1932

Abstract

The involvement of inflammasomes in the proinflammatory response observed in chronic liver diseases, such as alcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD), is widely recognized. Although there are different types of inflammasomes, most studies to date have given attention to NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3) in the pathogenesis of ALD, NAFLD/nonalcoholic steatohepatitis, and fibrosis. Canonical inflammasomes are intracellular multiprotein complexes that are assembled after the sensing of danger signals and activate caspase-1, which matures interleukin (IL)-1β, IL-18, and IL-37 and also induces a form of cell death called pyroptosis. Noncanonical inflammasomes activate caspase-11 to induce pyroptosis. We discuss the different types of inflammasomes involved in liver diseases with a focus on () signals and mechanisms of inflammasome activation, () the role of different types of inflammasomes and their products in the pathogenesis of liver diseases, and () potential therapeutic strategies targeting components of the inflammasomes or cytokines produced upon inflammasome activation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-032521-102529
2022-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathmechdis-032521-102529.html?itemId=/content/journals/10.1146/annurev-pathmechdis-032521-102529&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Asrani SK, Devarbhavi H, Eaton J, Kamath PS. 2019. Burden of liver diseases in the world. J. Hepatol. 70:151–71
    [Google Scholar]
  2. 2. 
    Sharma A, Nagalli S. 2021. Chronic Liver Disease. Treasure Island, FL: StatPearls
  3. 3. 
    Ohashi K, Pimienta M, Seki E. 2018. Alcoholic liver disease: a current molecular and clinical perspective. Liver Res 2:161–72
    [Google Scholar]
  4. 4. 
    Del Campo JA, Gallego P, Grande L 2018. Role of inflammatory response in liver diseases: therapeutic strategies. World J. Hepatol. 10:1–7
    [Google Scholar]
  5. 5. 
    Tanwar S, Rhodes F, Srivastava A, Trembling PM, Rosenberg WM. 2020. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J. Gastroenterol. 26:109–33
    [Google Scholar]
  6. 6. 
    Szabo G, Petrasek J. 2015. Inflammasome activation and function in liver disease. Nat. Rev. Gastroenterol. Hepatol. 12:387–400
    [Google Scholar]
  7. 7. 
    Kiziltas S. 2016. Toll-like receptors in pathophysiology of liver diseases. World J. Hepatol. 8:1354–69
    [Google Scholar]
  8. 8. 
    Broz P, Dixit VM. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16:407–20
    [Google Scholar]
  9. 9. 
    Proell M, Riedl SJ, Fritz JH, Rojas AM, Schwarzenbacher R. 2008. The Nod-like receptor (NLR) family: a tale of similarities and differences. PLOS ONE 3:e2119
    [Google Scholar]
  10. 10. 
    Malik A, Kanneganti T-D. 2017. Inflammasome activation and assembly at a glance. J. Cell Sci. 130:3955–63
    [Google Scholar]
  11. 11. 
    Mathur A, Hayward JA, Man SM. 2018. Molecular mechanisms of inflammasome signaling. J. Leukoc. Biol. 103:233–57
    [Google Scholar]
  12. 12. 
    Latz E, Xiao TS, Stutz A 2013. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13:397–411
    [Google Scholar]
  13. 13. 
    Luan J, Ju D. 2018. Inflammasome: a double-edged sword in liver diseases. Front. Immunol. 9:2201
    [Google Scholar]
  14. 14. 
    Khanova E, Wu R, Wang W, Yan R, Chen Y et al. 2018. Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients. Hepatology 67:1737–53
    [Google Scholar]
  15. 15. 
    Knorr J, Wree A, Tacke F, Feldstein AE 2020. The NLRP3 inflammasome in alcoholic and nonalcoholic steatohepatitis. Semin. Liver Dis. 40:3298–306
    [Google Scholar]
  16. 16. 
    Petrasek J, Bala S, Csak T, Lippai D, Kodys K et al. 2012. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Investig. 122:3476–89
    [Google Scholar]
  17. 17. 
    Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G 2011. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54:133–44
    [Google Scholar]
  18. 18. 
    Boaru SG, Borkham-Kamphorst E, Tihaa L, Haas U, Weiskirchen R. 2012. Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. J. Inflamm. 9:49
    [Google Scholar]
  19. 19. 
    Franklin BS, Latz E, Schmidt FI 2018. The intra-and extracellular functions of ASC specks. Immunol. Rev. 281:74–87
    [Google Scholar]
  20. 20. 
    He Y, Hara H, Núñez G. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41:1012–21
    [Google Scholar]
  21. 21. 
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11:136–40
    [Google Scholar]
  22. 22. 
    Zheng D, Kern L, Elinav E. 2021. The NLRP6 inflammasome. Immunology 162:281–89
    [Google Scholar]
  23. 23. 
    Kempster SL, Belteki G, Forhead AJ, Fowden AL, Catalano RD et al. 2011. Developmental control of the Nlrp6 inflammasome and a substrate, IL-18, in mammalian intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 300:2G253–63
    [Google Scholar]
  24. 24. 
    Wang P, Zhu S, Yang L, Cui S, Pan W et al. 2015. Nlrp6 regulates intestinal antiviral innate immunity. Science 350:826–30
    [Google Scholar]
  25. 25. 
    Ghimire L, Paudel S, Jin L, Jeyaseelan S 2020. The NLRP6 inflammasome in health and disease. Mucosal Immunol 13:388–98
    [Google Scholar]
  26. 26. 
    Hu Z, Zhou Q, Zhang C, Fan S, Cheng W et al. 2015. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350:399–404
    [Google Scholar]
  27. 27. 
    Kumari P, Russo AJ, Shivcharan S, Rathinam VA. 2020. AIM2 in health and disease: inflammasome and beyond. Immunol. Rev. 297:83–95
    [Google Scholar]
  28. 28. 
    Williams KL, Taxman DJ, Linhoff MW, Reed W, Ting JP-Y 2003. Cutting edge: Monarch-1: a pyrin/nucleotide-binding domain/leucine-rich repeat protein that controls classical and nonclassical MHC class I genes. J. Immunol. 170:5354–58
    [Google Scholar]
  29. 29. 
    Vladimer GI, Weng D, Paquette SWM, Vanaja SK, Rathinam VA et al. 2012. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37:96–107
    [Google Scholar]
  30. 30. 
    Ataide MA, Andrade WA, Zamboni DS, Wang D, do Carmo Souza M et al. 2014. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLOS Pathog. 10:e1003885
    [Google Scholar]
  31. 31. 
    Lich JD, Williams KL, Moore CB, Arthur JC, Davis BK et al. 2007. Cutting edge: Monarch-1 suppresses non-canonical NF-κB activation and p52-dependent chemokine expression in monocytes. J. Immunol. 178:1256–60
    [Google Scholar]
  32. 32. 
    Downs KP, Nguyen H, Dorfleutner A, Stehlik C. 2020. An overview of the non-canonical inflammasome. Mol. Aspects Med. 76:100924
    [Google Scholar]
  33. 33. 
    Zheng D, Liwinski T, Elinav E. 2020. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov. 6:36
    [Google Scholar]
  34. 34. 
    Yang D, He Y, Muñoz-Planillo R, Liu Q, Núñez G. 2015. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 43:923–32
    [Google Scholar]
  35. 35. 
    Zanoni I, Tan Y, Di Gioia M, Broggi A, Ruan J et al. 2016. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352:1232–36
    [Google Scholar]
  36. 36. 
    Arab JP, Arrese M, Trauner M 2018. Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu. Rev. Pathol. Mech. Dis. 13:321–50
    [Google Scholar]
  37. 37. 
    Piscaglia F, Svegliati-Baroni G, Barchetti A, Pecorelli A, Marinelli S et al. 2016. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: a multicenter prospective study. Hepatology 63:3827–38
    [Google Scholar]
  38. 38. 
    Bessone F, Razori MV, Roma MG. 2019. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell. Mol. Life Sci. 76:99–128
    [Google Scholar]
  39. 39. 
    Farrell G, Schattenberg JM, Leclercq I, Yeh MM, Goldin R et al. 2019. Mouse models of nonalcoholic steatohepatitis: toward optimization of their relevance to human nonalcoholic steatohepatitis. Hepatology 69:2241–57
    [Google Scholar]
  40. 40. 
    Ganz M, Bukong TN, Csak T, Saha B, Park J-K et al. 2015. Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat–cholesterol–sugar diet model in mice. J. Transl. Med. 13:193
    [Google Scholar]
  41. 41. 
    Lee H-M, Kim J-J, Kim HJ, Shong M, Ku BJ, Jo E-K. 2013. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 62:194–204
    [Google Scholar]
  42. 42. 
    Vandanmagsar B, Youm Y-H, Ravussin A, Galgani JE, Stadler K et al. 2011. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17:179–88
    [Google Scholar]
  43. 43. 
    Mitsuyoshi H, Yasui K, Hara T, Taketani H, Ishiba H et al. 2017. Hepatic nucleotide binding oligomerization domain-like receptors pyrin domain-containing 3 inflammasomes are associated with the histologic severity of non-alcoholic fatty liver disease. Hepatol. Res. 47:1459–68
    [Google Scholar]
  44. 44. 
    Wree A, McGeough MD, Peña CA, Schlattjan M, Li H et al. 2014. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J. Mol. Med. 92:1069–82
    [Google Scholar]
  45. 45. 
    Gaul S, Leszczynska A, Alegre F, Kaufmann B, Johnson CD et al. 2021. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J. Hepatol. 74:156–67
    [Google Scholar]
  46. 46. 
    Stienstra R, Van Diepen JA, Tack CJ, Zaki MH, Van De Veerdonk FL et al. 2011. Inflammasome is a central player in the induction of obesity and insulin resistance. PNAS 108:15324–29
    [Google Scholar]
  47. 47. 
    Dixon LJ, Flask CA, Papouchado BG, Feldstein AE, Nagy LE. 2013. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLOS ONE 8:e56100
    [Google Scholar]
  48. 48. 
    Pan J, Ou Z, Cai C, Li P, Gong J et al. 2018. Fatty acid activates NLRP3 inflammasomes in mouse Kupffer cells through mitochondrial DNA release. Cell. Immunol. 332:111–20
    [Google Scholar]
  49. 49. 
    Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. 2013. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57:577–89
    [Google Scholar]
  50. 50. 
    Blasetti Fantauzzi C, Menini S, Iacobini C, Rossi C, Santini E et al. 2017. Deficiency of the purinergic receptor 2X7 attenuates nonalcoholic steatohepatitis induced by high-fat diet: possible role of the NLRP3 inflammasome. Oxid. Med. Cell. Longev. 2017:8962458
    [Google Scholar]
  51. 51. 
    Das S, Seth RK, Kumar A, Kadiiska MB, Michelotti G et al. 2013. Purinergic receptor X7 is a key modulator of metabolic oxidative stress-mediated autophagy and inflammation in experimental nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G950–63
    [Google Scholar]
  52. 52. 
    Baeza-Raja B, Goodyear A, Liu X, Lam K, Yamamoto L et al. 2020. Pharmacological inhibition of P2RX7 ameliorates liver injury by reducing inflammation and fibrosis. PLOS ONE 15:e0234038
    [Google Scholar]
  53. 53. 
    Han CY, Rho HS, Kim A, Kim TH, Jang K et al. 2018. FXR inhibits endoplasmic reticulum stress-induced NLRP3 inflammasome in hepatocytes and ameliorates liver injury. Cell Rep 24:2985–99
    [Google Scholar]
  54. 54. 
    Mehal WZ. 2014. The inflammasome in liver injury and non-alcoholic fatty liver disease. Dig. Dis. 32:507–15
    [Google Scholar]
  55. 55. 
    Gupta N, Sahu A, Prabhakar A, Chatterjee T, Tyagi T et al. 2017. Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. PNAS 114:4763–68
    [Google Scholar]
  56. 56. 
    Wang X, de Carvalho Ribeiro M, Iracheta-Vellve A, Lowe P, Ambade A et al. 2019. Macrophage-specific hypoxia-inducible factor-1α contributes to impaired autophagic flux in nonalcoholic steatohepatitis. Hepatology 69:545–63
    [Google Scholar]
  57. 57. 
    Yang G, Lee HE, Lee JY 2016. A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet. Sci. Rep. 6:24399
    [Google Scholar]
  58. 58. 
    Kim SH, Kim G, Han DH, Lee M, Kim I et al. 2017. Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition. Autophagy 13:1767–81
    [Google Scholar]
  59. 59. 
    Al Mamun A, Akter A, Hossain S, Sarker T, Safa SA et al. 2020. Role of NLRP3 inflammasome in liver disease. J. Dig. Dis. 21:430–36
    [Google Scholar]
  60. 60. 
    Zhang N-P, Liu X-J, Xie L, Shen X-Z, Wu J. 2019. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. Lab. Investig. 99:749–63
    [Google Scholar]
  61. 61. 
    Tang Y, Cao G, Min X, Wang T, Sun S et al. 2018. Cathepsin B inhibition ameliorates the non-alcoholic steatohepatitis through suppressing caspase-1 activation. J. Physiol. Biochem. 74:503–10
    [Google Scholar]
  62. 62. 
    He K, Zhu X, Liu Y, Miao C, Wang T et al. 2017. Inhibition of NLRP3 inflammasome by thioredoxin-interacting protein in mouse Kupffer cells as a regulatory mechanism for non-alcoholic fatty liver disease development. Oncotarget 8:37657–72
    [Google Scholar]
  63. 63. 
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ et al. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–85
    [Google Scholar]
  64. 64. 
    Lee HJ, Yeon JE, Ko EJ, Yoon EL, Suh SJ et al. 2015. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease. World J. Gastroenterol. 21:12787–99
    [Google Scholar]
  65. 65. 
    Murphy AJ, Kraakman MJ, Kammoun HL, Dragoljevic D, Lee MK et al. 2016. IL-18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome. Cell Metab 23:155–64
    [Google Scholar]
  66. 66. 
    Liu X-J, Duan N-N, Liu C, Niu C, Liu X-P, Wu J. 2018. Characterization of a murine nonalcoholic steatohepatitis model induced by high fat high calorie diet plus fructose and glucose in drinking water. Lab. Investig. 98:1184–99
    [Google Scholar]
  67. 67. 
    Chen Y, Ma K 2019. NLRC4 inflammasome activation regulated by TNF-α promotes inflammatory responses in nonalcoholic fatty liver disease. Biochem. Biophys. Res. Commun. 511:524–30
    [Google Scholar]
  68. 68. 
    Ohashi K, Wang Z, Yang YM, Billet S, Tu W et al. 2019. NOD-like receptor C4 inflammasome regulates the growth of colon cancer liver metastasis in NAFLD. Hepatology 70:1582–99
    [Google Scholar]
  69. 69. 
    Lozano-Ruiz B, González-Navajas JM. 2020. The emerging relevance of AIM2 in liver disease. Int. J. Mol. Sci. 21:6535
    [Google Scholar]
  70. 70. 
    Csak T, Pillai A, Ganz M, Lippai D, Petrasek J et al. 2014. Both bone marrow-derived and non-bone marrow-derived cells contribute to AIM2 and NLRP3 inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. Liver Int 34:1402–13
    [Google Scholar]
  71. 71. 
    Ganz M, Csak T, Szabo G 2014. High fat diet feeding results in gender specific steatohepatitis and inflammasome activation. World J. Gastroenterol. 20:8525–34
    [Google Scholar]
  72. 72. 
    Gong Z, Zhang X, Su K, Jiang R, Sun Z et al. 2019. Deficiency in AIM2 induces inflammation and adipogenesis in white adipose tissue leading to obesity and insulin resistance. Diabetologia 62:2325–39
    [Google Scholar]
  73. 73. 
    Mellinger JL. 2019. Epidemiology of alcohol use and alcoholic liver disease. Clin. Liver Dis. 13:136–39
    [Google Scholar]
  74. 74. 
    Szabo G. 2017. Clinical trial design for alcoholic hepatitis. Sem. Liver Dis. 37:332–42
    [Google Scholar]
  75. 75. 
    Voican CS, Njiké-Nakseu M, Boujedidi H, Barri-Ova N, Bouchet-Delbos L et al. 2015. Alcohol withdrawal alleviates adipose tissue inflammation in patients with alcoholic liver disease. Liver Int 35:967–78
    [Google Scholar]
  76. 76. 
    McClain CJ, Cohen DA, Dinarello CA, Cannon JG, Shedlofsky SI, Kaplan AM. 1986. Serum interleukin-1 (IL-1) activity in alcoholic hepatitis. Life Sci 39:1479–85
    [Google Scholar]
  77. 77. 
    Petrasek J, Iracheta-Vellve A, Saha B, Satishchandran A, Kodys K et al. 2015. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease. J. Leukoc. Biol. 98:249–56
    [Google Scholar]
  78. 78. 
    Cui K, Yan G, Xu C, Chen Y, Wang J et al. 2015. Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1β in mice. J. Hepatol. 62:1311–18
    [Google Scholar]
  79. 79. 
    Iracheta-Vellve A, Petrasek J, Satishchandran A, Gyongyosi B, Saha B et al. 2015. Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J. Hepatol. 63:1147–55
    [Google Scholar]
  80. 80. 
    Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. 2004. Alcohol intake and risk of incident gout in men: a prospective study. Lancet 363:1277–81
    [Google Scholar]
  81. 81. 
    Heo MJ, Kim TH, You JS, Blaya D, Sancho-Bru P, Kim SG. 2019. Alcohol dysregulates miR-148a in hepatocytes through FoxO1, facilitating pyroptosis via TXNIP overexpression. Gut 68:708–20
    [Google Scholar]
  82. 82. 
    Hoyt LR, Randall MJ, Ather JL, DePuccio DP, Landry CC et al. 2017. Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome. Redox Biol 12:883–96
    [Google Scholar]
  83. 83. 
    Bukong TN, Iracheta-Vellve A, Saha B, Ambade A, Satishchandran A et al. 2016. Inhibition of spleen tyrosine kinase activation ameliorates inflammation, cell death, and steatosis in alcoholic liver disease. Hepatology 64:1057–71
    [Google Scholar]
  84. 84. 
    Ji X, Li L, Lu P, Li X, Tian D, Liu M 2020. NLRP6 exerts a protective role via NF-kB with involvement of CCL20 in a mouse model of alcoholic hepatitis. Biochem. Biophys. Res. Commun. 528:485–92
    [Google Scholar]
  85. 85. 
    Zhang Y-F, Bu F-T, Yin N-N, You H-M, Wang L et al. 2020. NLRP12 negatively regulates EtOH-induced liver macrophage activation via NF-κB pathway and mediates hepatocyte apoptosis in alcoholic liver injury. Int. Immunopharmacol. 88:106968
    [Google Scholar]
  86. 86. 
    Bataller R, Brenner DA. 2005. Liver fibrosis. J. Clin. Investig. 115:209–18
    [Google Scholar]
  87. 87. 
    Watanabe A, Sohail MA, Gomes DA, Hashmi A, Nagata J et al. 2009. Inflammasome-mediated regulation of hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G1248–57
    [Google Scholar]
  88. 88. 
    Jiang S, Zhang Y, Zheng J-H, Li X, Yao Y-L et al. 2017. Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation. Pharmacol. Res. 117:82–93
    [Google Scholar]
  89. 89. 
    Alyaseer AAA, de Lima MHS, Braga TT. 2020. The role of NLRP3 inflammasome activation in the epithelial to mesenchymal transition process during the fibrosis. Front. Immunol. 11:883
    [Google Scholar]
  90. 90. 
    Inzaugarat ME, Johnson CD, Holtmann TM, McGeough MD, Trautwein C et al. 2019. NLR family pyrin domain-containing 3 inflammasome activation in hepatic stellate cells induces liver fibrosis in mice. Hepatology 69:845–59
    [Google Scholar]
  91. 91. 
    Mridha AR, Wree A, Robertson AA, Yeh MM, Johnson CD et al. 2017. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66:1037–46
    [Google Scholar]
  92. 92. 
    Zhu Y, Ni T, Deng W, Lin J, Zheng L et al. 2018. Effects of NLRP6 on the proliferation and activation of human hepatic stellate cells. Exp. Cell Res. 370:383–88
    [Google Scholar]
  93. 93. 
    Lozano-Ruiz B, Bachiller V, García-Martínez I, Zapater P, Gómez-Hurtado I et al. 2015. Absent in melanoma 2 triggers a heightened inflammasome response in ascitic fluid macrophages of patients with cirrhosis. J. Hepatol. 62:64–71
    [Google Scholar]
  94. 94. 
    Barbier L, Ferhat M, Salamé E, Robin A, Herbelin A et al. 2019. Interleukin-1 family cytokines: keystones in liver inflammatory diseases. Front. Immunol. 10:2014
    [Google Scholar]
  95. 95. 
    Tsutsui H, Cai X, Hayashi S. 2015. Interleukin-1 family cytokines in liver diseases. Mediat. Inflamm. 2015:630265
    [Google Scholar]
  96. 96. 
    Dinarello CA. 2018. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281:8–27
    [Google Scholar]
  97. 97. 
    Iracheta-Vellve A, Petrasek J, Gyogyosi B, Bala S, Csak T et al. 2017. Interleukin-1 inhibition facilitates recovery from liver injury and promotes regeneration of hepatocytes in alcoholic hepatitis in mice. Liver Int 37:968–73
    [Google Scholar]
  98. 98. 
    Kamari Y, Shaish A, Vax E, Shemesh S, Kandel-Kfir M et al. 2011. Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. J. Hepatol. 55:1086–94
    [Google Scholar]
  99. 99. 
    de Roos B, Rungapamestry V, Ross K, Rucklidge G, Reid M et al. 2009. Attenuation of inflammation and cellular stress-related pathways maintains insulin sensitivity in obese type I interleukin-1 receptor knockout mice on a high-fat diet. Proteomics 9:3244–56
    [Google Scholar]
  100. 100. 
    Alegre F, Pelegrin P, Feldstein AE. 2017. Inflammasomes in liver fibrosis. Sem. Liver Dis. 37:119–27
    [Google Scholar]
  101. 101. 
    Wree A, McGeough MD, Inzaugarat ME, Eguchi A, Schuster S et al. 2018. NLRP3 inflammasome driven liver injury and fibrosis: roles of IL-17 and TNF in mice. Hepatology 67:736–49
    [Google Scholar]
  102. 102. 
    Dinarello C, Novick D, Kim S, Kaplanski G. 2013. Interleukin-18 and IL-18 binding protein. Front. Immunol. 4:289
    [Google Scholar]
  103. 103. 
    Flisiak-Jackiewicz M, Bobrus-Chociej A, Tarasów E, Wojtkowska M, Białokoz-Kalinowska I, Lebensztejn DM. 2018. Predictive role of interleukin-18 in liver steatosis in obese children. Can. J. Gastroenterol. Hepatol. 2018:3870454
    [Google Scholar]
  104. 104. 
    McClain CJ, Barve S, Deaciuc I, Kugelmas M, Hill D 1999. Cytokines in alcoholic liver disease. Sem. Liver Dis. 19:205–19
    [Google Scholar]
  105. 105. 
    Yamanishi K, Maeda S, Kuwahara-Otani S, Watanabe Y, Yoshida M et al. 2016. Interleukin-18–deficient mice develop dyslipidemia resulting in nonalcoholic fatty liver disease and steatohepatitis. Transl. Res. 173:101–14.e7
    [Google Scholar]
  106. 106. 
    Gyongyosi B, Cho Y, Lowe P, Calenda C, Iracheta-Vellve A et al. 2019. Alcohol-induced IL-17A production in Paneth cells amplifies endoplasmic reticulum stress, apoptosis, and inflammasome-IL-18 activation in the proximal small intestine in mice. Mucosal Immunol. 12:930–44
    [Google Scholar]
  107. 107. 
    Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. 2010. IL-37 is a fundamental inhibitor of innate immunity. Nat. Immunol. 11:1014–22
    [Google Scholar]
  108. 108. 
    Chan AH, Schroder K. 2020. Inflammasome signaling and regulation of interleukin-1 family cytokines. J. Exp. Med. 217:1e20190314
    [Google Scholar]
  109. 109. 
    Grabherr F, Grander C, Adolph TE, Wieser V, Mayr L et al. 2018. Ethanol-mediated suppression of IL-37 licenses alcoholic liver disease. Liver Int 38:1095–101
    [Google Scholar]
  110. 110. 
    Ballak DB, Van Diepen JA, Moschen AR, Jansen HJ, Hijmans A et al. 2014. IL-37 protects against obesity-induced inflammation and insulin resistance. Nat. Commun. 5:4711
    [Google Scholar]
  111. 111. 
    Mountford S, Effenberger M, Noll-Puchta H, Griessmair L, Ringleb A et al. 2021. Modulation of liver inflammation and fibrosis by interleukin-37. Front. Immunol. 12:479
    [Google Scholar]
  112. 112. 
    Chen KW, Demarco B, Broz P. 2020. Beyond inflammasomes: emerging function of gasdermins during apoptosis and NETosis. EMBO J. 39:e103397
    [Google Scholar]
  113. 113. 
    Xu B, Jiang M, Chu Y, Wang W, Chen D et al. 2018. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J. Hepatol. 68:773–82
    [Google Scholar]
  114. 114. 
    Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA et al. 2007. Interleukin-1–receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356:1517–26
    [Google Scholar]
  115. 115. 
    Zhu R-Z, Di Xiang CX, Li J-J, Hu J-J, He H-L et al. 2010. Protective effect of recombinant human IL-1Ra on CCl4-induced acute liver injury in mice. World J. Gastroenterol. 16:2771–79
    [Google Scholar]
  116. 116. 
    Everett BM, Donath MY, Pradhan AD, Thuren T, Pais P et al. 2018. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71:2392–401
    [Google Scholar]
  117. 117. 
    Lowe PP, Cho Y, Tornai D, Coban S, Catalano D, Szabo G. 2020. Inhibition of the inflammasome signaling cascade reduces alcohol consumption in female but not male mice. Alcohol. Clin. Exp. Res. 44:567–78
    [Google Scholar]
  118. 118. 
    Morrison M, Mulder P, Salic K, Verheij J, Liang W et al. 2016. Intervention with a caspase-1 inhibitor reduces obesity-associated hyperinsulinemia, non-alcoholic steatohepatitis and hepatic fibrosis in LDLR−/−. Leiden mice. Int. J. Obes. 40:1416–23
    [Google Scholar]
  119. 119. 
    Kono H, Rusyn I, Bradford BU, Connor HD, Mason RP, Thurman RG 2000. Allopurinol prevents early alcohol-induced liver injury in rats. J. Pharmacol. Exp. Ther. 293:296–303
    [Google Scholar]
  120. 120. 
    Yang Z-Y, Liu F, Liu P-H, Guo W-J, Xiong G-Y et al. 2017. Obeticholic acid improves hepatic steatosis and inflammation by inhibiting NLRP3 inflammasome activation. Int. J. Clin. Exp. Pathol. 10:8119–29
    [Google Scholar]
  121. 121. 
    Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM 2019. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol 40:1035–52
    [Google Scholar]
  122. 122. 
    Van Opdenbosch N, Lamkanfi M. 2019. Caspases in cell death, inflammation, and disease. Immunity 50:1352–64
    [Google Scholar]
  123. 123. 
    Man SM. 2018. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15:721–37
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-032521-102529
Loading
/content/journals/10.1146/annurev-pathmechdis-032521-102529
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error