1932

Abstract

Recent years have seen growing attention to inflammatory and infectious disorders of the spinal cord, not only due to the discovery of autoantibody-mediated disorders of the spinal cord [e.g., aquaporin-4 immunoglobulin G (IgG) antibodies and myelin oligodendrocyte glycoprotein IgG antibodies], but also due to the emergence of clusters of infection-related myelopathy, now known as acute flaccid myelitis. We review the spectrum of infection-related myelopathies and outline a nosological classification system based on association with infection. We describe the epidemiology and definitions of myelopathies, with a discussion of clinical presentation and neuroimaging features, and then turn to specific discussion of myelopathies due to direct pathogen invasion and those considered to be post- or parainfectious.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-040121-022818
2022-01-24
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathmechdis-040121-022818.html?itemId=/content/journals/10.1146/annurev-pathmechdis-040121-022818&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Quain R 1888. A Dictionary of Medicine: Including General Pathology, General Therapeutics, Hygiene, and the Diseases Peculiar to Women and Children London: Longmans Green
  2. 2. 
    Transverse Myelitis Consort. Work. Group 2002. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 59:499–505
    [Google Scholar]
  3. 3. 
    Young J, Quinn S, Hurrell M, Taylor B. 2009. Clinically isolated acute transverse myelitis: prognostic features and incidence. Mult. Scler. 15:1295–302
    [Google Scholar]
  4. 4. 
    De Goede CG, Holmes EM, Pike MG. 2010. Acquired transverse myelopathy in children in the United Kingdom—a 2 year prospective study. Eur. J. Paediatr. Neurol. 14:479–87
    [Google Scholar]
  5. 5. 
    Bhat A, Naguwa S, Cheema G, Gershwin ME 2010. The epidemiology of transverse myelitis. Autoimmunity Rev 9:A395–99
    [Google Scholar]
  6. 6. 
    Berman M, Feldman S, Alter M, Zilber N, Kahana E. 1981. Acute transverse myelitis: incidence and etiologic considerations. Neurology 31:966–71
    [Google Scholar]
  7. 7. 
    de Seze J, Stojkovic T, Breteau G, Lucas C, Michon-Pasturel U et al. 2001. Acute myelopathies: clinical, laboratory and outcome profiles in 79 cases. Brain 124:1509–21
    [Google Scholar]
  8. 8. 
    Reihsaus E, Waldbaur H, Seeling W. 2000. Spinal epidural abscess: a meta-analysis of 915 patients. Neurosurg. Rev. 23:175–204
    [Google Scholar]
  9. 9. 
    Rovira A, Wattjes MP, Tintore M, Tur C, Yousry TA et al. 2015. MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—clinical implementation in the diagnostic process. Nat. Rev. Neurol. 11:471–82
    [Google Scholar]
  10. 10. 
    Hadjipavlou AG, Mader JT, Necessary JT, Muffoletto AJ. 2000. Hematogenous pyogenic spinal infections and their surgical management. Spine 25:1668–79
    [Google Scholar]
  11. 11. 
    Loibl M, Stoyanov L, Doenitz C, Brawanski A, Wiggermann P et al. 2014. Outcome-related co-factors in 105 cases of vertebral osteomyelitis in a tertiary care hospital. Infection 42:503–10
    [Google Scholar]
  12. 12. 
    Nasto LA, Colangelo D, Rossi B, Fantoni M, Pola E. 2012. Post-operative spondylodiscitis. Eur. Rev. Med. Pharmacol. Sci 16:Suppl. 250–57
    [Google Scholar]
  13. 13. 
    Pola E, Autore G, Formica VM, Pambianco V, Colangelo D et al. 2017. New classification for the treatment of pyogenic spondylodiscitis: validation study on a population of 250 patients with a follow-up of 2 years. Eur. Spine J 26:479–88
    [Google Scholar]
  14. 14. 
    Beh SC, Greenberg BM, Frohman T, Frohman EM. 2013. Transverse myelitis. Neurol. Clin 31:79–138
    [Google Scholar]
  15. 15. 
    Yea C, Bitnun A, Branson HM, Ciftci-Kavaklioglu B, Rafay MF et al. 2020. Association of outcomes in acute flaccid myelitis with identification of enterovirus at presentation: a Canadian, nationwide, longitudinal study. Lancet Child Adolesc. Health 4:828–36
    [Google Scholar]
  16. 16. 
    Yea C, Bitnun A, Robinson J, Mineyko A, Barton M et al. 2017. Longitudinal outcomes in the 2014 acute flaccid paralysis cluster in Canada. J. Child Neurol 32:301–7
    [Google Scholar]
  17. 17. 
    Kim TS, Shin EC 2019. The activation of bystander CD8+ T cells and their roles in viral infection. Exp. Mol. Med 51:1–9
    [Google Scholar]
  18. 18. 
    Cusick MF, Libbey JE, Fujinami RS 2012. Molecular mimicry as a mechanism of autoimmune disease. Clinic. Rev. Allerg. Immunol 42:102–11
    [Google Scholar]
  19. 19. 
    Root-Bernstein R, Fairweather D. 2014. Complexities in the relationship between infection and autoimmunity. Curr. Allergy Asthma Rep 14:407
    [Google Scholar]
  20. 20. 
    Cunningham MW. 2000. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev 13:470–511
    [Google Scholar]
  21. 21. 
    Blackmore S, Hernandez J, Juda M, Ryder E, Freund GG et al. 2017. Influenza infection triggers disease in a genetic model of experimental autoimmune encephalomyelitis. PNAS 114:E6107–16
    [Google Scholar]
  22. 22. 
    Dyrdak R, Grabbe M, Hammas B, Ekwall J, Hansson KE et al. 2016. Outbreak of enterovirus D68 of the new B3 lineage in Stockholm, Sweden, August to September 2016. Euro. Surveill 21:30403
    [Google Scholar]
  23. 23. 
    Wei HY, Yeh TK, Hsieh JY, Lin IP, Yang JY 2018. Updates on the molecular epidemiology of Enterovirus D68 after installation of screening test among acute flaccid paralysis patients in Taiwan. J. Microbiol. Immunol. Infect 51:688–91
    [Google Scholar]
  24. 24. 
    Wang G, Zhuge J, Huang W, Nolan SM, Gilrane VL et al. 2017. Enterovirus D68 subclade B3 strain circulating and causing an outbreak in the United States in 2016. Sci. Rep 7:1242
    [Google Scholar]
  25. 25. 
    Knoester M, Scholvinck EH, Poelman R, Smit S, Vermont CL et al. 2017. Upsurge of enterovirus D68, the Netherlands, 2016. Emerg. Infect. Dis 23:140–43
    [Google Scholar]
  26. 26. 
    Brown DM, Hixon AM, Oldfield LM, Zhang Y, Novotny M et al. 2018. Contemporary circulating enterovirus D68 strains have acquired the capacity for viral entry and replication in human neuronal cells. mBio 9:e01954-18
    [Google Scholar]
  27. 27. 
    Hixon AM, Yu G, Leser JS, Yagi S, Clarke P et al. 2017. A mouse model of paralytic myelitis caused by enterovirus D68. PLOS Pathog 13:e1006199
    [Google Scholar]
  28. 28. 
    Sun S, Bian L, Gao F, Du R, Hu Y et al. 2019. A neonatal mouse model of Enterovirus D68 infection induces both interstitial pneumonia and acute flaccid myelitis. Antiviral Res 161:108–15
    [Google Scholar]
  29. 29. 
    Morrey JD, Wang H, Hurst BL, Zukor K, Siddharthan V et al. 2018. Causation of acute flaccid paralysis by myelitis and myositis in enterovirus-D68 infected mice deficient in interferon αβ/γ receptor deficient mice. Viruses 10:33
    [Google Scholar]
  30. 30. 
    Hixon AM, Clarke P, Tyler KL 2019. Contemporary circulating enterovirus D68 strains infect and undergo retrograde axonal transport in spinal motor neurons independent of sialic acid. J. Virol 93:e00578-19
    [Google Scholar]
  31. 31. 
    Darouiche RO. 2006. Spinal epidural abscess. N. Engl. J. Med. 355:2012–20
    [Google Scholar]
  32. 32. 
    Vakili M, Crum-Cianflone NF. 2017. Spinal epidural abscess: a series of 101 cases. Am. J. Med. 130:1458–63
    [Google Scholar]
  33. 33. 
    Makito K, Mouri H, Matsui H, Michihata N, Fushimi K, Yasunaga H 2021. Spinal epidural hematoma and abscess after neuraxial anesthesia: a historical cohort study using the Japanese Diagnosis Procedure Combination database. Can. J. Anaesth. 68:42–52
    [Google Scholar]
  34. 34. 
    Simon JK, Lazareff JA, Diament MJ, Kennedy WA. 2003. Intramedullary abscess of the spinal cord in children: a case report and review of the literature. Pediatr. Infect. Disease J. 22:186–92
    [Google Scholar]
  35. 35. 
    Tyagi R. 2016. Spinal infections in children: a review. J. Orthop. 13:254–58
    [Google Scholar]
  36. 36. 
    Dev R, Husain M, Gupta A, Gupta RK. 1997. MR of multiple intraspinal abscesses associated with congenital dermal sinus. Am. J. Neuroradiol. 18:742–43
    [Google Scholar]
  37. 37. 
    Koppel BS, Daras M, Duffy KR. 1990. Intramedullary spinal cord abscess. Neurosurgery 26:145–46
    [Google Scholar]
  38. 38. 
    Morandi X, Mercier P, Fournier HD, Brassier G. 1999. Dermal sinus and intramedullary spinal cord abscess. Report of two cases and review of the literature. Childs Nerv. Syst. 15:202–6
    [Google Scholar]
  39. 39. 
    Blackburn KM, Greenberg BM. 2020. Revisiting transverse myelitis: moving toward a new nomenclature. Front. Neurol. 11:519468
    [Google Scholar]
  40. 40. 
    Murphy OC, Messacar K, Benson L, Bove R, Carpenter JL et al. 2021. Acute flaccid myelitis: cause, diagnosis, and management. Lancet 397:334–46
    [Google Scholar]
  41. 41. 
    Chong PF, Kira R, Mori H, Okumura A, Torisu H et al. 2018. Clinical features of acute flaccid myelitis temporally associated with an enterovirus D68 outbreak: results of a nationwide survey of acute flaccid paralysis in Japan, August–December 2015. Clin. Infect. Dis. 66:653–64
    [Google Scholar]
  42. 42. 
    Chen IJ, Hu SC, Hung KL, Lo CW 2018. Acute flaccid myelitis associated with enterovirus D68 infection: a case report. Medicine 97:e11831
    [Google Scholar]
  43. 43. 
    Gong L, Wang Y, Zhang W, Chen C, Yang X et al. 2020. Acute flaccid myelitis in children in Zhejiang Province, China. Front. Neurol 11:360
    [Google Scholar]
  44. 44. 
    Messacar K, Schreiner TL, Maloney JA, Wallace A, Ludke J et al. 2015. A cluster of acute flaccid paralysis and cranial nerve dysfunction temporally associated with an outbreak of enterovirus D68 in children in Colorado, USA. Lancet 385:1662–71
    [Google Scholar]
  45. 45. 
    Knoester M, Helfferich J, Poelman R, Van Leer-Buter C, Brouwer OF et al. 2019. Twenty-nine cases of enterovirus-D68-associated acute flaccid myelitis in Europe 2016: a case series and epidemiologic overview. Pediatr. Infect. Disease J. 38:16–21
    [Google Scholar]
  46. 46. 
    Fall A, Ndiaye N, Messacar K, Kebe O, Jallow MM et al. 2020. Enterovirus D68 subclade B3 in children with acute flaccid paralysis in West Africa; 2016. Emerg. Infect. Dis. 26:2227–30
    [Google Scholar]
  47. 47. 
    Sejvar JJ, Lopez AS, Cortese MM, Leshem E, Pastula DM et al. 2016. Acute flaccid myelitis in the United States, August–December 2014: results of nationwide surveillance. Clin. Infect. Dis. 63:737–45
    [Google Scholar]
  48. 48. 
    Van Haren K, Ayscue P, Waubant E, Clayton A, Sheriff H et al. 2015. Acute flaccid myelitis of unknown etiology in California, 2012–2015. JAMA 314:2663–71
    [Google Scholar]
  49. 49. 
    Bitnun A, Yeh EA. 2018. Acute flaccid paralysis and enteroviral infections. Curr. Infect. Dis. Rep. 20:34
    [Google Scholar]
  50. 50. 
    Greninger AL, Naccache SN, Messacar K, Clayton A, Yu G et al. 2015. A novel outbreak enterovirus D68 strain associated with acute flaccid myelitis cases in the USA (2012–14): a retrospective cohort study. Lancet Infect. Dis. 15:671–82
    [Google Scholar]
  51. 51. 
    Huang CC, Liu CC, Chang YC, Chen CY, Wang ST, Yeh TF 1999. Neurologic complications in children with enterovirus 71 infection. N. Engl. J. Med. 341:936–42
    [Google Scholar]
  52. 52. 
    Gordon-Lipkin E, Munoz LS, Klein JL, Dean J, Izbudak I, Pardo CA 2019. Comparative quantitative clinical, neuroimaging, and functional profiles in children with acute flaccid myelitis at acute and convalescent stages of disease. Dev. Med. Child Neurol. 61:366–75
    [Google Scholar]
  53. 53. 
    Uprety P, Curtis D, Elkan M, Fink J, Rajagopalan R et al. 2019. Association of enterovirus D68 with acute flaccid myelitis, Philadelphia, Pennsylvania, USA, 2009–2018. Emerg. Infect. Dis. 25:1676–82
    [Google Scholar]
  54. 54. 
    Mishra N, Ng TFF, Marine RL, Jain K, Ng J et al. 2019. Antibodies to enteroviruses in cerebrospinal fluid of patients with acute flaccid myelitis. mBio 10:e01903-19
    [Google Scholar]
  55. 55. 
    Schubert RD, Hawes IA, Ramachandran PS, Ramesh A, Crawford ED et al. 2019. Pan-viral serology implicates enteroviruses in acute flaccid myelitis. Nat. Med. 25:1748–52
    [Google Scholar]
  56. 56. 
    Mota MT, Estofolete CF, Zini N, Terzian ACB, Gongora DVN et al. 2017. Transverse myelitis as an unusual complication of dengue fever. Am. J. Trop. Med. Hyg. 96:380–81
    [Google Scholar]
  57. 57. 
    Verma R, Praharaj HN, Patil TB, Giri P. 2012. Acute transverse myelitis following Japanese encephalitis viral infection: an uncommon complication of a common disease. BMJ Case Rep 2012.bcr2012007094
    [Google Scholar]
  58. 58. 
    Chanthamat N, Sathirapanya P. 2010. Acute transverse myelitis associated with dengue viral infection. J. Spinal Cord Med. 33:425–27
    [Google Scholar]
  59. 59. 
    Mécharles S, Herrmann C, Poullain P, Tran T-H, Deschamps N et al. 2016. Acute myelitis due to Zika virus infection. Lancet 387:1481
    [Google Scholar]
  60. 60. 
    Hixon AM, Clarke P, Tyler KL 2017. Evaluating treatment efficacy in a mouse model of enterovirus D68-associated paralytic myelitis. J. Infect. Dis. 216:1245–53
    [Google Scholar]
  61. 61. 
    Pino PA, Intravia J, Kozin SH, Zlotolow DA. 2019. Early results of nerve transfers for restoring function in severe cases of acute flaccid myelitis. Ann. Neurol. 86:607–15
    [Google Scholar]
  62. 62. 
    Madden GR, Fleece ME, Gupta A, Lopes MBS, Heysell SK et al. 2019. HIV-associated vacuolar encephalomyelopathy. Open Forum Infect. Dis. 6:ofz366
    [Google Scholar]
  63. 63. 
    Petito CK, Navia BA, Cho ES, Jordan BD, George DC, Price RW 1985. Vacuolar myelopathy pathologically resembling subacute combined degeneration in patients with the acquired immunodeficiency syndrome. N. Engl. J. Med. 312:874–79
    [Google Scholar]
  64. 64. 
    Henin D, Smith TW, De Girolami U, Sughayer M, Hauw JJ. 1992. Neuropathology of the spinal cord in the acquired immunodeficiency syndrome. Hum. Pathol. 23:1106–14
    [Google Scholar]
  65. 65. 
    Dal Pan GJ, Glass JD, McArthur JC. 1994. Clinicopathologic correlations of HIV-1-associated vacuolar myelopathy: an autopsy-based case-control study. Neurology 44:2159–64
    [Google Scholar]
  66. 66. 
    Chong J, Di Rocco A, Tagliati M, Danisi F, Simpson DM, Atlas SW. 1999. MR findings in AIDS-associated myelopathy. Am. J. Neuroradiol. 20:1412–16
    [Google Scholar]
  67. 67. 
    Tan SV, Guiloff RJ, Scaravilli F. 1995. AIDS-associated vacuolar myelopathy. A morphometric study. Brain 118:Part 51247–61
    [Google Scholar]
  68. 68. 
    Mueller-Mang C, Law M, Mang T, Fruehwald-Pallamar J, Weber M, Thurnher MM 2011. Diffusion tensor MR imaging (DTI) metrics in the cervical spinal cord in asymptomatic HIV-positive patients. Neuroradiology 53:585–92
    [Google Scholar]
  69. 69. 
    Cikurel K, Schiff L, Simpson DM. 2009. Pilot study of intravenous immunoglobulin in HIV-associated myelopathy. AIDS Patient Care STDS 23:75–78
    [Google Scholar]
  70. 70. 
    Prakhova LN, Ilves AG, Kizhlo SN, Savintseva ZI. 2020. Successful treatment of human immunodeficiency virus-associated highly active antiretroviral therapy-resistant vacuolar myelopathy with intravenous immunoglobulin. Ann. Indian Acad. Neurol. 23:220–22
    [Google Scholar]
  71. 71. 
    Md Noh MSF, Bahari N, Abdul Rashid AM 2020. Tuberculous myelopathy associated with longitudinally extensive lesion: a clinicoradiological review of reported cases. J. Clin. Neurol. 16:369–75
    [Google Scholar]
  72. 72. 
    Mead PS. 2015. Epidemiology of Lyme disease. Infect. Dis. Clin. North Am. 29:187–210
    [Google Scholar]
  73. 73. 
    Kugeler KJ, Farley GM, Forrester JD, Mead PS. 2015. Geographic distribution and expansion of human Lyme disease, United States. Emerg. Infect. Dis. 21:1455–57
    [Google Scholar]
  74. 74. 
    Halperin JJ. 2015. Nervous system Lyme disease. Infect. Dis. Clin. North Am. 29:241–53
    [Google Scholar]
  75. 75. 
    Vania Sousa M, Lopes de Carvalho I, Sofia Nuncio M, Conceicao C, Silva R, Gouveia C 2015. Meningomyeloradiculitis as an unusual presentation of neuroborreliosis in childhood. Pediatr. Infect. Dis. J. 34:1132–33
    [Google Scholar]
  76. 76. 
    Bigi S, Aebi C, Nauer C, Bigler S, Steinlin M. 2010. Acute transverse myelitis in Lyme neuroborreliosis. Infection 38:413–16
    [Google Scholar]
  77. 77. 
    Makhani N, Morris SK, Page AV, Brophy J, Lindsay LR et al. 2011. A twist on Lyme: the challenge of diagnosing European Lyme neuroborreliosis. J. Clin. Microbiol. 49:455–57
    [Google Scholar]
  78. 78. 
    Baumann M, Birnbacher R, Koch J, Strobl R, Rostasy K. 2010. Uncommon manifestations of neuroborreliosis in children. Eur. J. Paediatr. Neurol. 14:274–77
    [Google Scholar]
  79. 79. 
    Erol I, Kilicarslan B, Saygi S, Demir S, Alehan F. 2013. Acute transverse myelitis in a child with Lyme disease and a review of literature. Pediatr. Neurol. 48:325–28
    [Google Scholar]
  80. 80. 
    Opielka M, Opielka W, Sobocki BK, Starzynska A. 2020. Subacute transverse myelitis with optic symptoms in neuroborreliosis: a case report. BMC Neurol 20:244
    [Google Scholar]
  81. 81. 
    Kaiser EA, George DK, Rubenstein MN, Berger JR. 2019. Lyme myelopathy: case report and literature review of a rare but treatable disorder. Multiple Scler. Related Disord. 29:1–6
    [Google Scholar]
  82. 82. 
    Dumic I, Vitorovic D, Spritzer S, Sviggum E, Patel J, Ramanan P 2019. Acute transverse myelitis—a rare clinical manifestation of Lyme neuroborreliosis. IDCases 15:e00479
    [Google Scholar]
  83. 83. 
    Lindland ES, Solheim AM, Andreassen S, Quist-Paulsen E, Eikeland R et al. 2018. Imaging in Lyme neuroborreliosis. Insights Imaging 9:833–44
    [Google Scholar]
  84. 84. 
    Lantos PM, Rumbaugh J, Bockenstedt LK, Falck-Ytter YT, Aguero-Rosenfeld ME et al. 2021. Clinical practice guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 guidelines for the prevention, diagnosis and treatment of Lyme disease. Clin. Infect. Dis. 72:e1–48
    [Google Scholar]
  85. 85. 
    Pidcock FS, Krishnan C, Crawford TO, Salorio CF, Trovato M, Kerr DA 2007. Acute transverse myelitis in childhood: center-based analysis of 47 cases. Neurology 68:1474–80
    [Google Scholar]
  86. 86. 
    Thomas T, Branson HM, Verhey LH, Shroff M, Stephens D et al. 2012. The demographic, clinical, and magnetic resonance imaging (MRI) features of transverse myelitis in children. J. Child Neurol. 27:11–21
    [Google Scholar]
  87. 87. 
    Defresne P, Hollenberg H, Husson B, Tabarki B, Landrieu P et al. 2003. Acute transverse myelitis in children: clinical course and prognostic factors. J. Child Neurol. 18:401–6
    [Google Scholar]
  88. 88. 
    Bartol KD, Aguirre JL, Labruzzo SV, Henriet RP. 2019. Transverse myelitis associated with yellow fever vaccination. Proc. (Bayl. Univ. Med. Cent.) 32:283–85
    [Google Scholar]
  89. 89. 
    Wu CY, Riangwiwat T, Nakamoto BK. 2016. Hemorrhagic longitudinally extensive transverse myelitis. Case Rep. Neurol. Med. 2016.1596864
    [Google Scholar]
  90. 90. 
    Agmon-Levin N, Kivity S, Szyper-Kravitz M, Shoenfeld Y. 2009. Transverse myelitis and vaccines: a multi-analysis. Lupus 18:1198–204
    [Google Scholar]
  91. 91. 
    Kaplin AI, Krishnan C, Deshpande DM, Pardo CA, Kerr DA. 2005. Diagnosis and management of acute myelopathies. Neurologist 11:2–18
    [Google Scholar]
  92. 92. 
    Minami K, Tsuda Y, Maeda H, Yanagawa T, Izumi G, Yoshikawa N. 2004. Acute transverse myelitis caused by Coxsackie virus B5 infection. J. Paediatr. Child Health 40:66–68
    [Google Scholar]
  93. 93. 
    van der Heijden LB, Janse AJ. 2015. Transverse myelitis in measles. Pediatr. Neurol. 52:132
    [Google Scholar]
  94. 94. 
    Sarkar P, Morgan C, Ijaz S 2015. Transverse myelitis caused by hepatitis E: previously undescribed in adults. BMJ Case Rep 2015.bcr2014209031
    [Google Scholar]
  95. 95. 
    Stubgen JP. 2011. Immune-mediated myelitis associated with hepatitis virus infections. J. Neuroimmunol. 239:21–27
    [Google Scholar]
  96. 96. 
    Williams T, Thorpe J 2012. Post-infective transverse myelitis following Streptococcus pneumoniae meningitis with radiological features of acute disseminated encephalomyelitis: a case report. J. Med. Case Rep. 6:313
    [Google Scholar]
  97. 97. 
    West TW, Hess C, Cree BA. 2012. Acute transverse myelitis: demyelinating, inflammatory, and infectious myelopathies. Semin. Neurol. 32:97–113
    [Google Scholar]
  98. 98. 
    Choudhary N, Makhija P, Puri V, Khwaja GA, Duggal A. 2016. An unusual case of myelitis with myositis. J. Clin. Diagn. Res. 10:OD19–20
    [Google Scholar]
  99. 99. 
    Chandak NH, Kashyap RS, Kabra D, Karandikar P, Saha SS et al. 2009. Neurological complications of Chikungunya virus infection. Neurol. India 57:177–80
    [Google Scholar]
  100. 100. 
    al Deeb SM, Yaqub BA, Bruyn GW, Biary NM. 1997. Acute transverse myelitis. A localized form of postinfectious encephalomyelitis. Brain 120:Part 71115–22
    [Google Scholar]
  101. 101. 
    Maillart E, Durand-Dubief F, Louapre C, Audoin B, Bourre B et al. 2020. Outcome and risk of recurrence in a large cohort of idiopathic longitudinally extensive transverse myelitis without AQP4/MOG antibodies. J. Neuroinflamm. 17:128
    [Google Scholar]
  102. 102. 
    Bigi S, Banwell B, Yeh EA. 2015. Outcomes after early administration of plasma exchange in pediatric central nervous system inflammatory demyelination. J. Child Neurol. 30:874–80
    [Google Scholar]
  103. 103. 
    Savransky A, Rubstein A, Rios MH, Vergel SL, Velasquez MC et al. 2019. Prognostic indicators of improvement with therapeutic plasma exchange in pediatric demyelination. Neurology 93:e2065–73
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-040121-022818
Loading
/content/journals/10.1146/annurev-pathmechdis-040121-022818
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error