1932

Abstract

Recent molecular genetic findings on endometriosis and normal endometrium suggest a modified model in which circulating epithelial progenitor or stem cells intended to regenerate uterine endometrium after menstruation may become overreactive and trapped outside the uterus. These trapped epithelium-committed progenitor cells form nascent glands through clonal expansion and recruit polyclonal stromal cells, leading to the establishment of deep infiltrating endometriosis. Once formed, the ectopic tissue becomes subject to immune surveillance, resulting in chronic inflammation. The inflammatory response orchestrated by nuclear factor-κB signaling is exacerbated by aberrations in the estrogen receptor-β and progesterone receptor pathways, which are also affected by local inflammation, forming a dysregulated inflammation–hormonal loop. Glandular epithelium within endometriotic tissue harbors cancer-associated mutations that are frequently detected in endometriosis-related ovarian cancers. In this review, we summarize recent advances that have illuminated the origin and pathogenesis of endometriosis and have provided new avenues for research that promise to improve the early diagnosis and management of endometriosis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-012419-032654
2020-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathmechdis-012419-032654.html?itemId=/content/journals/10.1146/annurev-pathmechdis-012419-032654&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dyson MT, Roqueiro D, Monsivais D, Ercan CM, Pavone ME et al. 2014. Genome-wide DNA methylation analysis predicts an epigenetic switch for GATA factor expression in endometriosis. PLOS Genet 10:e1004158
    [Google Scholar]
  2. 2. 
    Burney RO, Giudice LC. 2012. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 98:511–19
    [Google Scholar]
  3. 3. 
    Simoens S, Dunselman G, Dirksen C, Hummelshoj L, Bokor A et al. 2012. The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum. Reprod. 27:1292–99
    [Google Scholar]
  4. 4. 
    Olovsson M. 2011. Immunological aspects of endometriosis: an update. Am. J. Reprod. Immunol. 66:Suppl. 1101–4
    [Google Scholar]
  5. 5. 
    Baranov VS, Ivaschenko TE, Liehr T, Yarmolinskaya MI 2015. Systems genetics view of endometriosis: a common complex disorder. Eur. J. Obstet. Gynecol. Reprod. Biol. 185:59–65
    [Google Scholar]
  6. 6. 
    Williams C, Long AJ, Noga H, Allaire C, Bedaiwy MA et al. 2018. East and South East Asian ethnicity and moderate-to-severe endometriosis. J. Minim. Invasive Gynecol. 26:507–15
    [Google Scholar]
  7. 7. 
    Missmer SA, Hankinson SE, Spiegelman D, Barbieri RL, Malspeis S et al. 2004. Reproductive history and endometriosis among premenopausal women. Obstet. Gynecol. 104:965–74
    [Google Scholar]
  8. 8. 
    McLeod BS, Retzloff MG. 2010. Epidemiology of endometriosis: an assessment of risk factors. Clin. Obstet. Gynecol. 53:389–96
    [Google Scholar]
  9. 9. 
    Shafrir AL, Farland LV, Shah DK, Harris HR, Kvaskoff M et al. 2018. Risk for and consequences of endometriosis: a critical epidemiologic review. Best Pract. Res. Clin. Obstet. Gynaecol. 51:1–15
    [Google Scholar]
  10. 10. 
    Sapkota Y, Steinthorsdottir V, Morris AP, Fassbender A, Rahmioglu N et al. 2017. Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism. Nat. Commun. 8:15539
    [Google Scholar]
  11. 11. 
    Matalliotaki C, Matalliotakis M, Ieromonachou P, Goulielmos GN, Zervou MI et al. 2018. Co-existence of benign gynecological tumors with endometriosis in a group of 1,000 women. Oncol. Lett. 15:1529–32
    [Google Scholar]
  12. 12. 
    Harris HR, Costenbader KH, Mu F, Kvaskoff M, Malspeis S et al. 2016. Endometriosis and the risks of systemic lupus erythematosus and rheumatoid arthritis in the Nurses’ Health Study II. Ann. Rheum. Dis. 75:1279–84
    [Google Scholar]
  13. 13. 
    Nielsen NM, Jorgensen KT, Pedersen BV, Rostgaard K, Frisch M 2011. The co-occurrence of endometriosis with multiple sclerosis, systemic lupus erythematosus and Sjögren syndrome. Hum. Reprod. 26:1555–59
    [Google Scholar]
  14. 14. 
    Barbieri RL. 1998. Stenosis of the external cervical os: an association with endometriosis in women with chronic pelvic pain. Fertil. Steril. 70:571–73
    [Google Scholar]
  15. 15. 
    Ness RB, Cramer DW, Goodman MT, Kjaer SK, Mallin K et al. 2002. Infertility, fertility drugs, and ovarian cancer: a pooled analysis of case-control studies. Am. J. Epidemiol. 155:217–24
    [Google Scholar]
  16. 16. 
    Alderman MH 3rd, Yoder N, Taylor HS 2017. The systemic effects of endometriosis. Semin. Reprod. Med. 35:263–70
    [Google Scholar]
  17. 17. 
    Sanfilippo JS, Wakim NG, Schikler KN, Yussman MA 1986. Endometriosis in association with uterine anomaly. Am. J. Obstet. Gynecol. 154:39–43
    [Google Scholar]
  18. 18. 
    D'Hooghe TM, Debrock S. 2002. Endometriosis, retrograde menstruation and peritoneal inflammation in women and in baboons. Hum. Reprod. Update 8:84–88
    [Google Scholar]
  19. 19. 
    Suda K, Nakaoka H, Yoshihara K, Ishiguro T, Tamura R et al. 2018. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep 24:1777–89
    [Google Scholar]
  20. 20. 
    Tampaki EC, Tampakis A, Kontzoglou K, Kouraklis G 2017. Commentary: somatic stem cells and their dysfunction in endometriosis. Front. Surg. 4:37
    [Google Scholar]
  21. 21. 
    Valentijn AJ, Palial K, Al-Lamee H, Tempest N, Drury J et al. 2013. SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum. Reprod. 28:2695–708
    [Google Scholar]
  22. 22. 
    Gil-Sanchis C, Cervello I, Mas A, Faus A, Pellicer A et al. 2013. Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) as a putative human endometrial stem cell marker. Mol. Hum. Reprod. 19:407–14
    [Google Scholar]
  23. 23. 
    Nguyen HPT, Xiao L, Deane JA, Tan KS, Cousins FL et al. 2017. N-cadherin identifies human endometrial epithelial progenitor cells by in vitro stem cell assays. Hum. Reprod. 32:2254–68
    [Google Scholar]
  24. 24. 
    Chan RW, Schwab KE, Gargett CE 2004. Clonogenicity of human endometrial epithelial and stromal cells. Biol. Reprod. 70:1738–50
    [Google Scholar]
  25. 25. 
    Gunjal P, Bhartiya D, Metkari S, Manjramkar D, Patel H 2015. Very small embryonic-like stem cells are the elusive mouse endometrial stem cells—a pilot study. J. Ovarian Res. 8:9
    [Google Scholar]
  26. 26. 
    Bhartiya D, James K. 2017. Very small embryonic-like stem cells (VSELs) in adult mouse uterine perimetrium and myometrium. J. Ovarian Res. 10:29
    [Google Scholar]
  27. 27. 
    Parasar P, Sacha CR, Ng N, McGuirk ER, Chinthala S et al. 2017. Differentiating mouse embryonic stem cells express markers of human endometrium. Reprod. Biol. Endocrinol. 15:52
    [Google Scholar]
  28. 28. 
    Becker CM, Beaudry P, Funakoshi T, Benny O, Zaslavsky A et al. 2011. Circulating endothelial progenitor cells are up-regulated in a mouse model of endometriosis. Am. J. Pathol. 178:1782–91
    [Google Scholar]
  29. 29. 
    Taylor HS. 2004. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 292:81–85
    [Google Scholar]
  30. 30. 
    Mints M, Jansson M, Sadeghi B, Westgren M, Uzunel M et al. 2008. Endometrial endothelial cells are derived from donor stem cells in a bone marrow transplant recipient. Hum. Reprod. 23:139–43
    [Google Scholar]
  31. 31. 
    Ikoma T, Kyo S, Maida Y, Ozaki S, Takakura M et al. 2009. Bone marrow–derived cells from male donors can compose endometrial glands in female transplant recipients. Am. J. Obstet. Gynecol. 201:608.e1–e8
    [Google Scholar]
  32. 32. 
    Du H, Taylor HS. 2007. Contribution of bone marrow–derived stem cells to endometrium and endometriosis. Stem Cells 25:2082–86
    [Google Scholar]
  33. 33. 
    Bratincsak A, Brownstein MJ, Cassiani-Ingoni R, Pastorino S, Szalayova I et al. 2007. CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells 25:2820–26
    [Google Scholar]
  34. 34. 
    Sakr S, Naqvi H, Komm B, Taylor HS 2014. Endometriosis impairs bone marrow–derived stem cell recruitment to the uterus whereas bazedoxifene treatment leads to endometriosis regression and improved uterine stem cell engraftment. Endocrinology 155:1489–97
    [Google Scholar]
  35. 35. 
    Kulak J Jr., Fischer C, Komm B, Taylor HS. 2011. Treatment with bazedoxifene, a selective estrogen receptor modulator, causes regression of endometriosis in a mouse model. Endocrinology 152:3226–32
    [Google Scholar]
  36. 36. 
    Singh S, Singh UP, Grizzle WE, Lillard JW Jr 2004. CXCL12–CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab. Investig. 84:1666–76
    [Google Scholar]
  37. 37. 
    Chu CY, Cha ST, Chang CC, Hsiao CH, Tan CT et al. 2007. Involvement of matrix metalloproteinase-13 in stromal-cell-derived factor 1α-directed invasion of human basal cell carcinoma cells. Oncogene 26:2491–501
    [Google Scholar]
  38. 38. 
    Lai CY, Yamazaki S, Okabe M, Suzuki S, Maeyama Y et al. 2014. Stage-specific roles for Cxcr4 signaling in murine hematopoietic stem/progenitor cells in the process of bone marrow repopulation. Stem Cells 32:1929–42
    [Google Scholar]
  39. 39. 
    Hattori K, Heissig B, Rafii S 2003. The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1. Leuk. Lymphoma 44:575–82
    [Google Scholar]
  40. 40. 
    Moridi I, Mamillapalli R, Cosar E, Ersoy GS, Taylor HS 2017. Bone marrow stem cell chemotactic activity is induced by elevated CXCl12 in endometriosis. Reprod. Sci. 24:526–33
    [Google Scholar]
  41. 41. 
    Leconte M, Chouzenoux S, Nicco C, Chereau C, Arkwright S et al. 2014. Role of the CXCL12–CXCR4 axis in the development of deep rectal endometriosis. J. Reprod. Immunol. 103:45–52
    [Google Scholar]
  42. 42. 
    Figueira PG, Abrao MS, Krikun G, Taylor HS 2011. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann. N. Y. Acad. Sci. 1221:10–17
    [Google Scholar]
  43. 43. 
    Nezhat C, King LP, Paka C, Odegaard J, Beygui R 2012. Bilateral thoracic endometriosis affecting the lung and diaphragm. JSLS 16:140–42
    [Google Scholar]
  44. 44. 
    Li F, Alderman MH 3rd, Tal A, Mamillapalli R, Coolidge A et al. 2018. Hematogenous dissemination of mesenchymal stem cells from endometriosis. Stem Cells 36:881–90
    [Google Scholar]
  45. 45. 
    Santamaria X, Massasa EE, Taylor HS 2012. Migration of cells from experimental endometriosis to the uterine endometrium. Endocrinology 153:5566–74
    [Google Scholar]
  46. 46. 
    Anglesio MS, Papadopoulos N, Ayhan A, Nazeran TM, Noë M et al. 2017. Cancer-associated mutations in endometriosis without cancer. N. Engl. J. Med. 376:1835–48
    [Google Scholar]
  47. 47. 
    Noë M, Ayhan A, Wang TL, Shih IM 2018. Independent development of endometrial epithelium and stroma within the same endometriosis. J. Pathol. 245:265–69
    [Google Scholar]
  48. 48. 
    Lac V, Verhoef L, Aguirre-Hernandez R, Nazeran TM, Tessier-Cloutier B et al. 2019. Iatrogenic endometriosis harbors somatic cancer-driver mutations. Hum. Reprod. 34:69–78
    [Google Scholar]
  49. 49. 
    Anglesio MS, Bashashati A, Wang YK, Senz J, Ha G et al. 2015. Multifocal endometriotic lesions associated with cancer are clonal and carry a high mutation burden. J. Pathol. 236:201–9
    [Google Scholar]
  50. 50. 
    Vogelstein B, Kinzler KW. 2015. The path to cancer—three strikes and you're out. N. Engl. J. Med. 373:1895–98
    [Google Scholar]
  51. 51. 
    Chui MH, Wang TL, Shih IM 2017. Endometriosis: benign, malignant, or something in between?. Oncotarget 8:78263–64
    [Google Scholar]
  52. 52. 
    Wilbur MA, Shih IM, Segars JH, Fader AN 2017. Cancer implications for patients with endometriosis. Semin. Reprod. Med. 35:110–16
    [Google Scholar]
  53. 53. 
    Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D et al. 2005. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat. Med. 11:63–70
    [Google Scholar]
  54. 54. 
    Cheng CW, Licence D, Cook E, Luo F, Arends MJ et al. 2011. Activation of mutated K-ras in donor endometrial epithelium and stroma promotes lesion growth in an intact immunocompetent murine model of endometriosis. J. Pathol. 224:261–69
    [Google Scholar]
  55. 55. 
    Yoo JY, Kim TH, Fazleabas AT, Palomino WA, Ahn SH et al. 2017. KRAS activation and over-expression of SIRT1/BCL6 contributes to the pathogenesis of endometriosis and progesterone resistance. Sci. Rep. 7:6765
    [Google Scholar]
  56. 56. 
    Grechukhina O, Petracco R, Popkhadze S, Massasa E, Paranjape T et al. 2012. A polymorphism in a let-7 microRNA binding site of KRAS in women with endometriosis. EMBO Mol. Med. 4:206–17
    [Google Scholar]
  57. 57. 
    Wu RC, Wang TL, Shih IM 2014. The emerging roles of ARID1A in tumor suppression. Cancer Biol. Ther. 15:655–24
    [Google Scholar]
  58. 58. 
    Guan B, Mao TL, Panuganti PK, Kuhn E, Kurman RJ et al. 2011. Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am. J. Surg. Pathol. 35:625–32
    [Google Scholar]
  59. 59. 
    Guan B, Wang TL, Shih IM 2011. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res 71:6718–27
    [Google Scholar]
  60. 60. 
    Jones S, Wang TL, Shih IM, Mao TL, Nakayama K et al. 2010. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330:228–31
    [Google Scholar]
  61. 61. 
    Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K et al. 2010. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363:1532–43
    [Google Scholar]
  62. 62. 
    Maeda D, Mao TL, Fukayama M, Nakagawa S, Yano T et al. 2010. Clinicopathological significance of loss of ARID1A immunoreactivity in ovarian clear cell carcinoma. Int. J. Mol. Sci. 11:5120–28
    [Google Scholar]
  63. 63. 
    Borghese B, Barbaux S, Mondon F, Santulli P, Pierre G et al. 2010. Genome-wide profiling of methylated promoters in endometriosis reveals a subtelomeric location of hypermethylation. Mol. Endocrinol. 24:1872–85
    [Google Scholar]
  64. 64. 
    Wang L, Zhao J, Li Y, Wang Z, Kang S 2019. Genome-wide analysis of DNA methylation in endometriosis using Illumina Human Methylation 450 K BeadChips. Mol. Reprod. Dev. 86:491–501
    [Google Scholar]
  65. 65. 
    Xue Q, Lin Z, Cheng YH, Huang CC, Marsh E et al. 2007. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol. Reprod. 77:681–87
    [Google Scholar]
  66. 66. 
    Xue Q, Lin Z, Yin P, Milad MP, Cheng YH et al. 2007. Transcriptional activation of steroidogenic factor-1 by hypomethylation of the 5′ CpG island in endometriosis. J. Clin. Endocrinol. Metab. 92:3261–67
    [Google Scholar]
  67. 67. 
    Izawa M, Taniguchi F, Terakawa N, Harada T 2013. Epigenetic aberration of gene expression in endometriosis. Front. Biosci. 5:900–10
    [Google Scholar]
  68. 68. 
    Wu Y, Halverson G, Basir Z, Strawn E, Yan P et al. 2005. Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am. J. Obstet. Gynecol. 193:371–80
    [Google Scholar]
  69. 69. 
    Bernardi LA, Dyson MT, Tokunaga H, Sison C, Oral M et al. 2018. The essential role of GATA6 in the activation of estrogen synthesis in endometriosis. Reprod. Sci. 26:60–69
    [Google Scholar]
  70. 70. 
    Yamagata Y, Asada H, Tamura I, Lee L, Maekawa R et al. 2009. DNA methyltransferase expression in the human endometrium: down-regulation by progesterone and estrogen. Hum. Reprod. 24:1126–32
    [Google Scholar]
  71. 71. 
    Dyson MT, Kakinuma T, Pavone ME, Monsivais D, Navarro A et al. 2015. Aberrant expression and localization of deoxyribonucleic acid methyltransferase 3B in endometriotic stromal cells. Fertil. Steril. 104:953–63.e2
    [Google Scholar]
  72. 72. 
    Ibrahim SA, Hassan H, Gotte M 2014. MicroRNA-dependent targeting of the extracellular matrix as a mechanism of regulating cell behavior. Biochim. Biophys. Acta Gen. Subj. 1840:2609–20
    [Google Scholar]
  73. 73. 
    Ambros V. 2004. The functions of animal microRNAs. Nature 431:350–55
    [Google Scholar]
  74. 74. 
    Ebert MS, Sharp PA. 2012. Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–24
    [Google Scholar]
  75. 75. 
    Raposo G, Stoorvogel W. 2013. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200:373–83
    [Google Scholar]
  76. 76. 
    Braicu C, Tomuleasa C, Monroig P, Cucuianu A, Berindan-Neagoe I et al. 2015. Exosomes as divine messengers: Are they the Hermes of modern molecular oncology?. Cell Death Differ 22:34–45
    [Google Scholar]
  77. 77. 
    Finn NA, Eapen D, Manocha P, Al Kassem H, Lassegue B et al. 2013. Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Lett 587:3456–63
    [Google Scholar]
  78. 78. 
    Kosaka N, Yoshioka Y, Hagiwara K, Tominaga N, Katsuda T et al. 2013. Trash or treasure: extracellular microRNAs and cell-to-cell communication. Front. Genet. 4:173
    [Google Scholar]
  79. 79. 
    Ibrahim SA, Yip GW, Stock C, Pan JW, Neubauer C et al. 2012. Targeting of syndecan-1 by microRNA miR-10b promotes breast cancer cell motility and invasiveness via a Rho-GTPase- and E-cadherin-dependent mechanism. Int. J. Cancer 131:E884–96
    [Google Scholar]
  80. 80. 
    Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P et al. 2009. MicroRNA-regulated pathways associated with endometriosis. Mol. Endocrinol. 23:265–75
    [Google Scholar]
  81. 81. 
    Hsiao KY, Lin SC, Wu MH, Tsai SJ 2015. Pathological functions of hypoxia in endometriosis. Front. Biosci. 7:309–21
    [Google Scholar]
  82. 82. 
    Lin SC, Wang CC, Wu MH, Yang SH, Li YH et al. 2012. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J. Clin. Endocrinol. Metab. 97:E1515–23
    [Google Scholar]
  83. 83. 
    Eggers JC, Martino V, Reinbold R, Schafer SD, Kiesel L et al. 2016. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod. Biomed. Online 32:434–45
    [Google Scholar]
  84. 84. 
    Sahin C, Mamillapalli R, Yi KW, Taylor HS 2018. microRNA Let-7b: a novel treatment for endometriosis. J. Cell. Mol. Med. 22:5346–53
    [Google Scholar]
  85. 85. 
    Agrawal S, Tapmeier T, Rahmioglu N, Kirtley S, Zondervan K et al. 2018. The miRNA mirage: How close are we to finding a non-invasive diagnostic biomarker in endometriosis? A systematic review. Int. J. Mol. Sci. 19:599
    [Google Scholar]
  86. 86. 
    Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P 2018. Endometriosis. Nat. Rev. Dis. Primers 4:9
    [Google Scholar]
  87. 87. 
    Giudice LC, Kao LC. 2004. Endometriosis. Lancet 364:1789–99
    [Google Scholar]
  88. 88. 
    Grund EM, Kagan D, Tran CA, Zeitvogel A, Starzinski-Powitz A et al. 2008. Tumor necrosis factor-α regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor κB in human endometriotic epithelial cells. Mol. Pharmacol. 73:1394–404
    [Google Scholar]
  89. 89. 
    Tseng JF, Ryan IP, Milam TD, Murai JT, Schriock ED et al. 1996. Interleukin-6 secretion in vitro is up-regulated in ectopic and eutopic endometrial stromal cells from women with endometriosis. J. Clin. Endocrinol. Metab. 81:1118–22
    [Google Scholar]
  90. 90. 
    Noble LS, Takayama K, Zeitoun KM, Putman JM, Johns DA et al. 1997. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J. Clin. Endocrinol. Metab. 82:600–6
    [Google Scholar]
  91. 91. 
    Noble LS, Simpson ER, Johns A, Bulun SE 1996. Aromatase expression in endometriosis. J. Clin. Endocrinol. Metab. 81:174–79
    [Google Scholar]
  92. 92. 
    Juhasz-Boss I, Fischer C, Lattrich C, Skrzypczak M, Malik E et al. 2011. Endometrial expression of estrogen receptor β and its splice variants in patients with and without endometriosis. Arch. Gynecol. Obstet. 284:885–91
    [Google Scholar]
  93. 93. 
    Han SJ, Hawkins SM, Begum K, Jung SY, Kovanci E et al. 2012. A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nat. Med. 18:1102–11
    [Google Scholar]
  94. 94. 
    Wu MH, Wang CA, Lin CC, Chen LC, Chang WC et al. 2005. Distinct regulation of cyclooxygenase-2 by interleukin-1β in normal and endometriotic stromal cells. J. Clin. Endocrinol. Metab. 90:286–95
    [Google Scholar]
  95. 95. 
    Tamura M, Sebastian S, Yang S, Gurates B, Fang Z et al. 2002. Interleukin-1β elevates cyclooxygenase-2 protein level and enzyme activity via increasing its mRNA stability in human endometrial stromal cells: an effect mediated by extracellularly regulated kinases 1 and 2. J. Clin. Endocrinol. Metab. 87:3263–73
    [Google Scholar]
  96. 96. 
    Bulun SE, Lin Z, Imir G, Amin S, Demura M et al. 2005. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol. Rev. 57:359–83
    [Google Scholar]
  97. 97. 
    Tsai SJ, Wu MH, Lin CC, Sun HS, Chen HM 2001. Regulation of steroidogenic acute regulatory protein expression and progesterone production in endometriotic stromal cells. J. Clin. Endocrinol. Metab. 86:5765–73
    [Google Scholar]
  98. 98. 
    Sun HS, Hsiao KY, Hsu CC, Wu MH, Tsai SJ 2003. Transactivation of steroidogenic acute regulatory protein in human endometriotic stromal cells is mediated by the prostaglandin EP2 receptor. Endocrinology 144:3934–42
    [Google Scholar]
  99. 99. 
    Bulun SE, Monsavais D, Pavone ME, Dyson M, Xue Q et al. 2012. Role of estrogen receptor-β in endometriosis. Semin. Reprod. Med. 30:39–45
    [Google Scholar]
  100. 100. 
    Ahn SH, Khalaj K, Young SL, Lessey BA, Koti M et al. 2016. Immune-inflammation gene signatures in endometriosis patients. Fertil. Steril. 106:1420–31.e7
    [Google Scholar]
  101. 101. 
    Capobianco A, Rovere-Querini P. 2013. Endometriosis, a disease of the macrophage. Front. Immunol. 4:9
    [Google Scholar]
  102. 102. 
    Schulke L, Berbic M, Manconi F, Tokushige N, Markham R et al. 2009. Dendritic cell populations in the eutopic and ectopic endometrium of women with endometriosis. Hum. Reprod. 24:1695–703
    [Google Scholar]
  103. 103. 
    Matarese G, De Placido G, Nikas Y, Alviggi C 2003. Pathogenesis of endometriosis: natural immunity dysfunction or autoimmune disease?. Trends Mol. Med. 9:223–28
    [Google Scholar]
  104. 104. 
    Berbic M, Hey-Cunningham AJ, Ng C, Tokushige N, Ganewatta S et al. 2010. The role of Foxp3+ regulatory T-cells in endometriosis: a potential controlling mechanism for a complex, chronic immunological condition. Hum. Reprod. 25:900–7
    [Google Scholar]
  105. 105. 
    Chen Y, Wang K, Xu Y, Guo P, Hong B et al. 2019. Alteration of myeloid-derived suppressor cells, chronic inflammatory cytokines, and exosomal miRNA contribute to the peritoneal immune disorder of patients with endometriosis. Reprod. Sci. 26:1130–38
    [Google Scholar]
  106. 106. 
    Berbic M, Schulke L, Markham R, Tokushige N, Russell P et al. 2009. Macrophage expression in endometrium of women with and without endometriosis. Hum. Reprod. 24:325–32
    [Google Scholar]
  107. 107. 
    Taniguchi K, Karin M. 2018. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18:309–24
    [Google Scholar]
  108. 108. 
    Jinawath N, Vasoontara C, Jinawath A, Fang X, Zhao K et al. 2010. Oncoproteomic analysis reveals co-upregulation of RELA and STAT5 in carboplatin resistant ovarian carcinoma. PLOS ONE 5:e11198
    [Google Scholar]
  109. 109. 
    Lebovic DI, Mueller MD, Taylor RN 2001. Immunobiology of endometriosis. Fertil. Steril. 75:1–10
    [Google Scholar]
  110. 110. 
    Gonzalez-Ramos R, Defrere S, Devoto L 2012. Nuclear factor-κB: a main regulator of inflammation and cell survival in endometriosis pathophysiology. Fertil. Steril. 98:520–28
    [Google Scholar]
  111. 111. 
    Gonzalez-Ramos R, Van Langendonckt A, Defrere S, Lousse JC, Colette S et al. 2010. Involvement of the nuclear factor-κB pathway in the pathogenesis of endometriosis. Fertil. Steril. 94:1985–94
    [Google Scholar]
  112. 112. 
    Azuma Y, Taniguchi F, Nakamura K, Nagira K, Khine YM et al. 2017. Lipopolysaccharide promotes the development of murine endometriosis-like lesions via the nuclear factor-κB pathway. Am. J. Reprod. Immunol. 77:e12631
    [Google Scholar]
  113. 113. 
    Celik O, Ersahin A, Acet M, Celik N, Baykus Y et al. 2016. Disulfiram, as a candidate NF-κB and proteasome inhibitor, prevents endometriotic implant growing in a rat model of endometriosis. Eur. Rev. Med. Pharmacol. Sci. 20:4380–89
    [Google Scholar]
  114. 114. 
    Salih HR, Goehlsdorf D, Steinle A 2006. Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum. Immunol. 67:188–95
    [Google Scholar]
  115. 115. 
    Salih HR, Rammensee HG, Steinle A 2002. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol. 169:4098–102
    [Google Scholar]
  116. 116. 
    Guo SW, Du Y, Liu X 2016. Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis. Hum. Reprod. 31:1462–74
    [Google Scholar]
  117. 117. 
    Kang YJ, Jeung IC, Park A, Park YJ, Jung H et al. 2014. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum. Reprod. 29:2176–89
    [Google Scholar]
  118. 118. 
    Yu JJ, Sun HT, Zhang ZF, Shi RX, Liu LB et al. 2016. IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis. Reproduction 152:151–60
    [Google Scholar]
  119. 119. 
    Yang HL, Zhou WJ, Chang KK, Mei J, Huang LQ et al. 2017. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-beta. Reproduction 154:815–25
    [Google Scholar]
  120. 120. 
    Wu L, Lv C, Su Y, Li C, Zhang H et al. 2018. Expression of programed death-1 (PD-1) and its ligand PD-L1 is upregulated in endometriosis and promoted by 17β-estradiol. Gynecol. Endocrinol. 35:251–56
    [Google Scholar]
  121. 121. 
    Al-Sabbagh M, Lam EW, Brosens JJ 2012. Mechanisms of endometrial progesterone resistance. Mol. Cell. Endocrinol. 358:208–15
    [Google Scholar]
  122. 122. 
    Han SJ, Jung SY, Wu SP, Hawkins SM, Park MJ et al. 2015. Estrogen receptor β modulates apoptosis complexes and the inflammasome to drive the pathogenesis of endometriosis. Cell 163:960–74
    [Google Scholar]
  123. 123. 
    Bulun SE, Cheng YH, Yin P, Imir G, Utsunomiya H et al. 2006. Progesterone resistance in endometriosis: link to failure to metabolize estradiol. Mol. Cell. Endocrinol. 248:94–103
    [Google Scholar]
  124. 124. 
    Am. Coll. Obstet. Gynecol 2010. Practice bulletin no. 114: management of endometriosis. Obstet. Gynecol 116:223–36
    [Google Scholar]
  125. 125. 
    Pract. Comm. Am. Soc. Reprod. Med 2014. Treatment of pelvic pain associated with endometriosis: a committee opinion. Fertil. Steril 101:927–35
    [Google Scholar]
  126. 126. 
    Kurman RJ, Shih IM. 2016. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. Am. J. Pathol. 186:733–47
    [Google Scholar]
  127. 127. 
    Maeda D, Shih IM. 2013. Pathogenesis and the role of ARID1A mutation in endometriosis-related ovarian neoplasms. Adv. Anat. Pathol. 20:45–52
    [Google Scholar]
  128. 128. 
    Wu RC, Veras E, Lin J, Gerry E, Bahadirli-Talbott A et al. 2017. Elucidating the pathogenesis of synchronous and metachronous tumors in a woman with endometrioid carcinomas using a whole-exome sequencing approach. Cold Spring Harb. Mol. Case Stud. 3:a001693
    [Google Scholar]
  129. 129. 
    Ayhan A, Mao TL, Seckin T, Wu CH, Guan B et al. 2012. Loss of ARID1A expression is an early molecular event in tumor progression from ovarian endometriotic cyst to clear cell and endometrioid carcinoma. Int. J. Gynecol. Cancer 22:1310–15
    [Google Scholar]
  130. 130. 
    Wu RC, Ayhan A, Maeda D, Kim KR, Clarke BA et al. 2014. Frequent somatic mutations of the telomerase reverse transcriptase promoter in ovarian clear cell carcinoma but not in other major types of gynaecological malignancy. J. Pathol. 232:473–81
    [Google Scholar]
  131. 131. 
    Ayhan A, Kuhn E, Wu RC, Ogawa H, Bahadirli-Talbott A et al. 2017. CCNE1 copy-number gain and overexpression identify ovarian clear cell carcinoma with a poor prognosis. Mod. Pathol. 30:297–303
    [Google Scholar]
  132. 132. 
    Wang Y, Sundfeldt K, Mateoiu C, Shih IM, Kurman RJ et al. 2016. Diagnostic potential of tumor DNA from ovarian cyst fluid. eLife 5:e15175
    [Google Scholar]
  133. 133. 
    Schjenken JE, Panir K, Robertson SA, Hull ML 2019. Exosome-mediated intracellular signalling impacts the development of endometriosis—new avenues for endometriosis research. Mol. Hum. Reprod. 25:2–4
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-012419-032654
Loading
/content/journals/10.1146/annurev-pathmechdis-012419-032654
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error