. 131:2195–203
    [Google Scholar]
  123. 123. 
    Contempré B, De Escobar GM, Denef JF, Dumont JE, Many MC 2004. Thiocyanate induces cell necrosis and fibrosis in selenium- and iodine-deficient rat thyroids: a potential experimental model for myxedematous endemic cretinism in central Africa. Endocrinology 145:2994–1002
    [Google Scholar]
  124. 124. 
    Contempré B, Denef JF, Dumont JE, Many MC 1993. Selenium deficiency aggravates the necrotizing effects of a high iodide dose in iodine deficient rats. Endocrinology 132:41866–68
    [Google Scholar]
  125. 125. 
    Goddard ET, Bozic I, Riddell SR, Ghajar CM 2018. Dormant tumour cells, their niches and the influence of immunity. Nat. Cell Biol. 20:111240–49
    [Google Scholar]
  126. 126. 
    Yamauchi K. 2016. Thyroid hormones. Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research Y Takei, H Ando, K Tsutsui 493–503 Oxford, UK: Acad. Press
    [Google Scholar]
  127. 127. 
    Nilsson M, Fagman H. 2017. Development of the thyroid gland. Development 144:2123–40
    [Google Scholar]
  128. 128. 
    Montesinos MDM, Pellizas CG. 2019. Thyroid hormone action on innate immunity. Front. Endocrinol. 10:350
    [Google Scholar]
  129. 129. 
    van der Spek AH, Fliers E, Boelen A 2017. Thyroid hormone metabolism in innate immune cells. J. Endocrinol. 232:2R67–81
    [Google Scholar]
  130. 130. 
    Köhrle J. 2018. Thyroid hormones and derivatives: endogenous thyroid hormones and their targets. Thyroid Hormone Nuclear Receptor M Plateroti, J Samarut 85–104 Methods Mol. Biol., Vol. 1801 New York: Humana Press Inc.
    [Google Scholar]
  131. 131. 
    Mould RC, Van Vloten JP, AuYeung AWK, Karimi K, Bridle BW 2017. Immune responses in the thyroid cancer microenvironment: making immunotherapy a possible mission. Endocr. Relat. Cancer 24:T311–29
    [Google Scholar]
  132. 132. 
    Mascanfroni I, Montesinos MDM, Susperreguy S, Cervi L, Ilarregui JM et al. 2008. Control of dendritic cell maturation and function by triiodothyronine. FASEB J 22:41032–42
    [Google Scholar]
  133. 133. 
    Hodkinson CF, Simpson EEA, Beattie JH, O'Connor JM, Campbell DJ et al. 2009. Preliminary evidence of immune function modulation by thyroid hormones in healthy men and women aged 55–70 years. J. Endocrinol. 202:155–63
    [Google Scholar]
  134. 134. 
    Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J et al. 2008. Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:93108–14
    [Google Scholar]
  135. 135. 
    Braun S, Vogl FD, Naume B, Janni W, Osborne MP et al. 2005. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353:8793–802
    [Google Scholar]
  136. 136. 
    Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D et al. 2018. Quantitative MRI and spectroscopy of bone marrow. J. Magn. Reson. Imaging 47:332–53
    [Google Scholar]
  137. 137. 
    Al-Muqbel KM. 2017. Bone marrow metastasis is an early stage of bone metastasis in breast cancer detected clinically by F18-FDG-PET/CT imaging. BioMed Res. Int. 2017:9852632
    [Google Scholar]
  138. 138. 
    Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T et al. 2017. Bone marrow adipocytes. Adipocyte 6:3193–204
    [Google Scholar]
  139. 139. 
    Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ 2009. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:7252259–63
    [Google Scholar]
  140. 140. 
    Cahu X, Calvo J, Poglio S, Prade N, Colsch B et al. 2017. Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia. Blood Adv 1:201760–72
    [Google Scholar]
  141. 141. 
    Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S et al. 2015. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat. Commun. 6:7808
    [Google Scholar]
  142. 142. 
    Tavassoli M. 1976. Marrow adipose cells. Histochemical identification of labile and stable components. Arch. Pathol. Lab. Med. 100:116–18
    [Google Scholar]
  143. 143. 
    Ramasamy SK, Kusumbe AP, Itkin T, Gur-Cohen S, Lapidot T, Adams RH 2016. Regulation of hematopoiesis and osteogenesis by blood vessel–derived signals. Annu. Rev. Cell Dev. Biol. 32:649–75
    [Google Scholar]
  144. 144. 
    Kusumbe AP, Ramasamy SK, Adams RH 2014. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507:7492323–28
    [Google Scholar]
  145. 145. 
    Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK et al. 2016. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:7599323–28
    [Google Scholar]
  146. 146. 
    Aguirre-Ghiso JA. 2007. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7:834–46
    [Google Scholar]
  147. 147. 
    Carlson P, Dasgupta A, Grzelak CA, Kim J, Barrett A et al. 2019. Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat. Cell Biol. 21:2238–50
    [Google Scholar]
  148. 148. 
    Mulcrone PL, Campbell JP, Clément-Demange L, Anbinder AL, Merkel AR et al. 2017. Skeletal colonization by breast cancer cells is stimulated by an osteoblast and β2AR-dependent neo-angiogenic switch. J. Bone Miner. Res. 32:71442–54
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032647
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032647
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error