1932

Abstract

Numerous genetic and environmental insults impede the ability of cells to properly fold and posttranslationally modify secretory and transmembrane proteins in the endoplasmic reticulum (ER), leading to a buildup of misfolded proteins in this organelle—a condition called ER stress. ER-stressed cells must rapidly restore protein-folding capacity to match protein-folding demand if they are to survive. In the presence of high levels of misfolded proteins in the ER, an intracellular signaling pathway called the unfolded protein response (UPR) induces a set of transcriptional and translational events that restore ER homeostasis. However, if ER stress persists chronically at high levels, a terminal UPR program ensures that cells commit to self-destruction. Chronic ER stress and defects in UPR signaling are emerging as key contributors to a growing list of human diseases, including diabetes, neurodegeneration, and cancer. Hence, there is much interest in targeting components of the UPR as a therapeutic strategy to combat these ER stress–associated pathologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-012513-104649
2015-01-24
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pathol/10/1/annurev-pathol-012513-104649.html?itemId=/content/journals/10.1146/annurev-pathol-012513-104649&mimeType=html&fmt=ahah

Literature Cited

  1. Fagone P, Jackowski S. 1.  2009. Membrane phospholipid synthesis and endoplasmic reticulum function. J. Lipid Res. 50:Suppl.S311–16 [Google Scholar]
  2. Anelli T, Sitia R. 2.  2008. Protein quality control in the early secretory pathway. EMBO J. 27:315–27 [Google Scholar]
  3. Tu BP, Weissman JS. 3.  2004. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164:341–46 [Google Scholar]
  4. Sevier CS, Kaiser CA. 4.  2002. Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol. 3:836–47 [Google Scholar]
  5. van Anken E, Braakman I. 5.  2005. Versatility of the endoplasmic reticulum protein folding factory. Crit. Rev. Biochem. Mol. Biol. 40:191–228 [Google Scholar]
  6. Merksamer PI, Trusina A, Papa FR. 6.  2008. Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell 135:933–47 [Google Scholar]
  7. Ma Y, Hendershot LM. 7.  2004. ER chaperone functions during normal and stress conditions. J. Chem. Neuroanat. 28:51–65 [Google Scholar]
  8. McCracken AA, Brodsky JL. 8.  2003. Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). Bioessays 25:868–77 [Google Scholar]
  9. Smith MH, Ploegh HL, Weissman JS. 9.  2011. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–90 [Google Scholar]
  10. Meusser B, Hirsch C, Jarosch E, Sommer T. 10.  2005. ERAD: the long road to destruction. Nat. Cell Biol. 7:766–72 [Google Scholar]
  11. Rowe SM, Miller S, Sorscher EJ. 11.  2005. Cystic fibrosis. N. Engl. J. Med. 352:1992–2001 [Google Scholar]
  12. Seino S, Shibasaki T, Minami K. 12.  2011. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J. Clin. Investig. 121:2118–25 [Google Scholar]
  13. van Anken E, Pena F, Hafkemeijer N, Christis C, Romijn EP. 13.  et al. 2009. Efficient IgM assembly and secretion require the plasma cell induced endoplasmic reticulum protein pERp1. PNAS 106:17019–24 [Google Scholar]
  14. Tabas I, Ron D. 14.  2011. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13:184–90 [Google Scholar]
  15. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S. 15.  et al. 2002. Targeted disruption of the Chop gene delays endoplasmic reticulum stress–mediated diabetes. J. Clin. Investig. 109:525–32 [Google Scholar]
  16. Zhang HM, Ye X, Su Y, Yuan J, Liu Z. 16.  et al. 2010. Coxsackievirus B3 infection activates the unfolded protein response and induces apoptosis through downregulation of p58IPK and activation of CHOP and SREBP1. J. Virol. 84:8446–59 [Google Scholar]
  17. Flamment M, Hajduch E, Ferre P, Foufelle F. 17.  2012. New insights into ER stress–induced insulin resistance. Trends Endocrinol. Metab. 23:381–90 [Google Scholar]
  18. Gestwicki JE, Garza D. 18.  2012. Protein quality control in neurodegenerative disease. Prog. Mol. Biol. Transl. Sci. 107:327–53 [Google Scholar]
  19. Ron D, Walter P. 19.  2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8:519–29 [Google Scholar]
  20. Wang S, Kaufman RJ. 20.  2012. The impact of the unfolded protein response on human disease. J. Cell Biol. 197:857–67 [Google Scholar]
  21. Pincus D, Chevalier MW, Aragon T, van Anken E, Vidal SE. 21.  et al. 2010. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLOS Biol. 8:e1000415 [Google Scholar]
  22. Gardner BM, Walter P. 22.  2011. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333:1891–94 [Google Scholar]
  23. Credle JJ, Finer-Moore JS, Papa FR, Stroud RM, Walter P. 23.  2005. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. PNAS 102:18773–84 [Google Scholar]
  24. Walter P, Ron D. 24.  2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–86 [Google Scholar]
  25. Tirasophon W, Welihinda AA, Kaufman RJ. 25.  1998. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12:1812–24 [Google Scholar]
  26. Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D. 26.  1998. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17:5708–17 [Google Scholar]
  27. Korennykh A, Walter P. 27.  2012. Structural basis of the unfolded protein response. Annu. Rev. Cell Dev. Biol. 28:251–77 [Google Scholar]
  28. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR. 28.  et al. 2002. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96 [Google Scholar]
  29. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. 29.  2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–91 [Google Scholar]
  30. Yamamoto K, Sato T, Matsui T, Sato M, Okada T. 30.  et al. 2007. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13:365–76 [Google Scholar]
  31. Liu CY, Schroder M, Kaufman RJ. 31.  2000. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 275:24881–85 [Google Scholar]
  32. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. 32.  2000. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2:326–32 [Google Scholar]
  33. Harding HP, Zhang Y, Ron D. 33.  1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–74 [Google Scholar]
  34. Ye J, Rawson RB, Komuro R, Chen X, Dave UP. 34.  et al. 2000. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6:1355–64 [Google Scholar]
  35. Shore GC, Papa FR, Oakes SA. 35.  2011. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol. 23:143–49 [Google Scholar]
  36. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. 36.  2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21:1249–59 [Google Scholar]
  37. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y. 37.  et al. 2004. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18:3066–77 [Google Scholar]
  38. Han D, Lerner AG, Vande Walle L, Upton JP, Xu W. 38.  et al. 2009. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138:562–75 [Google Scholar]
  39. Hollien J, Weissman JS. 39.  2006. Decay of endoplasmic reticulum–localized mRNAs during the unfolded protein response. Science 313:104–7 [Google Scholar]
  40. Upton JP, Wang L, Han D, Wang ES, Huskey NE. 40.  et al. 2012. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338:818–22 [Google Scholar]
  41. Lerner AG, Upton JP, Praveen PV, Ghosh R, Nakagawa Y. 41.  et al. 2012. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 16:250–64 [Google Scholar]
  42. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P. 42.  et al. 2000. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–66 [Google Scholar]
  43. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K. 43.  et al. 2002. ASK1 is essential for endoplasmic reticulum stress–induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16:1345–55 [Google Scholar]
  44. Wang C, Youle RJ. 44.  2009. The role of mitochondria in apoptosis. Annu. Rev. Genet. 43:95–118 [Google Scholar]
  45. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. 45.  The BCL-2 family reunion. Mol. Cell 37:299–310 [Google Scholar]
  46. Giam M, Huang DC, Bouillet P. 46.  2008. BH3-only proteins and their roles in programmed cell death. Oncogene 27:Suppl. 1S128–36 [Google Scholar]
  47. Upton JP, Austgen K, Nishino M, Coakley KM, Hagen A. 47.  et al. 2008. Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol. Cell. Biol. 28:3943–51 [Google Scholar]
  48. Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN. 48.  et al. 2007. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–49 [Google Scholar]
  49. Li J, Lee B, Lee AS. 49.  2006. Endoplasmic reticulum stress–induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J. Biol. Chem. 281:7260–70 [Google Scholar]
  50. Kim I, Xu W, Reed JC. 50.  2008. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7:1013–30 [Google Scholar]
  51. Scheuner D, Kaufman RJ. 51.  2008. The unfolded protein response: a pathway that links insulin demand with β-cell failure and diabetes. Endocr. Rev. 29:317–33 [Google Scholar]
  52. Steiner DF. 52.  2000. New aspects of proinsulin physiology and pathophysiology. J. Pediatr. Endocrinol. Metab. 13:229–39 [Google Scholar]
  53. Ron D. 53.  2002. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J. Clin. Investig. 109:443–45 [Google Scholar]
  54. Izumi T, Yokota-Hashimoto H, Zhao S, Wang J, Halban PA, Takeuchi T. 54.  2003. Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 52:409–16 [Google Scholar]
  55. Wang J, Takeuchi T, Tanaka S, Kubo SK, Kayo T. 55.  et al. 1999. A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse. J. Clin. Investig. 103:27–37 [Google Scholar]
  56. Liu M, Li Y, Cavener D, Arvan P. 56.  2005. Proinsulin disulfide maturation and misfolding in the endoplasmic reticulum. J. Biol. Chem. 280:13209–12 [Google Scholar]
  57. Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP. 57.  et al. 2007. Insulin gene mutations as a cause of permanent neonatal diabetes. PNAS 104:15040–44 [Google Scholar]
  58. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. 58.  2000. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5:897–904 [Google Scholar]
  59. Delépine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. 59.  2000. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nat. Genet. 25:406–9 [Google Scholar]
  60. Gupta S, McGrath B, Cavener DR. 60.  2009. PERK regulates the proliferation and development of insulin-secreting beta-cell tumors in the endocrine pancreas of mice. PLOS ONE 4:e8008 [Google Scholar]
  61. Lee AH, Heidtman K, Hotamisligil GS, Glimcher LH. 61.  2011. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion. PNAS 108:8885–90 [Google Scholar]
  62. Usui M, Yamaguchi S, Tanji Y, Tominaga R, Ishigaki Y. 62.  et al. 2012. Atf6α-null mice are glucose intolerant due to pancreatic β-cell failure on a high-fat diet but partially resistant to diet-induced insulin resistance. Metabolism 61:1118–28 [Google Scholar]
  63. Trusina A, Papa FR, Tang C. 63.  2008. Rationalizing translation attenuation in the network architecture of the unfolded protein response. PNAS 105:20280–85 [Google Scholar]
  64. Scheuner D, Song B, McEwen E, Liu C, Laybutt R. 64.  et al. 2001. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7:1165–76 [Google Scholar]
  65. Scheuner D, Vander Mierde D, Song B, Flamez D, Creemers JW. 65.  et al. 2005. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat. Med. 11:757–64 [Google Scholar]
  66. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK. 66.  et al. 2007. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–63 [Google Scholar]
  67. Oyadomari S, Yun C, Fisher EA, Kreglinger N, Kreibich G. 67.  et al. 2006. Cotranslocational degradation protects the stressed endoplasmic reticulum from protein overload. Cell 126:727–39 [Google Scholar]
  68. Ladiges WC, Knoblaugh SE, Morton JF, Korth MJ, Sopher BL. 68.  et al. 2005. Pancreatic β-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes 54:1074–81 [Google Scholar]
  69. Riggs AC, Bernal-Mizrachi E, Ohsugi M, Wasson J, Fatrai S. 69.  et al. 2005. Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 48:2313–21 [Google Scholar]
  70. Fonseca SG, Fukuma M, Lipson KL, Nguyen LX, Allen JR. 70.  et al. 2005. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic β-cells. J. Biol. Chem. 280:39609–15 [Google Scholar]
  71. Fonseca SG, Ishigaki S, Oslowski CM, Lu S, Lipson KL. 71.  et al. 2010. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J. Clin. Investig. 120:744–55 [Google Scholar]
  72. Iwawaki T, Akai R, Kohno K, Miura M. 72.  2004. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med. 10:98–102 [Google Scholar]
  73. Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND. 73.  et al. 2012. Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 61:818–27 [Google Scholar]
  74. Karam JH, Grodsky GM, Forsham PH. 74.  1963. Excessive insulin response to glucose in obese subjects as measured by immunochemical assay. Diabetes 12:197–204 [Google Scholar]
  75. Weir GC, Bonner-Weir S. 75.  2004. Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes 53:Suppl. 3S16–21 [Google Scholar]
  76. Stefan Y, Orci L, Malaisse-Lagae F, Perrelet A, Patel Y, Unger RH. 76.  1982. Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes 31:694–700 [Google Scholar]
  77. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM. 77.  et al. 2002. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346:393–403 [Google Scholar]
  78. Wang L, Lovejoy NF, Faustman DL. 78.  2012. Persistence of prolonged C-peptide production in type 1 diabetes as measured with an ultrasensitive C-peptide assay. Diabetes Care 35:465–70 [Google Scholar]
  79. Ross CA, Poirier MA. 79.  2004. Protein aggregation and neurodegenerative disease. Nat. Med. 10:Suppl.S10–17 [Google Scholar]
  80. Wang L, Popko B, Roos RP. 80.  2011. The unfolded protein response in familial amyotrophic lateral sclerosis. Hum. Mol. Genet. 20:1008–15 [Google Scholar]
  81. Vidal R, Caballero B, Couve A, Hetz C. 81.  2011. Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington's disease. Curr. Mol. Med. 11:1–12 [Google Scholar]
  82. Xu K, Zhu XP. 82.  2012. Endoplasmic reticulum stress and prion diseases. Rev. Neurosci. 23:79–84 [Google Scholar]
  83. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. 83.  2004. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–10 [Google Scholar]
  84. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R. 84.  et al. 1998. Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. PNAS 95:6448–53 [Google Scholar]
  85. Taylor JP, Hardy J, Fischbeck KH. 85.  2002. Toxic proteins in neurodegenerative disease. Science 296:1991–95 [Google Scholar]
  86. Lindholm D, Wootz H, Korhonen L. 86.  2006. ER stress and neurodegenerative diseases. Cell Death Differ. 13:385–92 [Google Scholar]
  87. Scheper W, Hoozemans JJ. 87.  2009. Endoplasmic reticulum protein quality control in neurodegenerative disease: the good, the bad and the therapy. Curr. Med. Chem. 16:615–26 [Google Scholar]
  88. Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ. 88.  2013. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 12:105–18 [Google Scholar]
  89. Hamos JE, Oblas B, Pulaski-Salo D, Welch WJ, Bole DG, Drachman DA. 89.  1991. Expression of heat shock proteins in Alzheimer's disease. Neurology 41:345–50 [Google Scholar]
  90. Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F. 90.  et al. 2005. The unfolded protein response is activated in Alzheimer's disease. Acta Neuropathol. 110:165–72 [Google Scholar]
  91. Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W. 91.  2009. The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus. Am. J. Pathol. 174:1241–51 [Google Scholar]
  92. Unterberger U, Hoftberger R, Gelpi E, Flicker H, Budka H, Voigtlander T. 92.  2006. Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J. Neuropathol. Exp. Neurol. 65:348–57 [Google Scholar]
  93. Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W. 93.  2007. Activation of the unfolded protein response in Parkinson's disease. Biochem. Biophys. Res. Commun. 354:707–11 [Google Scholar]
  94. Wang HQ, Takahashi R. 94.  2007. Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson's disease. Antioxid. Redox Signal. 9:553–61 [Google Scholar]
  95. Atkin JD, Farg MA, Walker AK, McLean C, Tomas D, Horne MK. 95.  2008. Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol. Dis. 30:400–7 [Google Scholar]
  96. Holtz WA, O'Malley KL. 96.  2003. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J. Biol. Chem. 278:19367–77 [Google Scholar]
  97. Atkin JD, Farg MA, Turner BJ, Tomas D, Lysaght JA. 97.  et al. 2006. Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J. Biol. Chem. 281:30152–65 [Google Scholar]
  98. Kikuchi H, Almer G, Yamashita S, Guegan C, Nagai M. 98.  et al. 2006. Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. PNAS 103:6025–30 [Google Scholar]
  99. Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T. 99.  et al. 2008. ALS-linked mutant SOD1 induces ER stress– and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev. 22:1451–64 [Google Scholar]
  100. Hoglinger GU, Melhem NM, Dickson DW, Sleiman PM, Wang LS. 100.  et al. 2011. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 43:699–705 [Google Scholar]
  101. Stutzbach LD, Xie SX, Naj AC, Albin R, Gilman S. 101.  et al. 2013. The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer's disease. Acta Neuropathol. Commun. 1:31 [Google Scholar]
  102. Ilieva EV, Ayala V, Jove M, Dalfo E, Cacabelos D. 102.  et al. 2007. Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–23 [Google Scholar]
  103. Saxena S, Cabuy E, Caroni P. 103.  2009. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat. Neurosci. 12:627–36 [Google Scholar]
  104. Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E. 104.  et al. 2013. Suppression of eIF2α kinases alleviates Alzheimer's disease–related plasticity and memory deficits. Nat. Neurosci. 16:1299–305 [Google Scholar]
  105. Moreno JA, Halliday M, Molloy C, Radford H, Verity N. 105.  et al. 2013. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 5:206ra138 [Google Scholar]
  106. Minamino T, Komuro I, Kitakaze M. 106.  2010. Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ. Res. 107:1071–82 [Google Scholar]
  107. Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K. 107.  et al. 2007. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116:1226–33 [Google Scholar]
  108. Zhou J, Lhotak S, Hilditch BA, Austin RC. 108.  2005. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E–deficient mice. Circulation 111:1814–21 [Google Scholar]
  109. Seimon TA, Nadolski MJ, Liao X, Magallon J, Nguyen M. 109.  et al. 2010. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 12:467–82 [Google Scholar]
  110. Yamaguchi O, Higuchi Y, Hirotani S, Kashiwase K, Nakayama H. 110.  et al. 2003. Targeted deletion of apoptosis signal–regulating kinase 1 attenuates left ventricular remodeling. PNAS 100:15883–88 [Google Scholar]
  111. Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T. 111.  et al. 2004. Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ. 11:403–15 [Google Scholar]
  112. Ma Y, Hendershot LM. 112.  2004. The role of the unfolded protein response in tumour development: friend or foe?. Nat. Rev. Cancer 4:966–77 [Google Scholar]
  113. Lee AS, Hendershot LM. 113.  2006. ER stress and cancer. Cancer Biol. Ther. 5:721–22 [Google Scholar]
  114. Koumenis C. 114.  2006. ER stress, hypoxia tolerance and tumor progression. Curr. Mol. Med. 6:55–69 [Google Scholar]
  115. Moenner M, Pluquet O, Bouchecareilh M, Chevet E. 115.  2007. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67:10631–34 [Google Scholar]
  116. Carrasco DR, Sukhdeo K, Protopopova M, Sinha R, Enos M. 116.  et al. 2007. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11:349–60 [Google Scholar]
  117. Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN. 117.  et al. 2000. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res. Treat. 59:15–26 [Google Scholar]
  118. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T. 118.  et al. 2003. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J. Hepatol. 38:605–14 [Google Scholar]
  119. Song MS, Park YK, Lee JH, Park K. 119.  2001. Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-ε/ERK/AP-1 signaling cascade. Cancer Res. 61:8322–30 [Google Scholar]
  120. Chen X, Ding Y, Liu CG, Mikhail S, Yang CS. 120.  2002. Overexpression of glucose-regulated protein 94 (Grp94) in esophageal adenocarcinomas of a rat surgical model and humans. Carcinogenesis 23:123–30 [Google Scholar]
  121. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C. 121.  et al. 2007. Patterns of somatic mutation in human cancer genomes. Nature 446:153–58 [Google Scholar]
  122. Pyrko P, Schonthal AH, Hofman FM, Chen TC, Lee AS. 122.  2007. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res. 67:9809–16 [Google Scholar]
  123. Luo B, Lee AS. 123.  2013. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 32:805–18 [Google Scholar]
  124. Jamora C, Dennert G, Lee AS. 124.  1996. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. PNAS 93:7690–94 [Google Scholar]
  125. Park HR, Tomida A, Sato S, Tsukumo Y, Yun J. 125.  et al. 2004. Effect on tumor cells of blocking survival response to glucose deprivation. J. Natl. Cancer Inst. 96:1300–10 [Google Scholar]
  126. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH. 126.  et al. 2004. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 64:5943–47 [Google Scholar]
  127. Austgen K, Oakes SA, Ganem D. 127.  2012. Multiple defects, including premature apoptosis, prevent Kaposi's sarcoma–associated herpesvirus replication in murine cells. J. Virol. 86:1877–82 [Google Scholar]
  128. Auf G, Jabouille A, Guerit S, Pineau R, Delugin M. 128.  et al. 2010. Inositol-requiring enzyme 1α is a key regulator of angiogenesis and invasion in malignant glioma. PNAS 107:15553–58 [Google Scholar]
  129. Ghosh R, Lipson KL, Sargent KE, Mercurio AM, Hunt JS. 129.  et al. 2010. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLOS ONE 5:e9575 [Google Scholar]
  130. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E. 130.  et al. 2001. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–7 [Google Scholar]
  131. Zhang K, Wong HN, Song B, Miller CN, Scheuner D, Kaufman RJ. 131.  2005. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis. J. Clin. Investig. 115:268–81 [Google Scholar]
  132. Voorhees PM, Orlowski RZ. 132.  2006. The proteasome and proteasome inhibitors in cancer therapy. Annu. Rev. Pharmacol. Toxicol. 46:189–213 [Google Scholar]
  133. Rajkumar SV, Richardson PG, Hideshima T, Anderson KC. 133.  2005. Proteasome inhibition as a novel therapeutic target in human cancer. J. Clin. Oncol. 23:630–39 [Google Scholar]
  134. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S. 134.  et al. 2011. Identification of an Ire1α endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117:1311–14 [Google Scholar]
  135. Mimura N, Fulciniti M, Gorgun G, Tai YT, Cirstea D. 135.  et al. 2012. Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 119:5772–81 [Google Scholar]
  136. Gu JL, Li J, Zhou ZH, Liu JR, Huang BH. 136.  et al. 2012. Differentiation induction enhances bortezomib efficacy and overcomes drug resistance in multiple myeloma. Biochem. Biophys. Res. Commun. 420:644–50 [Google Scholar]
  137. Ling SC, Lau EK, Al-Shabeeb A, Nikolic A, Catalano A. 137.  et al. 2012. Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica 97:64–72 [Google Scholar]
  138. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C. 138.  et al. 2011. Initial genome sequencing and analysis of multiple myeloma. Nature 471:467–72 [Google Scholar]
  139. Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, Stewart AK. 139.  et al. 2013. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 24:289–304 [Google Scholar]
  140. Boyce M, Bryant KF, Jousse C, Long K, Harding HP. 140.  et al. 2005. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307:935–39 [Google Scholar]
  141. Lu PD, Jousse C, Marciniak SJ, Zhang Y, Novoa I. 141.  et al. 2004. Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J. 23:169–79 [Google Scholar]
  142. Han D, Upton JP, Hagen A, Callahan J, Oakes SA, Papa FR. 142.  2008. A kinase inhibitor activates the IRE1α RNase to confer cytoprotection against ER stress. Biochem. Biophys. Res. Commun. 365:777–83 [Google Scholar]
  143. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C. 143.  et al. 2007. IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–49 [Google Scholar]
  144. Papa FR, Zhang C, Shokat K, Walter P. 144.  2003. Bypassing a kinase activity with an ATP-competitive drug. Science 302:1533–37 [Google Scholar]
  145. Wang L, Perera BG, Hari SB, Bhhatarai B, Backes BJ. 145.  et al. 2012. Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors. Nat. Chem. Biol. 8:982–89 [Google Scholar]
  146. Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ. 146.  et al. 2013. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 73:1993–2002 [Google Scholar]
  147. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E. 147.  et al. 2006. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–40 [Google Scholar]
  148. Engin F, Yermalovich A, Nguyen T, Hummasti S, Fu W. 148.  et al. 2013. Restoration of the unfolded protein response in pancreatic β cells protects mice against type 1 diabetes. Sci. Transl. Med. 5:211ra156 [Google Scholar]
  149. Oakes SA. 149.  2014. Endoplasmic reticulum: ER stress. Pathobiology of Human Disease LM McManus, RN Mitchell, pp. 114–123 San Diego: Elsevier [Google Scholar]
/content/journals/10.1146/annurev-pathol-012513-104649
Loading
/content/journals/10.1146/annurev-pathol-012513-104649
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error