1932

Abstract

Classic innate immune signaling pathways provide most of the immune response in the brain. This response activates many of the canonical signaling mechanisms identified in peripheral immune cells, despite their relative absence in this immune-privileged tissue. Studies over the past decade have strongly linked complement protein production and activation to age-related functional changes and neurodegeneration. The reactivation of the complement signaling pathway in aging and disease has opened new avenues for understanding brain aging and neurological disease pathogenesis and has implicated cell types such as astrocytes, microglia, endothelial cells, oligodendrocytes, neurons, and even peripheral immune cells in these processes. In this review, we aim to unravel the past decade of research related to complement activation and its numerous consequences in aging and neurological disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-031620-113409
2021-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/16/1/annurev-pathol-031620-113409.html?itemId=/content/journals/10.1146/annurev-pathol-031620-113409&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Cavaillon J-M, Sansonetti P, Goldman M 2019. 100th anniversary of Jules Bordet's Nobel Prize: tribute to a founding father of immunology. Front. Immunol. 10:2114
    [Google Scholar]
  2. 2. 
    Alper CA, Johnson AM, Birtch AG, Moore FD 1969. Human C'3 evidence for the liver as the primary site of synthesis. Science 163:286–88
    [Google Scholar]
  3. 3. 
    Reis ES, Mastellos DC, Hajishengallis G, Lambris JD 2019. New insights into the immune functions of complement. Nat. Rev. Immunol. 19:503–16
    [Google Scholar]
  4. 4. 
    Alperin JM, Ortiz-Fernández L, Sawalha AH 2018. Monogenic lupus: a developing paradigm of disease. Front. Immunol. 9:2496
    [Google Scholar]
  5. 5. 
    Kolev M, Le Friec G, Kemper C 2014. Complement—tapping into new sites and effector systems. Nat. Rev. Immunol. 14:811–20
    [Google Scholar]
  6. 6. 
    Ricklin D, Mastellos DC, Reis ES, Lambris JD 2018. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 14:26–47
    [Google Scholar]
  7. 7. 
    Morgan BP, Harris CL. 2015. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14:857–77
    [Google Scholar]
  8. 8. 
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–78
    [Google Scholar]
  9. 9. 
    Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR et al. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705
    [Google Scholar]
  10. 10. 
    Lambert J-C, Heath S, Even G, Campion D, Sleegers K et al. 2009. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet. 41:1094–99
    [Google Scholar]
  11. 11. 
    Xu C, Yang Q, Xiong H, Wang L, Cai J et al. 2014. Candidate pathway-based genome-wide association studies identify novel associations of genomic variants in the complement system associated with coronary artery disease. Circ. Cardiovasc. Genet. 7:887–94
    [Google Scholar]
  12. 12. 
    McGeer EG, Klegeris A, McGeer PL 2005. Inflammation, the complement system and the diseases of aging. Neurobiol. Aging 26:Suppl. 194–97
    [Google Scholar]
  13. 13. 
    Kersten E, Geerlings MJ, den Hollander AI, de Jong EK, Fauser S et al. 2017. Phenotype characteristics of patients with age-related macular degeneration carrying a rare variant in the complement factor H gene. JAMA Ophthalmol 135:1037–44
    [Google Scholar]
  14. 14. 
    Geerlings MJ, Kremlitzka M, Bakker B, Nilsson SC, Saksens NT et al. 2017. The functional effect of rare variants in complement genes on C3b degradation in patients with age-related macular degeneration. JAMA Ophthalmol 135:39–46
    [Google Scholar]
  15. 15. 
    Geerlings MJ, de Jong EK, den Hollander AI 2017. The complement system in age-related macular degeneration: a review of rare genetic variants and implications for personalized treatment. Mol. Immunol. 84:65–76
    [Google Scholar]
  16. 16. 
    Zipfel PF, Skerka C. 2009. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9:729–40
    [Google Scholar]
  17. 17. 
    Zipfel PF. 2009. Complement and immune defense: from innate immunity to human diseases. Immunol. Lett. 126:1–7
    [Google Scholar]
  18. 18. 
    Emin M, Wang G, Castagna F, Rodriguez-Lopez J, Wahab R et al. 2016. Increased internalization of complement inhibitor CD59 may contribute to endothelial inflammation in obstructive sleep apnea. Sci. Transl. Med. 8:320ra1
    [Google Scholar]
  19. 19. 
    Speidl WS, Exner M, Amighi J, Kastl SP, Zorn G et al. 2005. Complement component C5a predicts future cardiovascular events in patients with advanced atherosclerosis. Eur. Heart. J. 26:2294–99
    [Google Scholar]
  20. 20. 
    Niculescu F, Niculescu T, Rus H 2004. C5b-9 terminal complement complex assembly on apoptotic cells in human arterial wall with atherosclerosis. Exp. Mol. Pathol. 76:17–23
    [Google Scholar]
  21. 21. 
    Veerhuis R, Nielsen HM, Tenner AJ 2011. Complement in the brain. Mol. Immunol. 48:1592–603
    [Google Scholar]
  22. 22. 
    Lukácsi S, Nagy-Baló Z, Erdei A, Sándor N, Bajtay Z 2017. The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol. Lett. 189:64–72
    [Google Scholar]
  23. 23. 
    Wang Y, Zhang H, He YW 2019. The complement receptors C3aR and C5aR are a new class of immune checkpoint receptor in cancer immunotherapy. Front. Immunol. 10:1574
    [Google Scholar]
  24. 24. 
    Arbore G, West EE, Spolski R, Robertson AAB, Klos A et al. 2016. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science 352:aad1210
    [Google Scholar]
  25. 25. 
    Quell KM, Karsten CM, Kordowski A, Almeida LN, Briukhovetska D et al. 2017. Monitoring C3aR expression using a floxed tdTomato-C3aR reporter knock-in mouse. J. Immunol. 199:688–706
    [Google Scholar]
  26. 26. 
    Lian H, Litvinchuk A, Chiang AC-A, Aithmitti N, Jankowsky JL, Zheng H 2016. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer's disease. J. Neurosci. 36:577–89
    [Google Scholar]
  27. 27. 
    Li L, Chen L, Zang J, Tang X, Liu Y et al. 2015. C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/β-catenin signaling pathway in diabetic kidney disease. Metabolism 64:597–610
    [Google Scholar]
  28. 28. 
    Oksjoki R, Laine P, Helske S, Vehmaan-Kreula P, Mäyränpää MI et al. 2007. Receptors for the ana-phylatoxins C3a and C5a are expressed in human atherosclerotic coronary plaques. Atherosclerosis 195:90–99
    [Google Scholar]
  29. 29. 
    Skeie JM, Fingert JH, Russell SR, Stone EM, Mullins RF 2010. Complement component C5a activates ICAM-1 expression on human choroidal endothelial cells. Investig. Ophthalmol. Vis. Sci. 51:5336–42
    [Google Scholar]
  30. 30. 
    Jagels MA, Daffern PJ, Hugli TE 2000. C3a and C5a enhance granulocyte adhesion to endothelial and epithelial cell monolayers: epithelial and endothelial priming is required for C3a-induced eosinophil adhesion. Immunopharmacology 46:209–22
    [Google Scholar]
  31. 31. 
    Monsinjon T, Gasque P, Chan P, Ischenko A, Brady JJ, Fontaine MC 2003. Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. FASEB J 17:1003–14
    [Google Scholar]
  32. 32. 
    Van Beek J, Bernaudin M, Petit E, Gasque P, Nouvelot A et al. 2000. Expression of receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral ischemia in the mouse. Exp. Neurol. 161:373–82
    [Google Scholar]
  33. 33. 
    Boire A, Zou Y, Shieh J, Macalinao DG, Pentsova E, Massagué J 2017. Complement component 3 adapts the cerebrospinal fluid for leptomeningeal metastasis. Cell 168:1101–13
    [Google Scholar]
  34. 34. 
    Walker DG, Lue L-F. 2015. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res. Ther. 7:56
    [Google Scholar]
  35. 35. 
    Veerhuis R, Janssen I, De Groot CJA, Van Muiswinkel FL, Hack CE, Eikelenboom P 1999. Cytokines associated with amyloid plaques in Alzheimer's disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor. Exp. Neurol. 160:289–99
    [Google Scholar]
  36. 36. 
    Fonseca MI, Kawas CH, Troncoso JC, Tenner AJ 2004. Neuronal localization of C1q in preclinical Alzheimer's disease. Neurobiol. Dis. 15:40–46
    [Google Scholar]
  37. 37. 
    Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S et al. 2016. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–16
    [Google Scholar]
  38. 38. 
    Verbeek MM, Otte-Höller I, Ruiter DJ, de Waal RM 1999. Human brain pericytes as a model system to study the pathogenesis of cerebrovascular amyloidosis in Alzheimer's disease. Cell. Mol. Biol. 45:37–46
    [Google Scholar]
  39. 39. 
    Lian H, Yang L, Cole A, Sun L, Chiang AC-A et al. 2015. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron 85:101–15
    [Google Scholar]
  40. 40. 
    Tradtrantip L, Duan T, Yeaman MR, Verkman AS 2019. CD55 upregulation in astrocytes by statins as potential therapy for AQP4-IgG seropositive neuromyelitis optica. J. Neuroinflamm. 16:57
    [Google Scholar]
  41. 41. 
    Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ 2019. Clusterin in Alzheimer's disease: mechanisms, genetics, and lessons from other pathologies. Front. Neurosci. 13:164
    [Google Scholar]
  42. 42. 
    Fonseca MI, Chu S, Pierce AL, Brubaker WD, Hauhart RE et al. 2016. Analysis of the putative role of CR1 in Alzheimer's disease: genetic association, expression and function. PLOS ONE 11:e0149792
    [Google Scholar]
  43. 43. 
    Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R et al. 2017. A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169:1276–90.e17
    [Google Scholar]
  44. 44. 
    Schraufstatter IU, Trieu K, Sikora L, Sriramarao P, DiScipio R 2002. Complement C3a and C5a induce different signal transduction cascades in endothelial cells. J. Immunol. 169:2102–10
    [Google Scholar]
  45. 45. 
    Yamada T, McGeer PL, McGeer EG 1992. Lewy bodies in Parkinson's disease are recognized by antibodies to complement proteins. Acta Neuropathol 84:100–4
    [Google Scholar]
  46. 46. 
    Loeffler DA, Camp DM, Conant SB 2006. Complement activation in the Parkinson's disease substantia nigra: an immunocytochemical study. J. Neuroinflamm. 3:29
    [Google Scholar]
  47. 47. 
    Veselý B, Dufek M, Thon V, Brozman M, Királová S et al. 2018. Interleukin 6 and complement serum level study in Parkinson's disease. J. Neural Transm. 125:875–81
    [Google Scholar]
  48. 48. 
    Depboylu C, Schorlemmer K, Klietz M, Oertel WH, Weihe E et al. 2011. Upregulation of microglial C1q expression has no effects on nigrostriatal dopaminergic injury in the MPTP mouse model of Parkinson disease. J. Neuroimmunol. 236:39–46
    [Google Scholar]
  49. 49. 
    Liang Y, Li S, Guo Q, Zhang Y, Wen C et al. 2007. Complement 3-deficient mice are not protected against MPTP-induced dopaminergic neurotoxicity. Brain Res 1178:132–40
    [Google Scholar]
  50. 50. 
    Hou L, Wang K, Zhang C, Sun F, Che Y et al. 2018. Complement receptor 3 mediates NADPH oxidase activation and dopaminergic neurodegeneration through a Src-Erk-dependent pathway. Redox Biol 14:250–60
    [Google Scholar]
  51. 51. 
    Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr 1985. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 44:559–77
    [Google Scholar]
  52. 52. 
    Yamada T, Akiyama H, McGeer PL 1990. Complement-activated oligodendroglia: a new pathogenic entity identified by immunostaining with antibodies to human complement proteins C3d and C4d. Neurosci. Lett. 112:161–66
    [Google Scholar]
  53. 53. 
    Singhrao SK, Neal JW, Morgan BP, Gasque P 1999. Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease. Exp. Neurol. 159:362–76
    [Google Scholar]
  54. 54. 
    Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T et al. 2006. Regional and cellular gene expression changes in human Huntington's disease brain. Hum. Mol. Genet. 15:965–77
    [Google Scholar]
  55. 55. 
    Woodruff TM, Crane JW, Proctor LM, Buller KM, Shek AB et al. 2006. Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB J 20:1407–17
    [Google Scholar]
  56. 56. 
    Larkin PB, Muchowski PJ. 2012. Genetic deficiency of complement component 3 does not alter disease progression in a mouse model of Huntington's disease. J. Huntingt. Dis. 1:107–18
    [Google Scholar]
  57. 57. 
    Donnenfeld H, Kascsak RJ, Bartfeld H 1984. Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. J. Neuroimmunol. 6:51–57
    [Google Scholar]
  58. 58. 
    Sta M, Sylva-Steenland RMR, Casula M, de Jong JMBV, Troost D et al. 2011. Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation. Neurobiol. Dis. 42:211–20
    [Google Scholar]
  59. 59. 
    Annunziata P, Volpi N. 1985. High levels of C3c in the cerebrospinal fluid from amyotrophic lateral sclerosis patients. Acta Neurol. Scand. 72:61–64
    [Google Scholar]
  60. 60. 
    Mantovani S, Gordon R, Macmaw JK, Pfluger CMM, Henderson RD et al. 2014. Elevation of the terminal complement activation products C5a and C5b-9 in ALS patient blood. J. Neuroimmunol. 276:213–18
    [Google Scholar]
  61. 61. 
    Xu Z, Lee A, Nouwens A, Henderson RD, McCombe PA 2018. Mass spectrometry analysis of plasma from amyotrophic lateral sclerosis and control subjects. Amyotrophic Lateral Scler. Frontotemporal Degener. 19:362–76
    [Google Scholar]
  62. 62. 
    Lee JD, Kamaruzaman NA, Fung JNT, Taylor SM, Turner BJ et al. 2013. Dysregulation of the complement cascade in the hSOD1G93A transgenic mouse model of amyotrophic lateral sclerosis. J. Neuroinflamm. 10:119
    [Google Scholar]
  63. 63. 
    Chiu IM, Phatnani H, Kuligowski M, Tapia JC, Carrasco MA et al. 2009. Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. PNAS 106:20960–65
    [Google Scholar]
  64. 64. 
    Lobsiger CS, Boillée S, Pozniak C, Khan AM, McAlonis-Downes M et al. 2013. C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice. PNAS 110:E4385–92
    [Google Scholar]
  65. 65. 
    Lee JD, Kumar V, Fung JNT, Ruitenberg MJ, Noakes PG, Woodruff TM 2017. Pharmacological inhibition of complement C5a-C5a1 receptor signalling ameliorates disease pathology in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Br. J. Pharmacol. 174:689–99
    [Google Scholar]
  66. 66. 
    Woodruff TM, Lee JD, Noakes PG 2014. Role for terminal complement activation in amyotrophic lateral sclerosis disease progression. PNAS 111:E3–E4
    [Google Scholar]
  67. 67. 
    Giunta B, Fernandez F, Nikolic WV, Obregon D, Rrapo E et al. 2008. Inflammaging as a prodrome to Alzheimer's disease. J. Neuroinflamm. 5:51
    [Google Scholar]
  68. 68. 
    Ishii T, Haga S. 1984. Immuno-electron-microscopic localization of complements in amyloid fibrils of senile plaques. Acta Neuropathol 63:296–300
    [Google Scholar]
  69. 69. 
    Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL et al. 1992. Complement activation by β-amyloid in Alzheimer disease. PNAS 89:10016–20
    [Google Scholar]
  70. 70. 
    Veerhuis R, van der Valk P, Janssen I, Zhan SS, Eikelenboom P, Van Nostrand WE 1995. Complement activation in amyloid plaques in Alzheimer's disease brains does not proceed further than C3. Virchows Archiv 426:603–10
    [Google Scholar]
  71. 71. 
    Litvinchuk A, Wan Y-W, Swartzlander DB, Chen F, Cole A et al. 2018. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer's disease. Neuron 100:1337–53.e5
    [Google Scholar]
  72. 72. 
    Wu T, Dejanovic B, Gandham VD, Gogineni A, Edmonds R et al. 2019. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep 28:2111–23.e6
    [Google Scholar]
  73. 73. 
    Lambert J-C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R et al. 2013. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45:1452–58
    [Google Scholar]
  74. 74. 
    Fonseca MI, McGuire SO, Counts SE, Tenner AJ 2013. Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. J. Neuroinflamm. 10:803
    [Google Scholar]
  75. 75. 
    Fonseca MI, Ager RR, Chu S-H, Yazan O, Sanderson SD et al. 2009. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer's disease. J. Immunol. 183:1375–83
    [Google Scholar]
  76. 76. 
    Shi Q, Chowdhury S, Ma R, Le KX, Hong S et al. 2017. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci. Transl. Med. 9:eaaf6295
    [Google Scholar]
  77. 77. 
    Franceschi C, Campisi J. 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A 69:Suppl. 1S4–S9
    [Google Scholar]
  78. 78. 
    Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A 2018. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14:576–90
    [Google Scholar]
  79. 79. 
    Franceschi C, Capri M, Monti D, Giunta S, Olivieri F et al. 2007. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128:92–105
    [Google Scholar]
  80. 80. 
    Monti D, Ostan R, Borelli V, Castellani G, Franceschi C 2017. Inflammaging and human longevity in the omics era. Mech. Ageing Dev. 165:129–38
    [Google Scholar]
  81. 81. 
    Zhang G, Li J, Purkayastha S, Tang Y, Zhang H et al. 2013. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497:211–16
    [Google Scholar]
  82. 82. 
    Barnum SR, Jones JL. 1994. Transforming growth factor-beta 1 inhibits inflammatory cytokine-induced C3 gene expression in astrocytes. J. Immunol. 152:765–73
    [Google Scholar]
  83. 83. 
    Barnum SR, Jones JL, Benveniste EN 1993. Interleukin-1 and tumor necrosis factor-mediated regulation of C3 gene expression in human astroglioma cells. Glia 7:225–36
    [Google Scholar]
  84. 84. 
    Baruch K, Ron-Harel N, Gal H, Deczkowska A, Shifrut E et al. 2013. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. PNAS 110:2264–69
    [Google Scholar]
  85. 85. 
    Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K et al. 2006. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLOS Genet 2:e115
    [Google Scholar]
  86. 86. 
    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ et al. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–87
    [Google Scholar]
  87. 87. 
    Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ 2018. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep 22:269–85
    [Google Scholar]
  88. 88. 
    Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J et al. 2012. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflamm. 9:179
    [Google Scholar]
  89. 89. 
    Castellano G, Franzin R, Sallustio F, Stasi A, Banelli B et al. 2019. Complement component C5a induces aberrant epigenetic modifications in renal tubular epithelial cells accelerating senescence by Wnt4/βcatenin signaling after ischemia/reperfusion injury. Aging 11:4382–406
    [Google Scholar]
  90. 90. 
    Rosenberg ME, Girton R, Finkel D, Chmielewski D, Barrie A III et al. 2002. Apolipoprotein J/clusterin prevents a progressive glomerulopathy of aging. Mol. Cell. Biol. 22:1893–902
    [Google Scholar]
  91. 91. 
    Stephan AH, Barres BA, Stevens B 2012. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35:369–89
    [Google Scholar]
  92. 92. 
    Shi Q, Colodner KJ, Matousek SB, Merry K, Hong S et al. 2015. Complement C3-deficient mice fail to display age-related hippocampal decline. J. Neurosci. 35:13029–42
    [Google Scholar]
  93. 93. 
    Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA et al. 2013. A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33:13460–74
    [Google Scholar]
  94. 94. 
    Liu Y, Given KS, Harlow DE, Matschulat AM, Macklin WB et al. 2017. Myelin-specific multiple sclerosis antibodies cause complement-dependent oligodendrocyte loss and demyelination. Acta Neuropathol. Commun. 5:25
    [Google Scholar]
  95. 95. 
    Peterson SL, Nguyen HX, Mendez OA, Anderson AJ 2015. Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo. J. . Neurosci 35:4332–49
    [Google Scholar]
  96. 96. 
    Peterson SL, Nguyen HX, Mendez OA, Anderson AJ 2017. Complement protein C3 suppresses axon growth and promotes neuron loss. Sci. Rep. 7:12904
    [Google Scholar]
  97. 97. 
    Bar E, Barak B. 2019. Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. Glia 67:2125–41
    [Google Scholar]
  98. 98. 
    Duce JA, Hollander W, Jaffe R, Abraham CR 2006. Activation of early components of complement targets myelin and oligodendrocytes in the aged rhesus monkey brain. Neurobiol. Aging 27:633–44
    [Google Scholar]
  99. 99. 
    Shobin E, Bowley MP, Estrada LI, Heyworth NC, Orczykowski ME et al. 2017. Microglia activation and phagocytosis: relationship with aging and cognitive impairment in the rhesus monkey. Geroscience 39:199–220
    [Google Scholar]
  100. 100. 
    Ingram G, Loveless S, Howell OW, Hakobyan S, Dancey B et al. 2014. Complement activation in multiple sclerosis plaques: an immunohistochemical analysis. Acta Neuropathol. Commun. 2:53
    [Google Scholar]
  101. 101. 
    Bruck W, Friede RL. 1991. The role of complement in myelin phagocytosis during PNS Wallerian degeneration. J. Neurol. Sci. 103:182–87
    [Google Scholar]
  102. 102. 
    Reichert F, Rotshenker S. 2003. Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiol. Dis. 12:65–72
    [Google Scholar]
  103. 103. 
    Wlodarczyk A, Holtman IR, Krueger M, Yogev N, Bruttger J et al. 2017. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J 36:3292–308
    [Google Scholar]
  104. 104. 
    Lechner J, Chen M, Hogg RE, Toth L, Silvestri G et al. 2016. Higher plasma levels of complement C3a, C4a and C5a increase the risk of subretinal fibrosis in neovascular age-related macular degeneration: complement activation in AMD. Immun. Ageing 13:4
    [Google Scholar]
  105. 105. 
    Warwick A, Khandhadia S, Ennis S, Lotery A 2014. Age-related macular degeneration: A disease of systemic or local complement dysregulation. J. Clin. Med. 3:1234–57
    [Google Scholar]
  106. 106. 
    Zhang J, Li S, Hu S, Yu J, Xiang Y 2018. Association between genetic variation of complement C3 and the susceptibility to advanced age-related macular degeneration: a meta-analysis. BMC Ophthalmol 18:274
    [Google Scholar]
  107. 107. 
    Yates JRW, Sepp T, Matharu BK, Khan JC, Thurlby DA et al. 2007. Complement C3 variant and the risk of age-related macular degeneration. N. Engl. J. Med. 357:553–61
    [Google Scholar]
  108. 108. 
    Heesterbeek TJ, Lorés-Motta L, Hoyng CB, Lechanteur YTE, den Hollander AI 2020. Risk factors for progression of age-related macular degeneration. Ophthalmic Physiol. Opt. 40:140–70
    [Google Scholar]
  109. 109. 
    Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I et al. 2011. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J. Clin. Investig. 121:1429–44
    [Google Scholar]
  110. 110. 
    Bosco A, Anderson SR, Breen KT, Romero CO, Steele MR et al. 2018. Complement C3-targeted gene therapy restricts onset and progression of neurodegeneration in chronic mouse glaucoma. Mol. Ther. 26:2379–96
    [Google Scholar]
  111. 111. 
    Sayah S, Jauneau AC, Patte C, Tonon MC, Vaudry H, Fontaine M 2003. Two different transduction pathways are activated by C3a and C5a anaphylatoxins on astrocytes. Mol. Brain Res. 112:53–60
    [Google Scholar]
  112. 112. 
    Farber K, Cheung G, Mitchell D, Wallis R, Weihe E et al. 2009. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. J. Neurosci. Res. 87:644–52
    [Google Scholar]
  113. 113. 
    Alexander JJ. 2018. Blood-brain barrier (BBB) and the complement landscape. Mol. Immunol. 102:26–31
    [Google Scholar]
  114. 114. 
    Leinhase I, Schmidt OI, Thurman JM, Hossini AM, Rozanski M et al. 2006. Pharmacological complement inhibition at the C3 convertase level promotes neuronal survival, neuroprotective intracerebral gene expression, and neurological outcome after traumatic brain injury. Exp. Neurol. 199:454–64
    [Google Scholar]
  115. 115. 
    Alawieh A, Langley EF, Tomlinson S 2018. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci. Transl. Med. 10:eaao6459
    [Google Scholar]
  116. 116. 
    Sewell DL, Nacewicz B, Liu F, Macvilay S, Erdei A et al. 2004. Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist. J. Neuroimmunol. 155:55–63
    [Google Scholar]
  117. 117. 
    Yasojima K, Schwab C, McGeer EG, McGeer PL 2001. Complement components, but not complement inhibitors, are upregulated in atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 21:1214–19
    [Google Scholar]
  118. 118. 
    Shagdarsuren E, Bidzhekov K, Mause SF, Simsekyilmaz S, Polakowski T et al. 2010. C5a receptor targeting in neointima formation after arterial injury in atherosclerosis-prone mice. Circulation 122:1026–36
    [Google Scholar]
  119. 119. 
    Manthey HD, Thomas AC, Shiels IA, Zernecke A, Woodruff TM et al. 2011. Complement C5a inhibition reduces atherosclerosis in ApoE−/− mice. FASEB J 25:2447–55
    [Google Scholar]
  120. 120. 
    Bhatia VK, Yun S, Leung V, Grimsditch DC, Benson GM et al. 2007. Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice. Am. J. Pathol. 170:416–26
    [Google Scholar]
  121. 121. 
    Buono C, Come CE, Witztum JL, Maguire GF, Connelly PW et al. 2002. Influence of C3 deficiency on atherosclerosis. Circulation 105:3025–31
    [Google Scholar]
  122. 122. 
    Persson L, Boren J, Robertson AK, Wallenius V, Hansson GK, Pekna M 2004. Lack of complement factor C3, but not factor B, increases hyperlipidemia and atherosclerosis in apolipoprotein E−/− low-density lipoprotein receptor−/− mice. Arterioscler. Thromb. Vasc. Biol. 24:1062–67
    [Google Scholar]
  123. 123. 
    Rabin JS, Schultz AP, Hedden T, Viswanathan A, Marshall GA et al. 2018. Interactive associations of vascular risk and β-amyloid burden with cognitive decline in clinically normal elderly individuals: findings from the Harvard Aging Brain Study. JAMA Neurol 75:1124–31
    [Google Scholar]
  124. 124. 
    Granger CB, Mahaffey KW, Weaver WD, Theroux P, Hochman JS et al. 2003. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation 108:1184–90
    [Google Scholar]
  125. 125. 
    Testa L, Meco M, Cirri S, Bedogni F 2011. Pexelizumab and survival in cardiac surgery. HSR Proc. Intensive Care Cardiovasc. Anesth. 3:23–24
    [Google Scholar]
  126. 126. 
    Baralla A, Sotgiu E, Deiana M, Pasella S, Pinna S et al. 2015. Plasma clusterin and lipid profile: a link with aging and cardiovascular diseases in a population with a consistent number of centenarians. PLOS ONE 10:e0128029
    [Google Scholar]
  127. 127. 
    Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J et al. 2010. Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch. Gen. Psychiatry 67:739–48
    [Google Scholar]
  128. 128. 
    De Miguel Z, Betley MJ, Willoughby D, Lehallier B, Olsson N et al. 2019. Exercise conditioned plasma dampens inflammation via clusterin and boosts memory. bioRxiv. https://doi.org/10.1101/775288
    [Crossref] [Google Scholar]
  129. 129. 
    Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV 2013. Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol 125:111–20
    [Google Scholar]
  130. 130. 
    Korczyn AD. 2015. Vascular parkinsonism—characteristics, pathogenesis and treatment. Nat. Rev. Neurol. 11:319–26
    [Google Scholar]
  131. 131. 
    Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan W-L et al. 2015. Cerebrovascular and blood-brain barrier impairments in Huntington's disease: potential implications for its pathophysiology. Ann. Neurol. 78:160–77
    [Google Scholar]
  132. 132. 
    Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM et al. 2019. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25:270–76
    [Google Scholar]
  133. 133. 
    Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP et al. 2015. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85:296–302
    [Google Scholar]
  134. 134. 
    Merlini M, Rafalski VA, Rios Coronado PE, Gill TM, Ellisman M et al. 2019. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer's disease model. Neuron 101:1099–108
    [Google Scholar]
  135. 135. 
    Yin C, Ackermann S, Ma Z, Mohanta SK, Zhang C et al. 2019. ApoE attenuates unresolvable inflammation by complex formation with activated C1q. Nat. Med. 25:496–506
    [Google Scholar]
  136. 136. 
    Son M, Diamond B, Volpe BT, Aranow CB, Mackay MC, Santiago-Schwarz F 2017. Evidence for C1q-mediated crosslinking of CD33/LAIR-1 inhibitory immunoreceptors and biological control of CD33/LAIR-1 expression. Sci. Rep. 7:270
    [Google Scholar]
  137. 137. 
    Griciuc A, Patel S, Federico AN, Choi SH, Innes BJ et al. 2019. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer's disease. Neuron 103:820–35.e7
    [Google Scholar]
  138. 138. 
    Haure-Mirande J-V, Audrain M, Fanutza T, Kim SH, Klein WL et al. 2017. Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer's pathology. Acta Neuropathol 134:769–88
    [Google Scholar]
  139. 139. 
    Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J et al. 2013. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153:707–20
    [Google Scholar]
  140. 140. 
    Haure-Mirande J-V, Wang M, Audrain M, Fanutza T, Kim SH et al. 2019. Integrative approach to sporadic Alzheimer's disease: deficiency of TYROBP in cerebral Aβ amyloidosis mouse normalizes clinical phenotype and complement subnetwork molecular pathology without reducing Aβ burden. Mol. Psychiatry 24:431–46
    [Google Scholar]
  141. 141. 
    Hannedouche S, Beck V, Leighton-Davies J, Beibel M, Roma G et al. 2013. Identification of the C3a receptor (C3AR1) as the target of the VGF-derived peptide TLQP-21 in rodent cells. J. Biol. Chem. 288:27434–43
    [Google Scholar]
  142. 142. 
    Cero C, Vostrikov VV, Verardi R, Severini C, Gopinath T et al. 2014. The TLQP-21 peptide activates the G-protein-coupled receptor C3aR1 via a folding-upon-binding mechanism. Structure 22:1744–53
    [Google Scholar]
  143. 143. 
    El Gaamouch F, Audrain M, Lin W-J, Beckmann N, Jiang C et al. 2020. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol. Neurodegener. 15:4
    [Google Scholar]
  144. 144. 
    Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R et al. 2019. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571:205–10
    [Google Scholar]
  145. 145. 
    Ritzel RM, Crapser J, Patel AR, Verma R, Grenier JM et al. 2016. Age-associated resident memory CD8 T cells in the central nervous system are primed to potentiate inflammation after ischemic brain injury. J. Immunol. 196:3318–30
    [Google Scholar]
  146. 146. 
    Yousef H, Czupalla CJ, Lee D, Chen MB, Burke AN et al. 2019. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat. Med. 25:988–1000
    [Google Scholar]
  147. 147. 
    Foreman KE, Glovsky MM, Warner RL, Horvath SJ, Ward PA 1996. Comparative effect of C3a and C5a on adhesion molecule expression on neutrophils and endothelial cells. Inflammation 20:1–9
    [Google Scholar]
  148. 148. 
    Wu F, Zou Q, Ding X, Shi D, Zhu X et al. 2016. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. J. Neuroinflamm. 13:23
    [Google Scholar]
  149. 149. 
    Propson NE, Roy ER, Litvinchuk A, Kohl J, Zheng H 2020. Endothelial C3a receptor mediates vascular inflammation and BBB permeability during aging. J. Clin. Investig. In press. https://doi.org/10.1172/JCI140966
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathol-031620-113409
Loading
/content/journals/10.1146/annurev-pathol-031620-113409
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error