1932

Abstract

Type I interferons, which make up the first cytokine family to be described and are the essential mediators of antivirus host defense, have emerged as central elements in the immunopathology of systemic autoimmune diseases, with systemic lupus erythematosus as the prototype. Lessons from investigation of interferon regulation following virus infection can be applied to lupus, with the conclusion that sustained production of type I interferon shifts nearly all components of the immune system toward pathologic functions that result in tissue damage and disease. We review recent data, mainly from studies of patients with systemic lupus erythematosus, that provide new insights into the mechanisms of induction and the immunologic consequences of chronic activation of the type I interferon pathway. Current concepts implicate endogenous nucleic acids, driving both cytosolic sensors and endosomal Toll-like receptors, in interferon pathway activation and suggest targets for development of novel therapeutics that may restore the immune system to health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-020117-043952
2019-01-24
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/14/1/annurev-pathol-020117-043952.html?itemId=/content/journals/10.1146/annurev-pathol-020117-043952&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Woelk CH, Frost SD, Richman DD, Higley PE, Kosakovsky Pond SL 2007. Evolution of the interferon alpha gene family in eutherian mammals. Gene 397:38–50
    [Google Scholar]
  2. 2.  Steinberg AD, Baron S, Talal N 1969. The pathogenesis of autoimmunity in New Zealand mice, I. Induction of antinucleic acid antibodies by polyinosinic-polycytidylic acid. PNAS 63:1102–7
    [Google Scholar]
  3. 3.  Skurkovich SV, Eremkina EI 1975. The probable role of interferon in allergy. Ann. Allergy 35:356–60
    [Google Scholar]
  4. 4.  Skurkovich SV, Skorikova AS, Dubrovina NA, Riabova TV, Eremkina EI et al. 1977. Lymphocytes' cytotoxicity towards cells of human lymphoblastoid lines in patients with rheumatoid arthritis and systemic lupus erythematosus. Ann. Allergy 39:344–50
    [Google Scholar]
  5. 5.  Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL 1979. Immune interferon in the circulation of patients with autoimmune disease. New Engl. J. Med. 301:5–8
    [Google Scholar]
  6. 6.  Fujibayashi T, Hooks JJ, Notkins AL 1975. Production of interferon by immune lymphocytes exposed to herpes simplex virus-antibody complexes. J. Immunol. 115:1191–93
    [Google Scholar]
  7. 7.  Vallin H, Blomberg S, Alm GV, Cederblad B, Ronnblom L 1999. Patients with systemic lupus erythematosus (SLE) have a circulating inducer of interferon-alpha (IFN-α) production acting on leucocytes resembling immature dendritic cells. Clin. Exp. Immunol. 115:196–202
    [Google Scholar]
  8. 8.  Kirou KA, Lee C, George S, Louca K, Peterson MG, Crow MK 2005. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum 52:1491–503
    [Google Scholar]
  9. 9.  Rich SA 1981. Human lupus inclusions and interferon. Science 213:772–75
    [Google Scholar]
  10. 10.  Rich SA, Owens TR, Anzola MC, Bartholomew LE 1986. Induction of lupus inclusions by sera from patients with systemic lupus erythematosus. Arthritis Rheum 29:501–7
    [Google Scholar]
  11. 11.  Norton WL 1969. Endothelial inclusions in active lesions of systemic lupus erythematosus. J. Lab. Clin. Med. 74:369–79
    [Google Scholar]
  12. 12.  Liu Z, Bethunaickan R, Huang W, Lodhi U, Solano I et al. 2011. Interferon-α accelerates murine systemic lupus erythematosus in a T cell-dependent manner. Arthritis Rheum 63:219–29
    [Google Scholar]
  13. 13.  Ronnblom LE, Alm GV, Oberg KE 1990. Possible induction of systemic lupus erythematosus by interferon-alpha treatment in a patient with a malignant carcinoid tumour. J. Intern. Med. 227:207–10
    [Google Scholar]
  14. 14.  Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA et al. 2003. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. PNAS 100:2610–15
    [Google Scholar]
  15. 15.  Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J et al. 2003. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197:711–23
    [Google Scholar]
  16. 16.  Crow MK, Wohlgemuth J 2003. Microarray analysis of gene expression in lupus. Arthritis Res. Ther. 5:279–87
    [Google Scholar]
  17. 17.  Kirou KA, Lee C, George S, Louca K, Papagiannis IG et al. 2004. Coordinate overexpression of interferon-alpha-induced genes in systemic lupus erythematosus. Arthritis Rheum 50:3958–67
    [Google Scholar]
  18. 18.  Hua J, Kirou K, Lee C, Crow MK 2006. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum 54:1906–16
    [Google Scholar]
  19. 19.  Ferreira RC, Guo H, Coulson RM, Smyth DJ, Pekalski ML et al. 2014. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63:2538–50
    [Google Scholar]
  20. 20.  Evans AS, Rothfield NF, Niederman JC 1971. Raised antibody titres to E.B. virus in systemic lupus erythematosus. Lancet 1:167–68
    [Google Scholar]
  21. 21.  Draborg A, Izarzugaza JM, Houen G 2016. How compelling are the data for Epstein-Barr virus being a trigger for systemic lupus and other autoimmune diseases?. Curr. Opin. Rheumatol. 28:398–404
    [Google Scholar]
  22. 22.  Han L, Zhang Y, Wang Q, Xin M, Yang K et al. 2018. Epstein-Barr virus infection and type I interferon signature in patients with systemic lupus erythematosus. Lupus 27:947–54
    [Google Scholar]
  23. 23.  Quan TE, Roman RM, Rudenga BJ, Holers VM, Craft JE 2010. Epstein-Barr virus promotes interferon-alpha production by plasmacytoid dendritic cells. Arthritis Rheum 62:1693–701
    [Google Scholar]
  24. 24.  Iwakiri D 2014. Epstein-Barr virus-encoded RNAs: key molecules in viral pathogenesis. Cancers 6:1615–30
    [Google Scholar]
  25. 25.  McNeilage LJ, Whittingham S, Mackay IR 1984. Autoantibodies reactive with small ribonucleoprotein antigens: a convergence of molecular biology and clinical immunology. J. Clin. Lab. Immunol. 15:1–17
    [Google Scholar]
  26. 26.  Larsen M, Sauce D, Deback C, Arnaud L, Mathian A et al. 2011. Exhausted cytotoxic control of Epstein-Barr virus in human lupus. PLOS Pathog 7:e1002328
    [Google Scholar]
  27. 27.  Lovgren T, Eloranta ML, Bave U, Alm GV, Ronnblom L 2004. Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 50:1861–72
    [Google Scholar]
  28. 28.  Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S et al. 2005. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202:1131–39
    [Google Scholar]
  29. 29.  Sigurdsson S, Nordmark G, Goring HH, Lindroos K, Wiman AC et al. 2005. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet. 76:528–37
    [Google Scholar]
  30. 30.  Niewold TB, Kelly JA, Flesch MH, Espinoza LR, Harley JB, Crow MK 2008. Association of the IRF5 risk haplotype with high serum interferon-alpha activity in systemic lupus erythematosus patients. Arthritis Rheum 58:2481–87
    [Google Scholar]
  31. 31.  Bruni D, Chazal M, Sinigaglia L, Chauveau L, Schwartz O et al. 2015. Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons. Sci. Signal. 8:ra25
    [Google Scholar]
  32. 32.  Chiang EY, Yu X, Grogan JL 2011. Immune complex-mediated cell activation from systemic lupus erythematosus and rheumatoid arthritis patients elaborate different requirements for IRAK1/4 kinase activity across human cell types. J. Immunol. 186:1279–88
    [Google Scholar]
  33. 33.  Pauls E, Shpiro N, Peggie M, Young ER, Sorcek RJ et al. 2012. Essential role for IKKβ in production of type 1 interferons by plasmacytoid dendritic cells. J. Biol. Chem. 287:19216–28
    [Google Scholar]
  34. 34.  Saitoh T, Satoh T, Yamamoto N, Uematsu S, Takeuchi O et al. 2011. Antiviral protein Viperin promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells. Immunity 34:352–63
    [Google Scholar]
  35. 35.  Tun-Kyi A, Finn G, Greenwood A, Nowak M, Lee TH et al. 2011. Essential role for the prolyl isomerase Pin1 in Toll-like receptor signaling and type I interferon-mediated immunity. Nat. Immunol. 12:733–41
    [Google Scholar]
  36. 36.  Leonard D, Eloranta ML, Hagberg N, Berggren O, Tandre K et al. 2016. Activated T cells enhance interferon-α production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes. Ann. Rheum. Dis. 75:1728–34
    [Google Scholar]
  37. 37.  Berggren O, Hagberg N, Weber G, Alm GV, Ronnblom L, Eloranta ML 2012. B lymphocytes enhance interferon-α production by plasmacytoid dendritic cells. Arthritis Rheum 64:3409–19
    [Google Scholar]
  38. 38.  Khoryati L, Augusto JF, Shipley E, Contin-Bordes C, Douchet I et al. 2016. IgE inhibits Toll-like receptor 7- and Toll-like receptor 9-mediated expression of interferon-α by plasmacytoid dendritic cells in patients with systemic lupus erythematosus. Arthritis Rheumatol 68:2221–31
    [Google Scholar]
  39. 39.  Seliga A, Lee MH, Fernandes NC, Zuluaga-Ramirez V, Didukh M et al. 2018. Kallikrein-Kinin System suppresses type I interferon responses: a novel pathway of interferon regulation. Front. Immunol. 9:156
    [Google Scholar]
  40. 40.  Ries M, Schuster P, Thomann S, Donhauser N, Vollmer J, Schmidt B 2013. Identification of novel oligonucleotides from mitochondrial DNA that spontaneously induce plasmacytoid dendritic cell activation. J. Leukoc. Biol. 94:123–35
    [Google Scholar]
  41. 41.  Yasutomo K, Horiuchi T, Kagami S, Tsukamoto H, Hashimura C et al. 2001. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 28:313–14
    [Google Scholar]
  42. 42.  Sisirak V, Sally B, D'Agati V, Martinez-Ortiz W, Ozcakar ZB et al. 2016. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166:88–101
    [Google Scholar]
  43. 43.  Dhanwani R, Takahashi M, Sharma S 2018. Cytosolic sensing of immuno-stimulatory DNA, the enemy within. Curr. Opin. Immunol. 50:82–87
    [Google Scholar]
  44. 44.  Sun L, Wu J, Du F, Chen X, Chen ZJ 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91
    [Google Scholar]
  45. 45.  Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM et al. 2015. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A 167A:296–312
    [Google Scholar]
  46. 46.  Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K et al. 2007. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39:1065–67
    [Google Scholar]
  47. 47.  Namjou B, Kothari PH, Kelly JA, Glenn SB, Ojwang JO et al. 2011. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun 12:270–79
    [Google Scholar]
  48. 48.  Kim H, Sanchez GA, Goldbach-Mansky R 2016. Insights from Mendelian interferonopathies: comparison of CANDLE, SAVI with AGS, monogenic lupus. J. Mol. Med. 94:1111–27
    [Google Scholar]
  49. 49.  Munroe ME, Pezant N, Brown MA, Fife DA, Guthridge JM et al. 2017. Association of IFIH1 and pro-inflammatory mediators: potential new clues in SLE-associated pathogenesis. PLOS ONE 12:e0171193
    [Google Scholar]
  50. 50.  Ferreira RC, Pan-Hammarstrom Q, Graham RR, Gateva V, Fontan G et al. 2010. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat. Genet. 42:777–80
    [Google Scholar]
  51. 51.  Robinson T, Kariuki SN, Franek BS, Kumabe M, Kumar AA et al. 2011. Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-α and serologic autoimmunity in lupus patients. J. Immunol. 187:1298–303
    [Google Scholar]
  52. 52.  Pothlichet J, Niewold TB, Vitour D, Solhonne B, Crow MK, Si-Tahar M 2011. A loss-of-function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients. EMBO Mol. Med. 3:142–52
    [Google Scholar]
  53. 53.  Shao WH, Shu DH, Zhen Y, Hilliard B, Priest SO et al. 2016. Prion-like aggregation of mitochondrial antiviral signaling protein in lupus patients is associated with increased levels of type I interferon. Arthritis Rheumatol 68:2697–707
    [Google Scholar]
  54. 54.  Buskiewicz IA, Montgomery T, Yasewicz EC, Huber SA, Murphy MP et al. 2016. Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Sci. Signal. 9:ra115
    [Google Scholar]
  55. 55.  Gao L, Bird AK, Meednu N, Dauenhauer K, Liesveld J et al. 2017. Bone marrow-derived mesenchymal stem cells from patients with systemic lupus erythematosus have a senescence-associated secretory phenotype mediated by a mitochondrial antiviral signaling protein-interferon-β feedback loop. Arthritis Rheumatol 69:1623–35
    [Google Scholar]
  56. 56.  An J, Durcan L, Karr RM, Briggs TA, Rice GI et al. 2017. Expression of cyclic GMP-AMP synthase in patients with systemic lupus erythematosus. Arthritis Rheumatol 69:800–7
    [Google Scholar]
  57. 57.  Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S et al. 2014. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124:5516–20
    [Google Scholar]
  58. 58.  Swanson KV, Junkins RD, Kurkjian CJ, Holley-Guthrie E, Pendse AA et al. 2017. A noncanonical function of cGAMP in inflammasome priming and activation. J. Exp. Med. 214:3611–26
    [Google Scholar]
  59. 59.  Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T et al. 2013. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39:482–95
    [Google Scholar]
  60. 60.  Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS et al. 2016. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22:146–53
    [Google Scholar]
  61. 61.  Caielli S, Athale S, Domic B, Murat E, Chandra M et al. 2016. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213:697–713
    [Google Scholar]
  62. 62.  Tian J, Avalos AM, Mao SY, Chen B, Senthil K et al. 2007. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8:487–96
    [Google Scholar]
  63. 63.  Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F et al. 2011. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3:73ra20
    [Google Scholar]
  64. 64.  Wang PH, Fung SY, Gao WW, Deng JJ, Cheng Y et al. 2018. A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Res 46:4054–71
    [Google Scholar]
  65. 65.  West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:553–57
    [Google Scholar]
  66. 66.  West AP, Shadel GS 2017. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17:363–75
    [Google Scholar]
  67. 67.  Kerur N, Fukuda S, Banerjee D, Kim Y, Fu D et al. 2018. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat. Med. 24:50–61
    [Google Scholar]
  68. 68.  Sun B, Sundstrom KB, Chew JJ, Bist P, Gan ES et al. 2017. Dengue virus activates cGAS through the release of mitochondrial DNA. Sci. Rep. 7:3594
    [Google Scholar]
  69. 69.  Chung H, Calis JJA, Wu X, Sun T, Yu Y et al. 2018. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172:811–24.e14
    [Google Scholar]
  70. 70.  Hung T, Pratt GA, Sundararaman B, Townsend MJ, Chaivorapol C et al. 2015. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350:455–59
    [Google Scholar]
  71. 71.  Crow MK 2010. Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity 43:7–16
    [Google Scholar]
  72. 72.  Mavragani CP, Sagalovskiy I, Guo Q, Nezos A, Kapsogeorgou EK et al. 2016. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol 68:2686–96
    [Google Scholar]
  73. 73.  Mavragani CP, Nezos A, Sagalovskiy I, Seshan S, Kirou KA, Crow MK 2018. Defective regulation of L1 endogenous retroelements in primary Sjogren's syndrome and systemic lupus erythematosus: role of methylating enzymes. J. Autoimmun. 88:75–82
    [Google Scholar]
  74. 74.  McClintock B 1984. The significance of responses of the genome to challenge. Science 226:792–801
    [Google Scholar]
  75. 75.  Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K et al. 1999. The nature of the principal type 1 interferon-producing cells in human blood. Science 284:1835–37
    [Google Scholar]
  76. 76.  Cervantes-Barragan L, Lewis KL, Firner S, Thiel V, Hugues S et al. 2012. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. PNAS 109:3012–17
    [Google Scholar]
  77. 77.  Grajkowska LT, Ceribelli M, Lau CM, Warren ME, Tiniakou I et al. 2017. Isoform-specific expression and feedback regulation of E protein TCF4 control dendritic cell lineage specification. Immunity 46:65–77
    [Google Scholar]
  78. 78.  Sathaliyawala T, O'Gorman WE, Greter M, Bogunovic M, Konjufca V et al. 2010. Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling. Immunity 33:597–606
    [Google Scholar]
  79. 79.  Sisirak V, Ganguly D, Lewis KL, Couillault C, Tanaka L et al. 2014. Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J. Exp. Med. 211:1969–76
    [Google Scholar]
  80. 80.  Rowland SL, Riggs JM, Gilfillan S, Bugatti M, Vermi W et al. 2014. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J. Exp. Med. 211:1977–91
    [Google Scholar]
  81. 81.  Ah Kioon MD, Tripodo C, Fernandez D, Kirou KA, Spiera RF et al. 2018. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci. Transl. Med. 10:eaam8458
    [Google Scholar]
  82. 82.  Rodero MP, Decalf J, Bondet V, Hunt D, Rice GI et al. 2017. Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J. Exp. Med. 214:1547–55
    [Google Scholar]
  83. 83.  Decker P 2011. Neutrophils and interferon-α-producing cells: Who produces interferon in lupus?. Arthritis Res. Ther. 13:118
    [Google Scholar]
  84. 84.  Cederblad B, Blomberg S, Vallin H, Perers A, Alm GV, Ronnblom L 1998. Patients with systemic lupus erythematosus have reduced numbers of circulating natural interferon-alpha-producing cells. J. Autoimmun. 11:465–70
    [Google Scholar]
  85. 85.  Huard C, Gulla SV, Bennett DV, Coyle AJ, Vleugels RA, Greenberg SA 2017. Correlation of cutaneous disease activity with type 1 interferon gene signature and interferon β in dermatomyositis. Br. J. Dermatol. 176:1224–30
    [Google Scholar]
  86. 86.  Stannard JN, Reed TJ, Myers E, Lowe L, Sarkar MK et al. 2017. Lupus skin is primed for IL-6 inflammatory responses through a keratinocyte-mediated autocrine type I interferon loop. J. Investig. Dermatol. 137:115–22
    [Google Scholar]
  87. 87.  Finotti G, Tamassia N, Cassatella MA 2017. Interferon-λs and plasmacytoid dendritic cells: a close relationship. Front. Immunol. 8:1015
    [Google Scholar]
  88. 88.  Ng CT, Mendoza JL, Garcia KC, Oldstone MB 2016. Alpha and beta type 1 interferon signaling: passage for diverse biologic outcomes. Cell 164:349–52
    [Google Scholar]
  89. 89.  Furie R, Khamashta M, Merrill JT, Werth VP, Kalunian K et al. 2017. Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol 69:376–86
    [Google Scholar]
  90. 90.  Piehler J, Thomas C, Garcia KC, Schreiber G 2012. Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation. Immunol. Rev. 250:317–34
    [Google Scholar]
  91. 91.  de Weerd NA, Nguyen T 2012. The interferons and their receptors—distribution and regulation. Immunol. Cell Biol. 90:483–91
    [Google Scholar]
  92. 92.  de Weerd NA, Matthews AY, Pattie PR, Bourke NM, Lim SS et al. 2017. A hot spot on interferon α/β receptor subunit 1 (IFNAR1) underpins its interaction with interferon-β and dictates signaling. J. Biol. Chem. 292:7554–65
    [Google Scholar]
  93. 93.  Wang H, Wang J, Xia Y 2017. Defective suppressor of cytokine signaling 1 signaling contributes to the pathogenesis of systemic lupus erythematosus. Front. Immunol. 8:1292
    [Google Scholar]
  94. 94.  Meuwissen ME, Schot R, Buta S, Oudesluijs G, Tinschert S et al. 2016. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213:1163–74
    [Google Scholar]
  95. 95.  Levin D, Schneider WM, Hoffmann HH, Yarden G, Busetto AG et al. 2014. Multifaceted activities of type I interferon are revealed by a receptor antagonist. Sci. Signal. 7:ra50
    [Google Scholar]
  96. 96.  Chiche L, Jourde-Chiche N, Whalen E, Presnell S, Gersuk V et al. 2014. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol 66:1583–95
    [Google Scholar]
  97. 97.  Murira A, Lamarre A 2016. Type-I interferon responses: from friend to foe in the battle against chronic viral infection. Front. Immunol. 7:609
    [Google Scholar]
  98. 98.  Dagenais-Lussier X, Loucif H, Murira A, Laulhe X, Stager S et al. 2017. Sustained IFN-I expression during established persistent viral infection: a “bad seed” for protective immunity. Viruses 10:E12
    [Google Scholar]
  99. 99.  Snell LM, McGaha TL, Brooks DG 2017. Type I interferon in chronic virus infection and cancer. Trends Immunol 38:542–57
    [Google Scholar]
  100. 100.  Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J 2001. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 294:1540–43
    [Google Scholar]
  101. 101.  Le Bon A, Schiavoni G, D'Agostino G, Gresser I, Belardelli F, Tough DF 2001. Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14:461–70
    [Google Scholar]
  102. 102.  Padovan E, Spagnoli GC, Ferrantini M, Heberer M 2002. IFN-alpha2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells. J. Leukoc. Biol. 71:669–76
    [Google Scholar]
  103. 103.  Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J et al. 2013. Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340:202–7
    [Google Scholar]
  104. 104.  Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC et al. 2013. Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340:207–11
    [Google Scholar]
  105. 105.  Zhen A, Rezek V, Youn C, Lam B, Chang N et al. 2017. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J. Clin. Invest. 127:260–68
    [Google Scholar]
  106. 106.  Cheng L, Ma J, Li J, Li D, Li G et al. 2017. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J. Clin. Invest. 127:269–79
    [Google Scholar]
  107. 107.  Cheng L, Yu H, Li G, Li F, Ma J et al. 2017. Type I interferons suppress viral replication but contribute to T cell depletion and dysfunction during chronic HIV-1 infection. JCI Insight 2:e94366
    [Google Scholar]
  108. 108.  Veenhuis RT, Freeman ZT, Korleski J, Cohen LK, Massaccesi G et al. 2017. HIV-antibody complexes enhance production of type I interferon by plasmacytoid dendritic cells. J. Clin. Invest. 127:4352–64
    [Google Scholar]
  109. 109.  Ahn E, Youngblood B, Lee J, Sarkar S, Ahmed R 2016. Demethylation of the PD-1 promoter is imprinted during the effector phase of CD8 T cell exhaustion. J. Virol. 90:8934–46
    [Google Scholar]
  110. 110.  Vermi W, Lonardi S, Morassi M, Rossini C, Tardanico R et al. 2009. Cutaneous distribution of plasmacytoid dendritic cells in lupus erythematosus: selective tropism at the site of epithelial apoptotic damage. Immunobiology 214:877–86
    [Google Scholar]
  111. 111.  Farkas L, Beiske K, Lund-Johansen F, Brandtzaeg P, Jahnsen FL 2001. Plasmacytoid dendritic cells (natural interferon-alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol. 159:237–43
    [Google Scholar]
  112. 112.  Fairhurst AM, Xie C, Fu Y, Wang A, Boudreaux C et al. 2009. Type I interferons produced by resident renal cells may promote end-organ disease in autoantibody-mediated glomerulonephritis. J. Immunol. 183:6831–38
    [Google Scholar]
  113. 113.  Yin Q, Xu X, Lin Y, Lv J, Zhao L, He R 2014. Ultraviolet B irradiation induces skin accumulation of plasmacytoid dendritic cells: a possible role for chemerin. Autoimmunity 47:185–92
    [Google Scholar]
  114. 114.  Nzeusseu Toukap A, Galant C, Theate I, Maudoux AL, Lories RJ et al. 2007. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheumatol 56:1579–88
    [Google Scholar]
  115. 115.  Thacker SG, Zhao W, Smith CK, Luo W, Wang H et al. 2012. Type I interferons modulate vascular function, repair, thrombosis, and plaque progression in murine models of lupus and atherosclerosis. Arthritis Rheumatol 64:2975–85
    [Google Scholar]
  116. 116.  Kahlenberg JM, Kaplan MJ 2013. Mechanisms of premature atherosclerosis in rheumatoid arthritis and lupus. Annu. Rev. Med. 64:249–63
    [Google Scholar]
  117. 117.  Bialas AR, Presumey J, Das A, van der Poel CE, Lapchak PH et al. 2017. Microglia-dependent synapse loss in type I interferon-mediated lupus. Nature 546:539–43
    [Google Scholar]
  118. 118.  Andrade D, Kim M, Blanco LP, Karumanchi SA, Koo GC et al. 2015. Interferon-α and angiogenic dysregulation in pregnant lupus patients who develop preeclampsia. Arthritis Rheumatol 67:977–87
    [Google Scholar]
  119. 119.  Blank T, Prinz M 2017. Type I interferon pathway in CNS homeostasis and neurological disorders. Glia 65:1397–406
    [Google Scholar]
  120. 120.  Nezos A, Gravani F, Tassidou A, Kapsogeorgou EK, Voulgarelis M et al. 2015. Type I and II interferon signatures in Sjogren's syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjogren's related lymphomagenesis. J. Autoimmun. 63:47–58
    [Google Scholar]
  121. 121.  Suarez-Calvet X, Gallardo E, Pinal-Fernandez I, De Luna N, Lleixa C et al. 2017. RIG-I expression in perifascicular myofibers is a reliable biomarker of dermatomyositis. Arthritis Res. Ther. 19:174
    [Google Scholar]
  122. 122.  Greenberg SA 2010. Dermatomyositis and type 1 interferons. Curr. Rheumatol. Rep. 12:198–203
    [Google Scholar]
  123. 123.  Brkic Z, van Bon L, Cossu M, van Helden-Meeuwsen CG, Vonk MC et al. 2016. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann. Rheum. Dis. 75:1567–73
    [Google Scholar]
  124. 124.  Cooles FAH, Anderson AE, Lendrem DW, Norris J, Pratt AG et al. 2018. The interferon gene signature is increased in patients with early treatment-naive rheumatoid arthritis and predicts a poorer response to initial therapy. J. Allergy Clin. Immunol. 141:445–48.e4
    [Google Scholar]
  125. 125.  Liu X, Mayes MD, Tan FK, Wu M, Reveille JD et al. 2013. Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis. Arthritis Rheumatol 65:226–35
    [Google Scholar]
  126. 126.  Wuttge DM, Lood C, Tufvesson E, Scheja A, Truedsson L et al. 2013. Increased serum type I interferon activity in early systemic sclerosis patients is associated with antibodies against Sjogren's syndrome antigens and nuclear ribonucleoprotein antigens. Scand. J. Rheumatol. 42:235–40
    [Google Scholar]
  127. 127.  Landolt-Marticorena C, Bonventi G, Lubovich A, Ferguson C, Unnithan T et al. 2009. Lack of association between the interferon-alpha signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann. Rheum. Dis. 68:1440–46
    [Google Scholar]
  128. 128.  Meyer S, Woodward M, Hertel C, Vlaicu P, Haque Y et al. 2016. AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies. Cell 166:582–95
    [Google Scholar]
  129. 129.  Morimoto AM, Flesher DT, Yang J, Wolslegel K, Wang X et al. 2011. Association of endogenous anti-interferon-α autoantibodies with decreased interferon-pathway and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 63:2407–15
    [Google Scholar]
  130. 130.  Gupta S, Tatouli IP, Rosen LB, Hasni S, Alevizos I et al. 2016. Distinct functions of autoantibodies against interferon in systemic lupus erythematosus: a comprehensive analysis of anticytokine autoantibodies in common rheumatic diseases. Arthritis Rheumatol 68:1677–87
    [Google Scholar]
  131. 131.  Ducreux J, Houssiau FA, Vandepapeliere P, Jorgensen C, Lazaro E et al. 2016. Interferon α kinoid induces neutralizing anti-interferon α antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon α kinoid phase I/II study. Rheumatology 55:1901–5
    [Google Scholar]
  132. 132.  Ronnblom L 2016. The importance of the type I interferon system in autoimmunity. Clin. Exp. Rheumatol. 34:21–24
    [Google Scholar]
  133. 133. Can. Hydroxychloroquine Study Group. 1991. A randomized study of the effect of withdrawing hydroxy-chloroquine sulfate in systemic lupus erythematosus. New Engl. J. Med. 324:150–54
    [Google Scholar]
  134. 134.  An J, Woodward JJ, Sasaki T, Minie M, Elkon KB 2015. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction. J. Immunol. 194:4089–93
    [Google Scholar]
  135. 135.  Pellerin A, Otero K, Czerkowicz JM, Kerns HM, Shapiro RI et al. 2015. Anti-BDCA2 monoclonal antibody inhibits plasmacytoid dendritic cell activation through Fc-dependent and Fc-independent mechanisms. EMBO Mol. Med. 7:464–76
    [Google Scholar]
  136. 136.  Chevrier N, Mertins P, Artyomov MN, Shalek AK, Iannacone M et al. 2011. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell 147:853–67
    [Google Scholar]
  137. 137.  Dudhgaonkar S, Ranade S, Nagar J, Subramani S, Prasad DS et al. 2017. Selective IRAK4 inhibition attenuates disease in murine lupus models and demonstrates steroid sparing activity. J. Immunol. 198:1308–19
    [Google Scholar]
  138. 138.  Vincent J, Adura C, Gao P, Luz A, Lama L et al. 2017. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nat. Commun. 8:750
    [Google Scholar]
  139. 139.  Hasan M, Yan N 2016. Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies. Pharmacol. Res. 111:336–42
    [Google Scholar]
  140. 140.  Baker KF, Isaacs JD 2018. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and ulcerative colitis?. Ann. Rheum. Dis. 77:175–87
    [Google Scholar]
  141. 141.  Ikeda K, Hayakawa K, Fujishiro M, Kawasaki M, Hirai T et al. 2017. JAK inhibitor has the amelioration effect in lupus-prone mice: the involvement of IFN signature gene downregulation. BMC Immunol 18:41
    [Google Scholar]
  142. 142.  Spaulding E, Fooksman D, Moore JM, Saidi A, Feintuch CM et al. 2016. STING-licensed macrophages prime type I IFN production by plasmacytoid dendritic cells in the bone marrow during severe Plasmodiumyoelii malaria. PLOS Pathog 12:e1005975
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-020117-043952
Loading
/content/journals/10.1146/annurev-pathol-020117-043952
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error