1932

Abstract

Membranous nephropathy is a noninflammatory autoimmune disease of the kidney glomerulus, characterized by the formation of immune deposits, complement-mediated proteinuria, and risk of renal failure. Considerable advances in understanding the molecular pathogenesis have occurred with the identification of several antigens [neutral endopeptidase, phospholipase A2 receptor (PLAR), thrombospondin domain-containing 7A (THSD7A)] in cases arising from the neonatal period to adulthood and the characterization of antibody-binding domains (that is, epitopes). Immunization against PLA2R occurs in 70% to 80% of adult cases. The development of highly specific and sensitive assays of circulating antibodies has induced a paradigm shift in diagnosis and treatment monitoring. In addition, several interacting loci in , , and , as well as classical human leukocyte antigen (HLA)-D alleles have been identified as being risk factors, depending on a patient's ethnicity. Additionally, mechanisms of antibody pathogenicity and pathways of complement activation are now better understood. Further research is mandatory for designing new therapeutic strategies, including the identifying triggering events, the molecular bases of remission and progression, and the T cell epitopes involved.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-020117-043811
2020-01-24
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/pathol/15/1/annurev-pathol-020117-043811.html?itemId=/content/journals/10.1146/annurev-pathol-020117-043811&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Simon P, Ramée MP, Autuly V, Laruelle E, Charasse C et al. 1994. Epidemiology of primary glomerular diseases in a French region: variations according to period and age. Kidney Int 46:1192–98
    [Google Scholar]
  2. 2. 
    Maisonneuve P, Agodoa L, Gellert R, Stewart JH, Buccianti G et al. 2000. Distribution of primary renal diseases leading to end-stage renal failure in the United States, Europe, and Australia/New Zealand: results from an international comparative study. Am. J. Kidney Dis. 35:157–65
    [Google Scholar]
  3. 3. 
    Imai H, Hamai K, Komatsuda A, Ohtani H, Miura AB 1997. IgG subclasses in patients with membranoproliferative glomerulonephritis, membranous nephropathy, and lupus nephritis. Kidney Int 51:270–76
    [Google Scholar]
  4. 4. 
    Kuroki A, Shibata T, Honda H, Totsuka D, Kobayashi K, Sugisaki T 2002. Glomerular and serum IgG subclasses in diffuse proliferative lupus nephritis, membranous lupus nephritis, and idiopathic membranous nephropathy. Intern. Med. 41:936–42
    [Google Scholar]
  5. 5. 
    Ohtani H, Wakui H, Komatsuda A, Okuyama S, Masai R et al. 2004. Distribution of glomerular IgG subclass deposits in malignancy-associated membranous nephropathy. Nephrol. Dial. Transplant. 19:574–79
    [Google Scholar]
  6. 6. 
    Segawa Y, Hisano S, Matsushita M, Fujita T, Hirose S et al. 2010. IgG subclasses and complement pathway in segmental and global membranous nephropathy. Pediatr. Nephrol. 25:1091–99
    [Google Scholar]
  7. 7. 
    Polanco N, Gutiérrez E, Rivera F, Castellanos I, Baltar J et al. 2012. Spontaneous remission of nephrotic syndrome in membranous nephropathy with chronic renal impairment. Nephrol. Dial. Transplant. 27:231–34
    [Google Scholar]
  8. 8. 
    Glassock RJ. 2003. Diagnosis and natural course of membranous nephropathy. Semin. Nephrol. 23:324–32
    [Google Scholar]
  9. 9. 
    Grupper A, Cornell LD, Fervenza FC, Beck LH Jr., Lorenz E, Cosio FG 2016. Recurrent membranous nephropathy after kidney transplantation: treatment and long-term implications. Transplantation 100:2710–16
    [Google Scholar]
  10. 10. 
    Hofstra JM, Fervenza FC, Wetzels JF 2013. Treatment of idiopathic membranous nephropathy. Nat. Rev. Nephrol. 9:443–58
    [Google Scholar]
  11. 11. 
    Cattran D, Brenchley P. 2017. Membranous nephropathy: thinking through the therapeutic options. Nephrol. Dial. Transplant. 32:Suppl. 1i22–29
    [Google Scholar]
  12. 12. 
    Heymann W, Hackel DB, Harwood S, Wilson SG, Hunter JL 1959. Production of nephrotic syndrome in rats by Freund's adjuvants and rat kidney suspensions. Proc. Soc. Exp. Biol. Med. 100:660–64
    [Google Scholar]
  13. 13. 
    Van Damme BJ, Fleuren GJ, Bakker WW, Vernier RL, Hoedemaeker PJ 1978. Experimental glomerulonephritis in the rat induced by antibodies directed against tubular antigens. V. Fixed glomerular antigens in the pathogenesis of heterologous immune complex glomerulonephritis. Lab. Investig. 38:502–10
    [Google Scholar]
  14. 14. 
    Couser WG, Steinmuller DR, Stilmant MM, Salant DJ, Lowenstein LM 1978. Experimental glomerulonephritis in the isolated perfused rat kidney. J. Clin. Investig. 62:1275–87
    [Google Scholar]
  15. 15. 
    Border WA, Ward HJ, Kamil ES, Cohen AH 1982. Induction of membranous nephropathy in rabbits by administration of an exogenous cationic antigen. J. Clin. Investig. 69:451–61
    [Google Scholar]
  16. 16. 
    Adler SG, Wang H, Ward HJ, Cohen AH, Border WA 1983. Electrical charge. Its role in the pathogenesis and prevention of experimental membranous nephropathy in the rabbit. J. Clin. Investig. 71:487–99
    [Google Scholar]
  17. 17. 
    Kerjaschki D, Farquhar MG. 1982. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. PNAS 79:5557–61
    [Google Scholar]
  18. 18. 
    Kerjaschki D, Farquhar MG. 1983. Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. J. Exp. Med. 157:667–86
    [Google Scholar]
  19. 19. 
    Shah P, Tramontano A, Makker SP 2007. Intramolecular epitope spreading in Heymann nephritis. J. Am. Soc. Nephrol 18:3060–66
    [Google Scholar]
  20. 20. 
    Prabakaran T, Nielsen R, Larsen JV, Sørensen SS, Feldt-Rasmussen U et al. 2011. Receptor-mediated endocytosis of α-galactosidase A in human podocytes in Fabry disease. PLOS ONE 6:e25065
    [Google Scholar]
  21. 21. 
    Larsen CP, Trivin-Avillach C, Coles P, Collins AB, Merchant M et al. 2018. LDL receptor-related protein 2 (megalin) as a target antigen in human kidney anti-brush border antibody disease. J. Am. Soc. Nephrol. 29:644–53
    [Google Scholar]
  22. 22. 
    Wright NG, Mohammed NA, Eckersall PD, Nash AS 1985. Experimental immune complex glomerulonephritis in dogs receiving cationized bovine serum albumin. Res. Vet. Sci. 38:322–28
    [Google Scholar]
  23. 23. 
    Koyama A, Inage H, Kobayashi M, Ohta Y, Narita M et al. 1986. Role of antigenic charge and antibody avidity on the glomerular immune complex localization in serum sickness of mice. Clin. Exp. Immunol. 64:606–14
    [Google Scholar]
  24. 24. 
    Kobayashi M, Muro K, Yoh K, Kondoh M, Iwabuchi S et al. 1998. Effects of FK506 on experimental membranous glomerulonephritis induced by cationized bovine serum albumin in rats. Nephrol. Dial. Transplant. 13:2501–8
    [Google Scholar]
  25. 25. 
    Koyama A, Inage H, Kobayashi M, Nakamura H, Narita M, Tojo S 1986. Effect of chemical cationization of antigen on glomerular localization of immune complexes in active models of serum sickness nephritis in rabbits. Immunology 58:529–34
    [Google Scholar]
  26. 26. 
    Debiec H, Guigonis V, Mougenot B, Decobert F, Haymann JP et al. 2002. Antenatal membranous glomerulonephritis due to anti–neutral endopeptidase antibodies. N. Engl. J. Med. 346:2053–60
    [Google Scholar]
  27. 27. 
    Platt JL, Tucker WL, Michael AF 1983. Stages of renal ontogenesis identified by monoclonal antibodies reactive with lymphohematopoietic differentiation antigens. J. Exp. Med. 157:155–72
    [Google Scholar]
  28. 28. 
    Debiec H, Nauta J, Coulet F, van der Burg M, Guigonis V et al. 2004. Role of truncating mutations in MME gene in fetomaternal alloimmunisation and neonatal glomerulopathies. Lancet 364:1252–59
    [Google Scholar]
  29. 29. 
    Vivarelli M, Emma F, Pellé T, Gerken C, Pedicelli S et al. 2015. Genetic homogeneity but IgG subclass–dependent clinical variability of alloimmune membranous nephropathy with anti-neutral endopeptidase antibodies. Kidney Int 87:602–9
    [Google Scholar]
  30. 30. 
    Ronco P, Debiec H, Guigonis V 2006. Mechanisms of disease: alloimmunization in renal diseases. Nat. Clin. Pract. Nephrol. 2:388–97
    [Google Scholar]
  31. 31. 
    Beck LH. 2015. Lessons from a rare disease: IgG subclass and disease severity in alloimmune antenatal membranous nephropathy. Kidney Int 87:494–97
    [Google Scholar]
  32. 32. 
    Nortier JL, Debiec H, Tournay Y, Mougenot B, Nöel JC et al. 2006. Neonatal disease in neutral endopeptidase alloimmunization: lessons for immunological monitoring. Pediatr. Nephrol. 1:1399–405
    [Google Scholar]
  33. 33. 
    Beck LH Jr., Bonegio RG, Lambeau G, Beck DM, Powell DW et al. 2009. M-type phospholipase A2 receptor as target antigen in idiopathic MN. N. Engl. J. Med 361:11–21
    [Google Scholar]
  34. 34. 
    Lambeau G, Ancian P, Barhanin J, Lazdunski M 1994. Cloning and expression of a membrane receptor for secretory phospholipases A2. J. Biol. Chem. 269:1575–78
    [Google Scholar]
  35. 35. 
    East L, Isacke CM. 2002. The mannose receptor family. Biochim. Biophys. Acta Gen. Subj. 1572:364–86
    [Google Scholar]
  36. 36. 
    West AP Jr., Herr AB, Bjorkman PJ. 2004. The chicken yolk sac IgY receptor, a functional equivalent of the mammalian MHC-related Fc receptor, is a phospholipase A2 receptor homolog. Immunity 20:601–10
    [Google Scholar]
  37. 37. 
    Zvaritch E, Lambeau G, Lazdunski M 1996. Endocytic properties of the M-type 180-kDa receptor for secretory phospholipases A2. J. Biol. Chem. 271:250–57
    [Google Scholar]
  38. 38. 
    Dong Y, Cao L, Tang H, Shi X, He Y 2017. Structure of human M-type phospholipase A2 receptor revealed by cryo-electron microscopy. J. Mol. Biol. 429:3825–35
    [Google Scholar]
  39. 39. 
    Fresquet M, Jowitt TA, Gummadova J, Collins R, O'Cualain R et al. 2015. Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy. J. Am. Soc. Nephrol. 26:302–13
    [Google Scholar]
  40. 40. 
    Kao L, Lam V, Waldman M, Glassock RJ, Zhu Q 2015. Identification of the immunodominant epitope region in phospholipase A2 receptor–mediating autoantibody binding in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 26:291–301
    [Google Scholar]
  41. 41. 
    Seitz-Polski B, Dolla G, Payré C, Girard CA, Polidori J et al. 2016. Epitope spreading of autoantibody response to PLA2R associates with poor prognosis in membranous nephropathy. J. Am. Soc. Nephrol. 27:1517–33
    [Google Scholar]
  42. 42. 
    Ancian P, Lambeau G, Mattéi MG, Lazdunski M 1995. The human 180-kDa receptor for secretory phospholipases A2: molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. J. Biol. Chem. 270:8963–70
    [Google Scholar]
  43. 43. 
    Watanabe K, Watanabe K, Watanabe Y, Fujioka D, Nakamura T et al. 2018. Human soluble phospholipase A2 receptor is an inhibitor of the integrin-mediated cell migratory response to collagen-I. Am. J. Physiol. Cell Physiol. 315:C398–408
    [Google Scholar]
  44. 44. 
    Behnert A, Fritzler MJ, Teng B, Zhang M, Bollig F et al. 2013. An anti-phospholipase A2 receptor quantitative immunoassay and epitope analysis in membranous nephropathy reveals different antigenic domains of the receptor. PLOS ONE 8:e61669
    [Google Scholar]
  45. 45. 
    Debiec H, Ronco P. 2016. Immune response against autoantigen PLA2R is not gambling: implications for pathophysiology, prognosis, and therapy. J. Am. Soc. Nephrol. 27:1275–77
    [Google Scholar]
  46. 46. 
    Seitz-Polski B, Debiec H, Rousseau A, Dahan K, Zaghrini C et al. 2018. Phospholipase A2 receptor 1 epitope spreading at baseline predicts reduced likelihood of remission of membranous nephropathy. J. Am. Soc. Nephrol. 29:401–8
    [Google Scholar]
  47. 47. 
    Stahl R, Hoxha E, Fechner K 2010. PLA2R autoantibodies and recurrent membranous nephropathy after transplantation. N. Engl. J. Med 363:496–98
    [Google Scholar]
  48. 48. 
    Blosser CD, Ayalon R, Nair R, Thomas C, Beck LH Jr 2012. Very early recurrence of anti-phospholipase A2 receptor–positive membranous nephropathy after transplantation. Am. J. Transplant. 12:1637–42
    [Google Scholar]
  49. 49. 
    Debiec H, Martin L, Jouanneau C, Dautin G, Mesnard L et al. 2011. Autoantibodies specific for the phospholipase A2 receptor in recurrent and de novo membranous nephropathy. Am. J. Transplant. 11:2144–52
    [Google Scholar]
  50. 50. 
    Debiec H, Hanoy M, Francois A, Guerrot D, Ferlicot S et al. 2012. Recurrent membranous nephropathy in an allograft caused by IgG3κ targeting the PLA2 receptor. J. Am. Soc. Nephrol. 23:1949–54
    [Google Scholar]
  51. 51. 
    Xu X, Wang G, Chen N, Lu T, Nie S et al. 2016. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J. Am. Soc. Nephrol. 27:3739–46
    [Google Scholar]
  52. 52. 
    Zhang XD, Cui Z, Zhao MH 2018. The genetic and environmental factors of primary membranous nephropathy: an overview from China. Kidney Dis 4:65–73
    [Google Scholar]
  53. 53. 
    Salant DJ. 2013. Genetic variants in membranous nephropathy: perhaps a perfect storm rather than a straightforward conformeropathy. ? J. Am. Soc. Nephrol. 24:525–28
    [Google Scholar]
  54. 54. 
    Guerry MJ, Vanhille P, Ronco P, Debiec H 2016. Serum anti-PLA2R antibodies may be present before clinical manifestations of membranous nephropathy. Kidney Int 89:1399
    [Google Scholar]
  55. 55. 
    Yu NY, Hallström BM, Fagerberg L, Ponten F, Kawaji H et al. 2015. Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. Nucleic Acids Res 43:6787–98
    [Google Scholar]
  56. 56. 
    Ronco P, Debiec H. 2015. Pathophysiological advances in membranous nephropathy: time for a shift in patient's care. Lancet 385:1983–92
    [Google Scholar]
  57. 57. 
    Rosenzwajg M, Languille E, Debiec H, Hygino J, Dahan K et al. 2017. B- and T-cell subpopulations in patients with severe idiopathic membranous nephropathy may predict an early response to rituximab. Kidney Int 92:227–37
    [Google Scholar]
  58. 58. 
    Klouda PT, Manos J, Acheson EJ, Dyer PA, Goldby FS et al. 1979. Strong association between idiopathic membranous nephropathy and HLA-DRW3. Lancet 2:770–71
    [Google Scholar]
  59. 59. 
    Vaughan RW, Demaine AG, Welsh KI 1989. A DQA1 allele is strongly associated with idiopathic membranous nephropathy. Tissue Antigens 34:261–69
    [Google Scholar]
  60. 60. 
    Stanescu HC, Arcos-Burgos M, Medlar A, Bockenhauer D, Kottgen A et al. 2011. Risk HLA-DQA1 and PLA2R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 364:616–26
    [Google Scholar]
  61. 61. 
    Sekula P, Li Y, Stanescu HC, Wuttke M, Ekici AB et al. 2017. Genetic risk variants for membranous nephropathy: extension of and association with other chronic kidney disease aetiologies. Nephrol. Dial. Transplant. 32:325–32
    [Google Scholar]
  62. 62. 
    Ramachandran R, Kumar V, Kumar A, Yadav AK, Nada R et al. 2016. PLA2R antibodies, glomerular PLA2R deposits and variations in PLA2R1 and HLA-DQA1 genes in primary membranous nephropathy in South Asians. Nephrol. Dial. Transplant. 31:1486–93
    [Google Scholar]
  63. 63. 
    Coenen MJ, Hofstra JM, Debiec H, Stanescu HC, Medlar AJ et al. 2013. Phospholipase A2 receptor (PLA2R1) sequence variants in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 24:677–83
    [Google Scholar]
  64. 64. 
    Kim S Chin HJ, Na KY, Kim S, Oh J et al. 2011. Single nucleotide polymorphisms in the phospholipase A2 receptor gene are associated with genetic susceptibility to idiopathic membranous nephropathy. Nephron Clin. Pract. 117:c253–58
    [Google Scholar]
  65. 65. 
    Liu YH, Wan L, Chang CT, Liao WL, Chen W et al. 2011. Association between copy number variation of complement component C4 and Graves’ disease. J. Biomed. Sci. 18:71
    [Google Scholar]
  66. 66. 
    Latt KZ, Honda K, Thiri M, Hitomi Y, Omae Y et al. 2018. Identification of a two-SNP PLA2R1 haplotype and HLA-DRB1 alleles as primary risk associations in idiopathic membranous nephropathy. Sci. Rep. 8:15576
    [Google Scholar]
  67. 67. 
    Lv J, Hou W, Zhou X, Liu G, Zhou F et al. 2013. Interaction between PLA2R1 and HLA-DQA1 variants associates with anti-PLA2R antibodies and membranous nephropathy. J. Am. Soc. Nephrol 24:1323–29
    [Google Scholar]
  68. 68. 
    Saeed M, Beggs ML, Walker PD, Larsen CP 2014. PLA2R-associated membranous glomerulopathy is modulated by common variants in PLA2R1 and HLA-DQA1 genes. Genes Immun 15:556–61
    [Google Scholar]
  69. 69. 
    Bullich G, Ballarín J, Oliver A, Ayasreh N, Silva I et al. 2014. HLA-DQA1 and PLA2R1 polymorphisms and risk of idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 9:335–43
    [Google Scholar]
  70. 70. 
    Kanigicherla D, Gummadova J, McKenzie EA, Roberts SA, Harris S et al. 2013. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy. Kidney Int 83:940–48
    [Google Scholar]
  71. 71. 
    Mladkova N, Kiryluk K. 2017. Genetic complexities of the HLA region and idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 28:1331–34
    [Google Scholar]
  72. 72. 
    Cui Z, Xie LJ, Chen FJ, Pei ZY, Zhang LJ et al. 2017. MHC class II risk alleles and amino acid residues in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 28:1651–64
    [Google Scholar]
  73. 73. 
    Le WB, Shi JS, Zhang T, Liu L, Qin HZ et al. 2017. HLA-DRB1*15:01 and HLA-DRB3*02:02 in PLA2R-related membranous nephropathy. J. Am. Soc. Nephrol. 28:1642–50
    [Google Scholar]
  74. 74. 
    Thiri M, Honda K, Kashiwase K, Mabuchi A, Suzuki H et al. 2016. High-density association mapping and interaction analysis of PLA2R1 and HLA regions with idiopathic membranous nephropathy in Japanese. Sci. Rep. 6:38189
    [Google Scholar]
  75. 75. 
    Wang HY, Cui Z, Xie LJ, Zhang LJ, Pei ZY et al. 2018. HLA class II alleles differing by a single amino acid associate with clinical phenotype and outcome in patients with primary membranous nephropathy. Kidney Int 94:974–82
    [Google Scholar]
  76. 76. 
    Gillies CE, Putler R, Menon R, Otto E, Yasutake K et al. 2018. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet 103:232–44
    [Google Scholar]
  77. 77. 
    Beck LH Jr 2010. Membranous nephropathy and malignancy. Semin. Nephrol 30:635–44
    [Google Scholar]
  78. 78. 
    Tomas NM, Beck LH Jr., Meyer-Schwesinger C, Seitz-Polski B, Ma H et al. 2014. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 371:2277–87
    [Google Scholar]
  79. 79. 
    Hoxha E, Beck LH Jr., Wiech T, Tomas NM, Probst C et al. 2017. An indirect immunofluorescence method facilitates detection of thrombospondin type 1 domain-containing 7A-specific antibodies in membranous nephropathy. J. Am. Soc. Nephrol. 28:520–31
    [Google Scholar]
  80. 80. 
    Zaghrini C, Seitz-Polski B, Justino J, Dolla G, Payre C et al. 2019. Novel ELISA for thrombospondin type 1 domain–containing 7A autoantibodies in membranous nephropathy. Kidney Int 95:666–79
    [Google Scholar]
  81. 81. 
    Wang CH, Su PT, Du XY, Kuo MW, Lin CY et al. 2010. Thrombospondin type I domain containing 7A (THSD7A) mediates endothelial cell migration and tube formation. J. Cell. Physiol. 222:685–94
    [Google Scholar]
  82. 82. 
    Kuo MW, Wang CH, Wu HC, Chang SJ, Chuang YJ 2011. Soluble THSD7A is an N-glycoprotein that promotes endothelial cell migration and tube formation in angiogenesis. PLOS ONE 6:e29000
    [Google Scholar]
  83. 83. 
    Wang CH, Chen IH, Kuo MW, Su PT, Lai ZY et al. 2011. Zebrafish Thsd7a is a neural protein required for angiogenic patterning during development. Dev. Dyn. 240:1412–21
    [Google Scholar]
  84. 84. 
    Tomas NM, Hoxha E, Reinicke AT, Fester L, Helmchen U et al. 2016. Autoantibodies against thrombospondin type 1 domain–containing 7A induce membranous nephropathy. J. Clin. Investig. 126:2519–32
    [Google Scholar]
  85. 85. 
    Tomas NM, Meyer-Schwesinger C, von Spiegel H, Kotb AM, Zahner G et al. 2017. A heterologous model of thrombospondin type 1 domain-containing 7A-associated membranous nephropathy. J. Am. Soc. Nephrol. 28:3262–77
    [Google Scholar]
  86. 86. 
    Stoddard SV, Welsh CL, Palopoli MM, Stoddard SD, Aramandla MP et al. 2019. Structure and function insights garnered from in silico modeling of the thrombospondin type-1 domain–containing 7A antigen. Proteins 87:136–45
    [Google Scholar]
  87. 87. 
    Seifert L, Hoxha E, Eichhoff AM, Zahner G, Dehde S et al. 2018. The most N-terminal region of THSD7A is the predominant target for autoimmunity in THSD7A-associated membranous nephropathy. J. Am. Soc. Nephrol. 29:1536–48
    [Google Scholar]
  88. 88. 
    Hoxha E, Wiech T, Stahl PR, Zahner G, Tomas NM et al. 2016. A mechanism for cancer-associated membranous nephropathy. N. Engl. J. Med. 374:1995–96
    [Google Scholar]
  89. 89. 
    Lin F, Zhang D, Chang J, Tang X, Guan W et al. 2018. THSD7A-associated membranous nephropathy in a patient with neurofibromatosis type 1. Eur. J. Med. Genet. 61:84–88
    [Google Scholar]
  90. 90. 
    Zhang Z, Gong T, Rennke HG, Hayashi R 2019. Duodenal schwannoma as a rare association with membranous nephropathy: a case report. Am. J. Kidney Dis. 73:278–80
    [Google Scholar]
  91. 91. 
    Wang J, Cui Z, Lu J, Probst C, Zhang YM et al. 2017. Circulating antibodies against thrombospondin type-I domain-containing 7A in Chinese patients with idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 12:1642–51
    [Google Scholar]
  92. 92. 
    Larsen CP, Cossey LN, Beck LH 2016. THSD7A staining of membranous glomerulopathy in clinical practice reveals cases with dual autoantibody positivity. Mod. Pathol. 29:421–26
    [Google Scholar]
  93. 93. 
    Timmermans SA, Ayalon R, van Paassen P, Beck LH Jr., van Rie H et al. 2013. Anti-phospholipase A2 receptor antibodies and malignancy in membranous nephropathy. Am. J. Kidney Dis. 62:1223–25
    [Google Scholar]
  94. 94. 
    Sethi S, Madden B, Debiec H, Charlesworth MC, Gross L et al. 2019. Exostosin1/exostosin2-associated membranous nephropathy. J. Am. Soc. Nephrol. 30:1123–36
    [Google Scholar]
  95. 95. 
    Busse-Wicher M, Wicher KB, Kusche-Gullberg M 2014. The exostosin family: proteins with many functions. Matrix Biol 35:25–33
    [Google Scholar]
  96. 96. 
    Ahn J, Lüdecke HJ, Lindow S, Horton WA, Lee B et al. 1995. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat. Genet. 11:137–43
    [Google Scholar]
  97. 97. 
    Busse M, Kusche-Gullberg M. 2003. In vitro polymerization of heparan sulfate backbone by the EXT proteins. J. Biol. Chem. 278:41333–37
    [Google Scholar]
  98. 98. 
    Busse M, Feta A, Presto J, Wilén M, Grønning M et al. 2007. Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. J. Biol. Chem. 282:32802–10
    [Google Scholar]
  99. 99. 
    Cook A, Raskind W, Blanton SH, Pauli RM, Gregg RG et al. 1993. Genetic heterogeneity in families with hereditary multiple exostoses. Am. J. Hum. Genet. 53:71–79
    [Google Scholar]
  100. 100. 
    Ishibashi R, Takemoto M, Tsurutani Y, Kuroda M, Ogawa M et al. 2018. Immune-mediated acquired lecithin–cholesterol acyltransferase deficiency: a case report and literature review. J. Clin. Lipidol. 12:888–97
    [Google Scholar]
  101. 101. 
    Takahashi S, Hiromura K, Tsukida M, Ohishi Y, Hamatani H et al. 2013. Nephrotic syndrome caused by immune-mediated acquired LCAT deficiency. J. Am. Soc. Nephrol. 24:1305–12
    [Google Scholar]
  102. 102. 
    Prunotto M, Carnevali ML, Candiano G, Murtas C, Bruschi M et al. 2010. Autoimmunity in membranous nephropathy targets aldose reductase and SOD2. J. Am. Soc. Nephrol. 21:507–19
    [Google Scholar]
  103. 103. 
    Bruschi M, Carnevali ML, Murtas C, Candiano G, Petretto A et al. 2011. Direct characterization of target podocyte antigens and auto-antibodies in human membranous glomerulonephritis: α-enolase and borderline antigens. J. Proteom. 74:2008–17
    [Google Scholar]
  104. 104. 
    Kimura Y, Miura N, Debiec H, Morita H, Yamada H et al. 2017. Circulating antibodies to α-enolase and phospholipase A2 receptor and composition of glomerular deposits in Japanese patients with primary or secondary membranous nephropathy. Clin. Exp. Nephrol. 21:117–26
    [Google Scholar]
  105. 105. 
    Debiec H, Lefeu F, Kemper MJ, Niaudet P, Deschênes G et al. 2011. Early-childhood membranous nephropathy due to cationic bovine serum albumin. N. Engl. J. Med. 364:2101–10
    [Google Scholar]
  106. 106. 
    Sathe SK, Teuber SS, Roux KH 2005. Effects of food processing on the stability of food allergens. Biotechnol. Adv. 23:423–29
    [Google Scholar]
  107. 107. 
    Sanchez C, Fremont S. 2003. Consequences of heat treatment and processing of food on the structure and allergenicity of component proteins. Rev. Fr. Allergol. Immunol. Clin. 43:13–20
    [Google Scholar]
  108. 108. 
    Hunley TE, Corzo D, Dudek M, Kishnani P, Amalfitano A et al. 2004. Nephrotic syndrome complicating α-glucosidase replacement therapy for Pompe disease. Pediatrics 114:e532–35
    [Google Scholar]
  109. 109. 
    Debiec H, Valayannopoulos V, Boyer O, Nöel LH, Callard P et al. 2013. Allo-immune membranous nephropathy and recombinant aryl sulfatase replacement therapy: a need for tolerance induction therapy. J. Am. Soc. Nephrol. 25:675–80
    [Google Scholar]
  110. 110. 
    Jordan SC, Buckingham B, Sakai R, Olson D 1981. Studies of immune-complex glomerulonephritis mediated by human thyroglobulin. N. Engl. J. Med. 304:1212–15
    [Google Scholar]
  111. 111. 
    Bhimma R, Coovadia HM. 2004. Hepatitis B virus–associated nephropathy. Am. J. Nephrol. 24:198–211
    [Google Scholar]
  112. 112. 
    Xie Q, Li Y, Xue J, Xiong Z, Wang L et al. 2015. Renal phospholipase A2 receptor in hepatitis B virus–associated membranous nephropathy. Am. J. Nephrol. 41:345–53
    [Google Scholar]
  113. 113. 
    Berchtold L, Zanetta G, Dahan K, Mihout F, Peltier J et al. 2017. Efficacy and safety of rituximab in hepatitis B virus–associated PLA2R-positive membranous nephropathy. Kidney Int. Rep. 3:486–91
    [Google Scholar]
  114. 114. 
    Kerjaschki D, Exner M, Ullrich R, Susani M, Curtiss LK et al. 1997. Pathogenic antibodies inhibit the binding of apolipoproteins to megalin/gp330 in passive Heymann nephritis. J. Clin. Investig.100:2303–9
    [Google Scholar]
  115. 115. 
    Kerjaschki D, Miettinen A, Farquhar MG 1987. Initial events in the formation of immune deposits in passive Heymann nephritis: gp330–anti-gp330 immune complexes form in epithelial coated pits and rapidly become attached to the glomerular basement membrane. J. Exp. Med. 166:109–28
    [Google Scholar]
  116. 116. 
    Zou Z, Chung B, Nguyen T, Mentone S, Thomson B, Biemesderfer D 2004. Linking receptor-mediated endocytosis and cell signaling: evidence for regulated intramembrane proteolysis of megalin in proximal tubule. J. Biol. Chem. 279:34302–10
    [Google Scholar]
  117. 117. 
    Biemesderfer D 2006. Regulated intramembrane proteolysis of megalin: linking urinary protein and gene regulation in proximal tubule. ? Kidney Int 69:1717–21
    [Google Scholar]
  118. 118. 
    McCarthy AJ, Coleman-Vaughan C, McCarthy JV 2017. Regulated intramembrane proteolysis: emergent role in cell signalling pathways. Biochem. Soc. Trans. 45:1185–202
    [Google Scholar]
  119. 119. 
    Higashino KI, Yokota Y, Ono T, Kamitani S, Arita H, Hanasaki K 2002. Identification of a soluble form phospholipase A2 receptor as a circulating endogenous inhibitor for secretory phospholipase A2. J. Biol. Chem. 277:13583–88
    [Google Scholar]
  120. 120. 
    Nielsen R, Christensen EI, Birn H 2016. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int 89:58–67
    [Google Scholar]
  121. 121. 
    Turner AJ, Isaac RE, Coates D 2001. The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. BioEssays 23:261–69
    [Google Scholar]
  122. 122. 
    Lambeau G, Gelb MH. 2008. Biochemistry and physiology of mammalian secreted phospholipases A2. Annu. Rev. Biochem. 77:495–520
    [Google Scholar]
  123. 123. 
    Augert A, Payré C, de Launoit Y, Gil J, Lambeau G, Bernard D 2009. The M-type receptor PLA2R regulates senescence through the p53 pathway. EMBO Rep 10:271–77
    [Google Scholar]
  124. 124. 
    Sis B, Tasanarong A, Khoshjou F, Dadras F, Solez K, Halloran PF 2007. Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. Kidney Int 71:218–26
    [Google Scholar]
  125. 125. 
    Takahashi S, Watanabe K, Watanabe Y, Fujioka D, Nakamura T et al. 2015. C-type lectin-like domain and fibronectin-like type II domain of phospholipase A2 receptor 1 modulate binding and migratory responses to collagen. FEBS Lett 589:829–35
    [Google Scholar]
  126. 126. 
    Jürgensen HJ, Johansson K, Madsen DH, Porse A, Melander MC et al. 2014. Complex determinants in specific members of the mannose receptor family govern collagen endocytosis. J. Biol. Chem. 289:7935–47
    [Google Scholar]
  127. 127. 
    Škoberne A, Behnert A, Teng B, Fritzler MJ, Schiffer L et al. 2014. Serum with phospholipase A2 receptor autoantibodies interferes with podocyte adhesion to collagen. Eur. J. Clin. Investig. 44:753–65
    [Google Scholar]
  128. 128. 
    Herwig J, Skuza S, Sachs W, Sachs M, Failla A et al. 2019. Thrombospondin type 1 domain–containing 7A (THSD7A) localizes to the slit diaphragm and stabilizes membrane dynamics of fully differentiated podocytes. J. Am. Soc. Nephrol. 30:824–83
    [Google Scholar]
  129. 129. 
    Koneczny I. 2018. A new classification system for IgG4 autoantibodies. Front. Immunol. 9:97
    [Google Scholar]
  130. 130. 
    Rispens T, Ooievaar-De Heer P, Vermeulen E, Schuurman J, van der Neut Kolfschoten M, Aalberse RC 2009. Human IgG4 binds to IgG4 and conformationally altered IgG1 via Fc–Fc interactions. J. Immunol 182:4275–81
    [Google Scholar]
  131. 131. 
    Ito T, Kitahara K, Umemura T, Ota M, Shimozuru Y et al. 2010. A novel heterophilic antibody interaction involves IgG4. Scand. J. Immunol. 71:109–14
    [Google Scholar]
  132. 132. 
    Cybulsky AV, Rennke HG, Feintzeig ID, Salant DJ 1986. Complement-induced glomerular epithelial cell injury: role of the membrane attack complex in rat membranous nephropathy. J. Clin. Investig. 77:1096–107
    [Google Scholar]
  133. 133. 
    Couser WG, Johnson RJ, Young BA, Yeh CG, Toth CA, Rudolph AR 1995. The effects of soluble recombinant complement receptor 1 on complement-mediated experimental glomerulonephritis. J. Am. Soc. Nephrol. 5:1888–94
    [Google Scholar]
  134. 134. 
    Kerjaschki D, Schulze M, Binder S, Kain R, Ojha PP et al. 1989. Transcellular transport and membrane insertion of the C5b-9 membrane attack complex of complement by glomerular epithelial cells in experimental membranous nephropathy. J. Immunol. 143:546–52
    [Google Scholar]
  135. 135. 
    Takano T, Elimam H, Cybulsky AV 2013. Complement-mediated cellular injury. Semin. Nephrol. 33:586–601
    [Google Scholar]
  136. 136. 
    Schiller B, He C, Salant DJ, Lim A, Alexander JJ, Quigg RJ 1988. Inhibition of complement regulation is key to the pathogenesis of active Heymann nephritis. J. Exp. Med. 188:1353–58
    [Google Scholar]
  137. 137. 
    Leenaerts PL, Hall BM, Van Damme BJ, Daha MR, Vanrenterghem YF 1995. Active Heymann nephritis in complement component C6 deficient rats. Kidney Int 47:1604–14
    [Google Scholar]
  138. 138. 
    Spicer ST, Tran GT, Killingsworth MC, Carter N, Power DA et al. 2007. Induction of passive Heymann nephritis in complement component 6–deficient PVG rats. J. Immunol. 179:172–78
    [Google Scholar]
  139. 139. 
    Kon SP, Coupes B, Short CD, Solomon LR, Raftery MJ et al. 1995. Urinary C5b-9 excretion and clinical course in idiopathic human membranous nephropathy. Kidney Int 48:1953–58
    [Google Scholar]
  140. 140. 
    Bally S, Debiec H, Ponard D, Dijoud F, Rendu J et al. 2016. Phospholipase A2 receptor–related membranous nephropathy and mannan-binding lectin deficiency. J. Am. Soc. Nephrol. 27:3539–44
    [Google Scholar]
  141. 141. 
    Michalski M, Świerzko AS, Pągowska-Klimek I, Niemir ZI, Mazerant K et al. 2015. Primary Ficolin-3 deficiency—Is it associated with increased susceptibility to infections. ? Immunobiology 220:711–13
    [Google Scholar]
  142. 142. 
    Thiel S, Gadjeva M. 2009. Humoral pattern recognition molecules: mannan-binding lectin and ficolins. Target Pattern Recognition in Innate Immunity U Kishore 58–73 New York: Springer
    [Google Scholar]
  143. 143. 
    Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB 1995. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med 1:237–43
    [Google Scholar]
  144. 144. 
    Bond A, Alavi A, Axford JS, Bourke BE, Bruckner FE et al. 1997. A detailed lectin analysis of IgG glycosylation, demonstrating disease specific changes in terminal galactose and N-acetylglucosamine. J. Autoimmun 10:77–85
    [Google Scholar]
  145. 145. 
    Parekh R, Isenberg D, Rook G, Roitt I, Dwek R, Rademacher T 1989. A comparative analysis of disease-associated changes in the galactosylation of serum IgG. J. Autoimmun. 2:101–14
    [Google Scholar]
  146. 146. 
    Ma H, Sandor DG, Beck LH Jr 2013. The role of complement in membranous nephropathy. Semin. Nephrol. 33:531–42
    [Google Scholar]
  147. 147. 
    Haddad G, Kistler A. 2017. An in vitro model of idiopathic membranous nephropathy reveals PLA2R- and complement-dependent pathways of podocyte injury. J. Am. Soc. Nephrol. 28:Suppl.109
    [Google Scholar]
  148. 148. 
    Luo W, Olaru F, Miner JH, Beck LH Jr., van der Vlag J et al. 2018. Alternative pathway is essential for glomerular complement activation and proteinuria in a mouse model of membranous nephropathy. Front. Immunol. 9:1433
    [Google Scholar]
  149. 149. 
    Seikrit C, Ronco P, Debiec H 2018. Factor H auto-antibodies and membranous nephropathy. New Engl. J. Med. 379:2479–81
    [Google Scholar]
  150. 150. 
    Bobart SA, De Vriese AS, Pawar AS, Zand L, Sethi S et al. 2019. Noninvasive diagnosis of primary membranous nephropathy using phospholipase A2 receptor antibodies. Kidney Int 95:429–38
    [Google Scholar]
  151. 151. 
    Wraith D. 2016. Autoimmunity: antigen-specific immunotherapy. Nature 530:422–23
    [Google Scholar]
  152. 152. 
    Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X et al. 2016. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353:179–84
    [Google Scholar]
  153. 153. 
    Ronco P, Debiec H. 2017. A podocyte view of membranous nephropathy: from Heymann nephritis to the childhood human disease. Plugers Arch 469:997–1005
    [Google Scholar]
  154. 154. 
    Sethi S, Debiec H, Madden B, Charlesworth MC, Morelle Jet al. 2019. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int In press. https://doi.org/10.1016/j.kint.2019.09.014
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathol-020117-043811
Loading
/content/journals/10.1146/annurev-pathol-020117-043811
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error