1932

Abstract

The immune system is tasked with identifying malignant cells to eliminate or prevent cancer spread. This involves a complex orchestration of many immune cell types that together recognize different aspects of tumor transformation and growth. In response, tumors have developed mechanisms to circumvent immune attack. Type I interferons (IFN-Is) are a class of proinflammatory cytokines produced in response to viruses and other environmental stressors. IFN-Is are also emerging as essential drivers of antitumor immunity, potently stimulating the ability of immune cells to eliminate tumor cells. However, a more complicated role for IFN-Is has arisen, as prolonged stimulation can promote feedback inhibitory mechanisms that contribute to immune exhaustion and other deleterious effects that directly or indirectly permit cancer cells to escape immune clearance. We review the fundamental and opposing functions of IFN-Is that modulate tumor growth and impact immune function and ultimately how these functions can be harnessed for the design of new cancer therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-031920-093932
2021-01-24
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/16/1/annurev-pathol-031920-093932.html?itemId=/content/journals/10.1146/annurev-pathol-031920-093932&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:5646–74
    [Google Scholar]
  2. 2. 
    Pitroda SP, Chmura SJ, Weichselbaum RR 2019. Integration of radiotherapy and immunotherapy for treatment of oligometastases. Lancet Oncol 20:e434–42
    [Google Scholar]
  3. 3. 
    Zappasodi R, Merghoub T, Wolchok JD 2018. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33:581–98
    [Google Scholar]
  4. 4. 
    Topalian SL, Taube JM, Anders RA, Pardoll DM 2016. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16:275–87
    [Google Scholar]
  5. 5. 
    Formenti SC, Rudqvist NP, Golden E, Cooper B, Wennerberg E et al. 2018. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 24:1845–51
    [Google Scholar]
  6. 6. 
    Lukhele S, Boukhaled GM, Brooks DG 2019. Type I interferon signaling, regulation and gene stimulation in chronic virus infection. Semin. Immunol. 43:101277
    [Google Scholar]
  7. 7. 
    Snell LM, McGaha TL, Brooks DG 2017. Type I interferon in chronic virus infection and cancer. Trends Immunol 38:542–57
    [Google Scholar]
  8. 8. 
    Jaitin DA, Roisman LC, Jaks E, Gavutis M, Piehler J et al. 2006. Inquiring into the differential action of interferons (IFNs): An IFN-α2 mutant with enhanced affinity to IFNAR1 is functionally similar to IFN-β. Mol. Cell. Biol. 26:1888–97
    [Google Scholar]
  9. 9. 
    Croze E, Russell-Harde D, Wagner TC, Pu H, Pfeffer LM, Perez HD 1996. The human type I interferon receptor: identification of the interferon β-specific receptor-associated phosphoprotein. J. Biol. Chem. 271:33165–68
    [Google Scholar]
  10. 10. 
    Dunn GP, Bruce AT, Sheehan KCF, Shankaran V, Uppaluri R et al. 2005. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6:722–29
    [Google Scholar]
  11. 11. 
    Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J et al. 2013. Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340:202–7
    [Google Scholar]
  12. 12. 
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP et al. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–87
    [Google Scholar]
  13. 13. 
    Cunningham CR, Champhekar A, Tullius MV, Dillon BJ, Zhen A et al. 2016. Type I and type II interferon coordinately regulate suppressive dendritic cell fate and function during viral persistence. PLOS Pathog 12:e1005356
    [Google Scholar]
  14. 14. 
    Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC et al. 2013. Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340:207–11
    [Google Scholar]
  15. 15. 
    Zhen A, Rezek V, Youn C, Lam B, Chang N et al. 2017. Targeting type I interferon–mediated activation restores immune function in chronic HIV infection. J. Clin. Investig. 127:260–68
    [Google Scholar]
  16. 16. 
    Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y et al. 2012. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat. Med. 18:1224–31
    [Google Scholar]
  17. 17. 
    Lan Q, Peyvandi S, Duffey N, Huang Y-T, Barras D et al. 2019. Type I interferon/IRF7 axis instigates chemotherapy-induced immunological dormancy in breast cancer. Oncogene 38:2814–29
    [Google Scholar]
  18. 18. 
    Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP et al. 2011. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208:1989–2003
    [Google Scholar]
  19. 19. 
    Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM et al. 2011. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 208:2005–16
    [Google Scholar]
  20. 20. 
    Katlinskaya YV, Katlinski KV, Yu Q, Ortiz A, Beiting DP et al. 2016. Suppression of type I interferon signaling overcomes oncogene-induced senescence and mediates melanoma development and progression. Cell Rep 15:171–80
    [Google Scholar]
  21. 21. 
    Szabo A, Fekete T, Koncz G, Kumar BV, Pazmandi K et al. 2016. RIG-I inhibits the MAPK-dependent proliferation of BRAF mutant melanoma cells via MKP-1. Cell. Signal. 28:335–47
    [Google Scholar]
  22. 22. 
    Tas F, Erturk K. 2019. BRAF mutation status might contribute an effect on both disease-free and overall survival in stage III cutaneous melanomas treated with intermediate dose interferon-alpha. Cancer Chemother. Pharmacol. 84:521–26
    [Google Scholar]
  23. 23. 
    Asselin-Paturel C, Trinchieri G. 2005. Production of type I interferons: plasmacytoid dendritic cells and beyond. J. Exp. Med. 202:461–65
    [Google Scholar]
  24. 24. 
    Spranger S, Dai D, Horton B, Gajewski TF 2017. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31:711–23.e4
    [Google Scholar]
  25. 25. 
    Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–42
    [Google Scholar]
  26. 26. 
    de Queiroz N, Xia T, Konno H, Barber GN 2019. Ovarian cancer cells commonly exhibit defective STING signaling which affects sensitivity to viral oncolysis. Mol. Cancer Res. 17:974–86
    [Google Scholar]
  27. 27. 
    Schadt L, Sparano C, Schweiger NA, Silina K, Cecconi V et al. 2019. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep 29:1236–48.e7
    [Google Scholar]
  28. 28. 
    Boukhaled GM, Cordeiro B, Deblois G, Dimitrov V, Bailey SD et al. 2016. The transcriptional repressor polycomb group factor 6, PCGF6, negatively regulates dendritic cell activation and promotes quiescence. Cell Rep 16:1829–37
    [Google Scholar]
  29. 29. 
    Dissanayake D, Hall H, Berg-Brown N, Elford AR, Hamilton SR et al. 2011. Nuclear factor-κB1 controls the functional maturation of dendritic cells and prevents the activation of autoreactive T cells. Nat. Med. 17:1663–67
    [Google Scholar]
  30. 30. 
    Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE et al. 2016. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30:324–36
    [Google Scholar]
  31. 31. 
    Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R et al. 2016. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44:924–38
    [Google Scholar]
  32. 32. 
    Speiser DE, Utzschneider DT, Oberle SG, Munz C, Romero P, Zehn D 2014. T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion. Nat. Rev. Immunol. 14:768–74
    [Google Scholar]
  33. 33. 
    Benci JL, Johnson LR, Choa R, Xu Y, Qiu J et al. 2019. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell 178:933–48.e14
    [Google Scholar]
  34. 34. 
    Benci JL, Xu B, Qiu Y, Wu TJ, Dada H et al. 2016. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167:1540–54.e12
    [Google Scholar]
  35. 35. 
    Gato-Cañas M, Zuazo M, Arasanz H, Ibañez-Vea M, Lorenzo L et al. 2017. PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep 20:1818–29
    [Google Scholar]
  36. 36. 
    Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y et al. 2013. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl. Med. 5:200ra116
    [Google Scholar]
  37. 37. 
    Mistarz A, Komorowski MP, Graczyk MA, Gil M, Jiang A et al. 2019. Recruitment of intratumoral CD103+ dendritic cells by a CXCR4 antagonist-armed virotherapy enhances antitumor immunity. Mol. Ther. Oncolytics 14:233–45
    [Google Scholar]
  38. 38. 
    Williford J-M, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P et al. 2019. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci. Adv. 5:eaay1357
    [Google Scholar]
  39. 39. 
    Lin H, Wei S, Hurt EM, Green MD, Zhao L et al. 2018. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade–mediated tumor regression. J. Clin. Investig. 128:805–15
    [Google Scholar]
  40. 40. 
    Tang H, Liang Y, Anders RA, Taube JM, Qiu X et al. 2018. PD-L1 on host cells is essential for PD-L1 blockade–mediated tumor regression. J. Clin. Investig. 128:580–88
    [Google Scholar]
  41. 41. 
    Katlinski KV, Gui J, Katlinskaya YV, Ortiz A, Chakraborty R et al. 2017. Inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment. Cancer Cell 31:194–207
    [Google Scholar]
  42. 42. 
    Le Bon A, Durand V, Kamphuis E, Thompson C, Bulfone-Paus S et al. 2006. Direct stimulation of T cells by type I IFN enhances the CD8+ T cell response during cross-priming. J. Immunol. 176:4682–89
    [Google Scholar]
  43. 43. 
    Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC et al. 2002. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science 297:2063–66
    [Google Scholar]
  44. 44. 
    Marshall HD, Prince AL, Berg LJ, Welsh RM 2010. IFN-αβ and self-MHC divert CD8+ T cells into a distinct differentiation pathway characterized by rapid acquisition of effector functions. J. Immunol. 185:1419–28
    [Google Scholar]
  45. 45. 
    Richer MJ, Nolz JC, Harty JT 2013. Pathogen-specific inflammatory milieux tune the antigen sensitivity of CD8+ T cells by enhancing T cell receptor signaling. Immunity 38:140–52
    [Google Scholar]
  46. 46. 
    Lu C, Klement JD, Ibrahim ML, Xiao W, Redd PS et al. 2019. Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes. J. Immunother. Cancer 7:157
    [Google Scholar]
  47. 47. 
    Wu T, Ji Y, Moseman EA, Xu HC, Manglani M et al. 2016. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1:eaai8593
    [Google Scholar]
  48. 48. 
    Snell LM, MacLeod BL, Law JC, Osokine I, Elsaesser HJ et al. 2018. CD8+ T cell priming in established chronic viral infection preferentially directs differentiation of memory-like cells for sustained immunity. Immunity 49:678–94.e5
    [Google Scholar]
  49. 49. 
    Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT et al. 2016. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537:417–21
    [Google Scholar]
  50. 50. 
    Kurtulus S, Madi A, Escobar G, Klapholz M, Nyman J et al. 2019. Checkpoint blockade immunotherapy induces dynamic changes in PD-1CD8+ tumor-infiltrating T cells. Immunity 50:181–94.e6
    [Google Scholar]
  51. 51. 
    Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV et al. 2019. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20:326–36
    [Google Scholar]
  52. 52. 
    Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG et al. 2018. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175:998–1013.e20
    [Google Scholar]
  53. 53. 
    Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S et al. 2019. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50:195–211.e10
    [Google Scholar]
  54. 54. 
    Wu C-F, Andzinski L, Kasnitz N, Kröger A, Klawonn F et al. 2015. The lack of type I interferon induces neutrophil-mediated pre-metastatic niche formation in the mouse lung. Int. J. Cancer 137:837–47
    [Google Scholar]
  55. 55. 
    Im SJ, Konieczny BT, Hudson WH, Masopust D, Ahmed R 2020. PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection. PNAS 117:4292–99
    [Google Scholar]
  56. 56. 
    Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U et al. 2009. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458:904–8
    [Google Scholar]
  57. 57. 
    Qadir AS, Ceppi P, Brockway S, Law C, Mu L et al. 2017. CD95/Fas increases stemness in cancer cells by inducing a STAT1-dependent type I interferon response. Cell Rep 18:2373–86
    [Google Scholar]
  58. 58. 
    Miron M, Kumar BV, Meng W, Granot T, Carpenter DJ et al. 2018. Human lymph nodes maintain TCF-1hi memory T cells with high functional potential and clonal diversity throughout life. J. Immunol. 201:2132–40
    [Google Scholar]
  59. 59. 
    Bahl K, Hüebner A, Davis RJ, Welsh RM 2010. Analysis of apoptosis of memory T cells and dendritic cells during the early stages of viral infection or exposure to Toll-like receptor agonists. J. Virol. 84:4866–77
    [Google Scholar]
  60. 60. 
    Gil MP, Ploquin MJ, Watford WT, Lee SH, Kim K et al. 2012. Regulating type 1 IFN effects in CD8 T cells during viral infections: changing STAT4 and STAT1 expression for function. Blood 120:3718–28
    [Google Scholar]
  61. 61. 
    Oh S-S, Moon C, Kim D-H, Song H, Park S et al. 2012. Adenovirally delivered IFN-β exerts antitumor effects through transient T-lymphocyte depletion and Ag-specific T-cell proliferation. Int. J. Mol. Med. 29:1153–57
    [Google Scholar]
  62. 62. 
    Cui J-H, Lin K-R, Yuan S-H, Jin Y-B, Chen X-P et al. 2018. TCR repertoire as a novel indicator for immune monitoring and prognosis assessment of patients with cervical cancer. Front. Immunol. 9:2729
    [Google Scholar]
  63. 63. 
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM et al. 2014. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–71
    [Google Scholar]
  64. 64. 
    Kawano Y, Zavidij O, Park J, Moschetta M, Kokubun K et al. 2018. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J. Clin. Investig. 128:2487–99
    [Google Scholar]
  65. 65. 
    Stewart CA, Metheny H, Iida N, Smith L, Hanson M et al. 2013. Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J. Clin. Investig. 123:4859–74
    [Google Scholar]
  66. 66. 
    Weichselbaum RR, Ishwaran H, Yoon T, Nuyten DSA, Baker SW et al. 2008. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. PNAS 105:18490–95
    [Google Scholar]
  67. 67. 
    Wherry EJ, Kurachi M. 2015. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15:486–99
    [Google Scholar]
  68. 68. 
    Wang Y, Swiecki M, Cella M, Alber G, Schreiber RD et al. 2012. Timing and magnitude of type I interferon responses by distinct sensors impact CD8 T cell exhaustion and chronic viral infection. Cell Host Microbe 11:631–42
    [Google Scholar]
  69. 69. 
    Crouse J, Kalinke U, Oxenius A 2015. Regulation of antiviral T cell responses by type I interferons. Nat. Rev. Immunol. 15:231–42
    [Google Scholar]
  70. 70. 
    Huber JP, Ramos HJ, Gill MA, Farrar JD 2010. Cutting edge: Type I IFN reverses human Th2 commitment and stability by suppressing GATA3. J. Immunol. 185:813–17
    [Google Scholar]
  71. 71. 
    Kusuda T, Shigemasa K, Arihiro K, Fujii T, Nagai N, Ohama K 2005. Relative expression levels of Th1 and Th2 cytokine mRNA are independent prognostic factors in patients with ovarian cancer. Oncol. Rep. 13:1153–58
    [Google Scholar]
  72. 72. 
    Osokine I, Snell LM, Cunningham CR, Yamada DH, Wilson EB et al. 2014. Type I interferon suppresses de novo virus-specific CD4 Th1 immunity during an established persistent viral infection. PNAS 111:7409–14
    [Google Scholar]
  73. 73. 
    Snell LM, Osokine I, Yamada DH, De la Fuente JR, Elsaesser HJ, Brooks DG 2016. Overcoming CD4 Th1 cell fate restrictions to sustain antiviral CD8 T cells and control persistent virus infection. Cell Rep 16:3286–96
    [Google Scholar]
  74. 74. 
    Kitano S, Tsuji T, Liu C, Hirschhorn-Cymerman D, Kyi C et al. 2013. Enhancement of tumor-reactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients. Cancer Immunol. Res. 1:235–44
    [Google Scholar]
  75. 75. 
    Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J et al. 2010. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207:637–50
    [Google Scholar]
  76. 76. 
    Sledzinska A, Vila de Mucha M, Bergerhoff K, Hotblack A, Demane DF et al. 2020. Regulatory T cells restrain interleukin-2- and Blimp-1-dependent acquisition of cytotoxic function by CD4+ T cells. Immunity 52:151–66.e6
    [Google Scholar]
  77. 77. 
    Yan H, Hou X, Li T, Zhao L, Yuan X et al. 2016. CD4+ T cell-mediated cytotoxicity eliminates primary tumor cells in metastatic melanoma through high MHC class II expression and can be enhanced by inhibitory receptor blockade. Tumor Biol 37:15949–58
    [Google Scholar]
  78. 78. 
    Roemer MGM, Redd RA, Cader FZ, Pak CJ, Abdelrahman S et al. 2018. Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J. Clin. Oncol. 36:942–50
    [Google Scholar]
  79. 79. 
    Curtis MM, Rowell E, Shafiani S, Negash A, Urdahl KB et al. 2010. Fidelity of pathogen-specific CD4+ T cells to the Th1 lineage is controlled by exogenous cytokines, interferon-γ expression, and pathogen lifestyle. Cell Host Microbe 8:163–73
    [Google Scholar]
  80. 80. 
    Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H et al. 2005. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. PNAS 102:18538–43
    [Google Scholar]
  81. 81. 
    Metidji A, Rieder SA, Glass DD, Cremer I, Punkosdy GA, Shevach EM 2015. IFN-α/β receptor signaling promotes regulatory T cell development and function under stress conditions. J. Immunol. 194:4265–76
    [Google Scholar]
  82. 82. 
    Hashimoto H, Ueda R, Narumi K, Heike Y, Yoshida T, Aoki K 2014. Type I IFN gene delivery suppresses regulatory T cells within tumors. Cancer Gene Ther 21:532–41
    [Google Scholar]
  83. 83. 
    Hirata A, Hashimoto H, Shibasaki C, Narumi K, Aoki K 2019. Intratumoral IFN-α gene delivery reduces tumor-infiltrating regulatory T cells through the downregulation of tumor CCL17 expression. Cancer Gene Ther 26:334–43
    [Google Scholar]
  84. 84. 
    Mackenzie KJ, Carroll P, Martin C-A, Murina O, Fluteau A et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:461–65
    [Google Scholar]
  85. 85. 
    Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:466–70
    [Google Scholar]
  86. 86. 
    Bartsch K, Knittler K, Borowski C, Rudnik S, Damme M et al. 2017. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum. Mol. Genet. 26:3960–72
    [Google Scholar]
  87. 87. 
    Chen J, Cao Y, Markelc B, Kaeppler J, Vermeer JAF, Muschel RJ 2019. Type I IFN protects cancer cells from CD8+ T cell-mediated cytotoxicity after radiation. J. Clin. Investig. 129:4224–38
    [Google Scholar]
  88. 88. 
    Sharma MD, Hou DY, Baban B, Koni PA, He Y et al. 2010. Reprogrammed Foxp3+ regulatory T cells provide essential help to support cross-presentation and CD8+ T cell priming in naive mice. Immunity 33:942–54
    [Google Scholar]
  89. 89. 
    Swann JB, Hayakawa Y, Zerafa N, Sheehan KC, Scott B et al. 2007. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J. Immunol. 178:7540–49
    [Google Scholar]
  90. 90. 
    Mizutani T, Neugebauer N, Putz EM, Moritz N, Simma O et al. 2012. Conditional IFNAR1 ablation reveals distinct requirements of type I IFN signaling for NK cell maturation and tumor surveillance. Oncoimmunology 1:1027–37
    [Google Scholar]
  91. 91. 
    Oh JH, Kim MJ, Choi SJ, Ban YH, Lee HK et al. 2019. Sustained type I interferon reinforces NK cell–mediated cancer immunosurveillance during chronic virus infection. Cancer Immunol. Res. 7:584–99
    [Google Scholar]
  92. 92. 
    Rautela J, Baschuk N, Slaney CY, Jayatilleke KM, Xiao K et al. 2015. Loss of host type-I IFN signaling accelerates metastasis and impairs NK-cell antitumor function in multiple models of breast cancer. Cancer Immunol. Res. 3:1207–17
    [Google Scholar]
  93. 93. 
    Crouse J, Bedenikovic G, Wiesel M, Ibberson M, Xenarios I et al. 2014. Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. Immunity 40:961–73
    [Google Scholar]
  94. 94. 
    Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A et al. 2005. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–13
    [Google Scholar]
  95. 95. 
    Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F et al. 2005. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–70
    [Google Scholar]
  96. 96. 
    Castle JC, Uduman M, Pabla S, Stein RB, Buell JS 2019. Mutation-derived neoantigens for cancer immunotherapy. Front. Immunol. 10:1856
    [Google Scholar]
  97. 97. 
    Khodarev NN, Beckett M, Labay E, Darga T, Roizman B, Weichselbaum RR 2004. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. PNAS 101:1714–19
    [Google Scholar]
  98. 98. 
    Lau L, Gray EE, Brunette RL, Stetson DB 2015. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350:568–71
    [Google Scholar]
  99. 99. 
    Xia T, Konno H, Barber GN 2016. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res 76:6747–59
    [Google Scholar]
  100. 100. 
    Kitajima S, Ivanova E, Guo S, Yoshida R, Campisi M et al. 2019. Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov 9:34–45
    [Google Scholar]
  101. 101. 
    Xia T, Konno H, Ahn J, Barber GN 2016. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep 14:282–97
    [Google Scholar]
  102. 102. 
    An X, Zhu Y, Zheng T, Wang G, Zhang M et al. 2019. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer. Mol. Ther. Nucleic Acids 14:80–89
    [Google Scholar]
  103. 103. 
    Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ et al. 2018. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553:467–72
    [Google Scholar]
  104. 104. 
    Li J, Bakhoum SF. 2019. Expanding the role of STING in cellular homeostasis and transformation. Trends Cancer 5:195–97
    [Google Scholar]
  105. 105. 
    Deng L, Liang H, Xu M, Yang X, Burnette B et al. 2014. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:843–52
    [Google Scholar]
  106. 106. 
    Zhan X, Guo S, Li Y, Ran H, Huang H et al. 2020. Glioma stem-like cells evade interferon suppression through MBD3/NuRD complex–mediated STAT1 downregulation. J. Exp. Med. 217:e201913140
    [Google Scholar]
  107. 107. 
    Coppé J-P, Desprez P-Y, Krtolica A, Campisi J 2010. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. Mech. Dis. 5:99–118
    [Google Scholar]
  108. 108. 
    Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H et al. 2003. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424:516–23
    [Google Scholar]
  109. 109. 
    Muñoz-Fontela C, Macip S, Martínez-Sobrido L, Brown L, Ashour J et al. 2008. Transcriptional role of p53 in interferon-mediated antiviral immunity. J. Exp. Med. 205:1929–38
    [Google Scholar]
  110. 110. 
    Miciak J, Bunz F. 2016. Long story short: p53 mediates innate immunity. Biochim. Biophys. Acta Rev. Cancer 1865:220–27
    [Google Scholar]
  111. 111. 
    Liu Y, Lv J, Liu J, Liang X, Jin X et al. 2018. STAT3/p53 pathway activation disrupts IFN-β–induced dormancy in tumor-repopulating cells. J. Clin. Investig. 128:1057–73
    [Google Scholar]
  112. 112. 
    Halazonetis TD, Gorgoulis VG, Bartek J 2008. An oncogene-induced DNA damage model for cancer development. Science 319:1352–55
    [Google Scholar]
  113. 113. 
    Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S et al. 2017. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7:188–201
    [Google Scholar]
  114. 114. 
    Ye Z, Dong H, Li Y, Ma T, Huang H et al. 2018. Prevalent homozygous deletions of type I interferon and defensin genes in human cancers associate with immunotherapy resistance. Clin. Cancer Res. 24:3299–308
    [Google Scholar]
  115. 115. 
    Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P et al. 2017. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550:402–6
    [Google Scholar]
  116. 116. 
    Gluck S, Guey B, Gulen MF, Wolter K, Kang TW et al. 2017. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19:1061–70
    [Google Scholar]
  117. 117. 
    Yang H, Wang H, Ren J, Chen Q, Chen ZJ 2017. cGAS is essential for cellular senescence. PNAS 114:E4612–20
    [Google Scholar]
  118. 118. 
    Takahashi A, Loo TM, Okada R, Kamachi F, Watanabe Y et al. 2018. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat. Commun. 9:1249
    [Google Scholar]
  119. 119. 
    Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM et al. 2017. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8:15618
    [Google Scholar]
  120. 120. 
    Vizioli MG, Liu T, Miller KN, Robertson NA, Gilroy K et al. 2020. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev 34:428–45
    [Google Scholar]
  121. 121. 
    De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ et al. 2019. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78
    [Google Scholar]
  122. 122. 
    Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ et al. 2007. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–7
    [Google Scholar]
  123. 123. 
    Suranyi MG, Hogan PG, Falk MC, Axelsen RA, Rigby R et al. 1998. Advanced donor-origin melanoma in a renal transplant recipient: immunotherapy, cure, and retransplantation. Transplantation 66:655–61
    [Google Scholar]
  124. 124. 
    Lee MS, Kim B, Oh GT, Kim Y-J 2013. OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7. Nat. Immunol. 14:346–55
    [Google Scholar]
  125. 125. 
    Tobelaim WS, Beaurivage C, Champagne A, Pomerleau V, Simoneau A et al. 2015. Tumour-promoting role of SOCS1 in colorectal cancer cells. Sci. Rep. 5:14301
    [Google Scholar]
  126. 126. 
    Zitzmann K, Brand S, De Toni EN, Baehs S, Göke B et al. 2007. SOCS1 silencing enhances antitumor activity of type I IFNs by regulating apoptosis in neuroendocrine tumor cells. Cancer Res 67:5025–32
    [Google Scholar]
  127. 127. 
    Sim CK, Cho YS, Kim BS, Baek I-J, Kim Y-J, Lee MS 2016. 2′-5′ Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol. Immunother. 65:663–75
    [Google Scholar]
  128. 128. 
    Li S, Xie Y, Zhang W, Gao J, Wang M et al. 2015. Interferon alpha-inducible protein 27 promotes epithelial-mesenchymal transition and induces ovarian tumorigenicity and stemness. J. Surg. Res. 193:255–64
    [Google Scholar]
  129. 129. 
    Tjandra SS, Hsu C, Goh I, Gurung A, Poon R et al. 2007. IFN-β signaling positively regulates tumorigenesis in aggressive fibromatosis, potentially by modulating mesenchymal progenitors. Cancer Res 67:7124–31
    [Google Scholar]
  130. 130. 
    Nan J, Wang Y, Yang J, Stark GR 2018. IRF9 and unphosphorylated STAT2 cooperate with NF-κB to drive IL6 expression. PNAS 115:3906–11
    [Google Scholar]
  131. 131. 
    Grivennikov S, Karin M. 2008. Autocrine IL-6 signaling: a key event in tumorigenesis. Cancer Cell 13:7–9
    [Google Scholar]
  132. 132. 
    Goldszmid RS, Dzutsev A, Trinchieri G 2014. Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe 15:295–305
    [Google Scholar]
  133. 133. 
    Beglin M, Melar-New M, Laimins L 2009. Human papillomaviruses and the interferon response. J. Interferon Cytokine Res. 29:629–35
    [Google Scholar]
  134. 134. 
    Gough DJ, Messina NL, Clarke CJP, Johnstone RW, Levy DE 2012. Constitutive type I interferon modulates homeostatic balance through tonic signaling. Immunity 36:166–74
    [Google Scholar]
  135. 135. 
    Chakravorty S, Yan B, Wang C, Wang L, Quaid JT et al. 2019. Integrated pan-cancer map of EBV-associated neoplasms reveals functional host-virus interactions. Cancer Res 79:6010–23
    [Google Scholar]
  136. 136. 
    Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H et al. 2017. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19:1189–201
    [Google Scholar]
  137. 137. 
    Ostrand-Rosenberg S, Sinha P. 2009. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182:4499–506
    [Google Scholar]
  138. 138. 
    Xiao W, Klement JD, Lu C, Ibrahim ML, Liu K 2018. IFNAR1 controls autocrine type I IFN regulation of PD-L1 expression in myeloid-derived suppressor cells. J. Immunol. 201:264–77
    [Google Scholar]
  139. 139. 
    Hashimoto M, Ayada T, Kinjyo I, Hiwatashi K, Yoshida H et al. 2009. Silencing of SOCS1 in macrophages suppresses tumor development by enhancing antitumor inflammation. Cancer Sci 100:730–36
    [Google Scholar]
  140. 140. 
    Shen L, Evel-Kabler K, Strube R, Chen S-Y 2004. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat. Biotechnol. 22:1546–53
    [Google Scholar]
  141. 141. 
    Hanada T, Kobayashi T, Chinen T, Saeki K, Takaki H et al. 2006. IFNγ-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J. Exp. Med. 203:1391–97
    [Google Scholar]
  142. 142. 
    Calabrese V, Mallette FA, Deschenes-Simard X, Ramanathan S, Gagnon J et al. 2009. SOCS1 links cytokine signaling to p53 and senescence. Mol. Cell 36:754–67
    [Google Scholar]
  143. 143. 
    Hsu PP, Sabatini DM. 2008. Cancer cell metabolism: Warburg and beyond. Cell 134:703–7
    [Google Scholar]
  144. 144. 
    Fritsch SD, Weichhart T. 2016. Effects of interferons and viruses on metabolism. Front. Immunol. 7:630
    [Google Scholar]
  145. 145. 
    Yeh Y-H, Hsiao H-F, Yeh Y-C, Chen T-W, Li T-K 2018. Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway. J. Exp. Clin. Cancer Res. 37:70
    [Google Scholar]
  146. 146. 
    Sharma A, Janocha AJ, Hill BT, Smith MR, Erzurum SC, Almasan A 2014. Targeting mTORC1–mediated metabolic addiction overcomes fludarabine resistance in malignant B cells. Mol. Cancer Res. 12:1205–15
    [Google Scholar]
  147. 147. 
    Vander Heiden MG, Cantley LC, Thompson CB 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33
    [Google Scholar]
  148. 148. 
    Guertin DA, Sabatini DM. 2007. Defining the role of mTOR in cancer. Cancer Cell 12:9–22
    [Google Scholar]
  149. 149. 
    Ambjørn M, Ejlerskov P, Liu Y, Lees M, Jäättelä M, Issazadeh-Navikas S 2013. IFNB1/interferon-β-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function. Autophagy 9:287–302
    [Google Scholar]
  150. 150. 
    Schmeisser H, Fey SB, Horowitz J, Fischer ER, Balinsky CA et al. 2013. Type I interferons induce autophagy in certain human cancer cell lines. Autophagy 9:683–96
    [Google Scholar]
  151. 151. 
    Zhu S, Cao L, Yu Y, Yang L, Yang M et al. 2013. Inhibiting autophagy potentiates the anticancer activity of IFN1@/IFNα in chronic myeloid leukemia cells. Autophagy 9:317–27
    [Google Scholar]
  152. 152. 
    Du Y, Duan T, Feng Y, Liu Q, Lin M et al. 2018. LRRC25 inhibits type I IFN signaling by targeting ISG15-associated RIG-I for autophagic degradation. EMBO J 37:351–66
    [Google Scholar]
  153. 153. 
    Zhan Z, Xie X, Cao H, Zhou X, Zhang XD et al. 2014. Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy 10:257–68
    [Google Scholar]
  154. 154. 
    Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G et al. 2015. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42:41–54
    [Google Scholar]
  155. 155. 
    Wu D, Sanin DE, Everts B, Chen Q, Qiu J et al. 2016. Type 1 interferons induce changes in core metabolism that are critical for immune function. Immunity 44:1325–36
    [Google Scholar]
  156. 156. 
    Palazon A, Tyrakis PA, Macias D, Veliça P, Rundqvist H et al. 2017. An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell 32:669–83.e5
    [Google Scholar]
  157. 157. 
    Pantel A, Teixeira A, Haddad E, Wood EG, Steinman RM, Longhi MP 2014. Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation. PLOS Biol 12:e1001759
    [Google Scholar]
  158. 158. 
    York AG, Williams KJ, Argus JP, Zhou QD, Brar G et al. 2015. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163:1716–29
    [Google Scholar]
  159. 159. 
    Everts B, Amiel E, Huang SC-C, Smith AM, Chang CH et al. 2014. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15:323–32
    [Google Scholar]
  160. 160. 
    Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P et al. 2006. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin. Cancer Res. 12:1144–51
    [Google Scholar]
  161. 161. 
    Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S et al. 2010. Lipid accumulation and dendritic cell dysfunction in cancer. Nat. Med. 16:880–86
    [Google Scholar]
  162. 162. 
    Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D et al. 2003. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9:1269–74
    [Google Scholar]
  163. 163. 
    Yasui H, Takai K, Yoshida R, Hayaishi O 1986. Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase: its possible occurrence in cancer patients. PNAS 83:6622–26
    [Google Scholar]
  164. 164. 
    Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL 1999. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189:1363–72
    [Google Scholar]
  165. 165. 
    Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR et al. 2006. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ζ-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 176:6752–61
    [Google Scholar]
  166. 166. 
    Muller AJ, Manfredi MG, Zakharia Y, Prendergast GC 2019. Inhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyond. Semin. Immunopathol. 41:41–48
    [Google Scholar]
  167. 167. 
    Wang W, Huang L, Jin J-Y, Pi W, Ellsworth SG et al. 2020. A validation study on IDO immune biomarkers for survival prediction in non–small cell lung cancer: radiation dose fractionation effect in early-stage disease. Clin. Cancer Res. 26:282–89
    [Google Scholar]
  168. 168. 
    Liu M, Li Z, Yao W, Zeng X, Wang L et al. 2020. IDO inhibitor synergized with radiotherapy to delay tumor growth by reversing T cell exhaustion. Mol. Med. Rep. 21:445–53
    [Google Scholar]
  169. 169. 
    Jia H, Thelwell C, Dilger P, Bird C, Daniels S, Wadhwa M 2018. Endothelial cell functions impaired by interferon in vitro: insights into the molecular mechanism of thrombotic microangiopathy associated with interferon therapy. Thromb. Res. 163:105–16
    [Google Scholar]
  170. 170. 
    Yang H, Lee WS, Kong SJ, Kim CG, Kim JH et al. 2019. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J. Clin. Investig. 129:4350–64
    [Google Scholar]
  171. 171. 
    Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J et al. 2015. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. PNAS 112:15408–13
    [Google Scholar]
  172. 172. 
    Berger DP, Herbstritt L, Dengler WA, Marmé D, Mertelsmann R, Fiebig HH 1995. Vascular endothelial growth factor (VEGF) mRNA expression in human tumor models of different histologies. Ann. Oncol. 6:817–25
    [Google Scholar]
  173. 173. 
    Kitamura T, Qian BZ, Pollard JW 2015. Immune cell promotion of metastasis. Nat. Rev. Immunol. 15:73–86
    [Google Scholar]
  174. 174. 
    Takano S, Ishikawa E, Matsuda M, Yamamoto T, Matsumura A 2014. Interferon-β inhibits glioma angiogenesis through downregulation of vascular endothelial growth factor and upregulation of interferon inducible protein 10. Int. J. Oncol. 45:1837–46
    [Google Scholar]
  175. 175. 
    Zheng H, Qian J, Carbone CJ, Leu NA, Baker DP, Fuchs SY 2011. Vascular endothelial growth factor–induced elimination of the type 1 interferon receptor is required for efficient angiogenesis. Blood 118:4003–6
    [Google Scholar]
  176. 176. 
    Kato Y, Tabata K, Kimura T, Yachie-Kinoshita A, Ozawa Y et al. 2019. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLOS ONE 14:e0212513
    [Google Scholar]
  177. 177. 
    Tian L, Goldstein A, Wang H, Lo HC, Kim IS et al. 2017. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544:250–54
    [Google Scholar]
  178. 178. 
    Tong Y, Zhou L, Yang L, Guo P, Cao Y et al. 2019. Concomitant type I IFN and M-CSF signaling reprograms monocyte differentiation and drives pro-tumoral arginase production. EBioMedicine 39:132–44
    [Google Scholar]
  179. 179. 
    U'Ren L, Guth A, Kamstock D, Dow S 2010. Type I interferons inhibit the generation of tumor-associated macrophages. Cancer Immunol. Immunother. 59:587–98
    [Google Scholar]
  180. 180. 
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A et al. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–15
    [Google Scholar]
  181. 181. 
    Tian L, Li L, Xing W, Li R, Pei C et al. 2015. IRGM1 enhances B16 melanoma cell metastasis through PI3K-Rac1 mediated epithelial mesenchymal transition. Sci. Rep. 5:12357
    [Google Scholar]
  182. 182. 
    Wenzel J, Tomiuk S, Zahn S, Küsters D, Vahsen A et al. 2008. Transcriptional profiling identifies an interferon-associated host immune response in invasive squamous cell carcinoma of the skin. Int. J. Cancer 123:2605–15
    [Google Scholar]
  183. 183. 
    Pidugu VK, Wu M-M, Yen A-H, Pidugu HB, Chang K-W et al. 2019. IFIT1 and IFIT3 promote oral squamous cell carcinoma metastasis and contribute to the anti-tumor effect of gefitinib via enhancing p-EGFR recycling. Oncogene 38:3232–47
    [Google Scholar]
  184. 184. 
    Sun L, Miyoshi H, Origanti S, Nice TJ, Barger AC et al. 2015. Type I interferons link viral infection to enhanced epithelial turnover and repair. Cell Host Microbe 17:85–97
    [Google Scholar]
  185. 185. 
    Ahn WS, Bae SM, Lee JM, Namkoong SE, Han SJ et al. 2004. Searching for pathogenic gene functions to cervical cancer. Gynecol. Oncol. 93:41–48
    [Google Scholar]
  186. 186. 
    Guasch G, Schober M, Pasolli HA, Conn EB, Polak L, Fuchs E 2007. Loss of TGFβ signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell 12:313–27
    [Google Scholar]
  187. 187. 
    Grunwell JR, Yeligar SM, Stephenson S, Ping XD, Gauthier TW et al. 2018. TGF-β1 suppresses the type I IFN response and induces mitochondrial dysfunction in alveolar macrophages. J. Immunol. 200:2115–28
    [Google Scholar]
  188. 188. 
    Wculek SK, Malanchi I. 2015. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528:413–17
    [Google Scholar]
  189. 189. 
    Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR et al. 2016. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 8:361ra138
    [Google Scholar]
  190. 190. 
    Andzinski L, Kasnitz N, Stahnke S, Wu C-F, Gereke M et al. 2016. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int. J. Cancer 138:1982–93
    [Google Scholar]
  191. 191. 
    Rayes RF, Mouhanna JG, Nicolau I, Bourdeau F, Giannias B et al. 2019. Primary tumors induce neutrophil extracellular traps with targetable metastasis-promoting effects. JCI Insight 5:e128008
    [Google Scholar]
  192. 192. 
    Sawant A, Hensel JA, Chanda D, Harris BA, Siegal GP et al. 2012. Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells. J. Immunol. 189:4258–65
    [Google Scholar]
  193. 193. 
    Yang L-L, Mao L, Wu H, Chen L, Deng W-W et al. 2019. pDC depletion induced by CD317 blockade drives the antitumor immune response in head and neck squamous cell carcinoma. Oral Oncol 96:131–39
    [Google Scholar]
  194. 194. 
    Raychaudhuri D, Bhattacharya R, Sinha BP, Liu CSC, Ghosh AR et al. 2019. Lactate induces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells. Front. Immunol. 10:1878
    [Google Scholar]
  195. 195. 
    Terra M, Oberkampf M, Fayolle C, Rosenbaum P, Guillerey C et al. 2018. Tumor-derived TGFβ alters the ability of plasmacytoid dendritic cells to respond to innate immune signaling. Cancer Res 78:3014–26
    [Google Scholar]
  196. 196. 
    Lee J, Sayed N, Hunter A, Au KF, Wong WH et al. 2012. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 151:547–58
    [Google Scholar]
  197. 197. 
    Yang CA, Huang HY, Chang YS, Lin CL, Lai IL, Chang JG 2017. DNA-sensing and nuclease gene expressions as markers for colorectal cancer progression. Oncology 92:115–24
    [Google Scholar]
  198. 198. 
    Ishizuka JJ, Manguso RT, Cheruiyot CK, Bi K, Panda A et al. 2019. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565:43–48
    [Google Scholar]
  199. 199. 
    Liu H, Golji J, Brodeur LK, Chung FS, Chen JT et al. 2019. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat. Med. 25:95–102
    [Google Scholar]
  200. 200. 
    Jacquelot N, Yamazaki T, Roberti MP, Duong CPM, Andrews MC et al. 2019. Sustained type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res 29:846–61
    [Google Scholar]
  201. 201. 
    Fairfax BP, Taylor CA, Watson RA, Nassiri I, Danielli S et al. 2020. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 26:193–99
    [Google Scholar]
  202. 202. 
    Zecchini V, Frezza C. 2017. Metabolic synthetic lethality in cancer therapy. Biochim. Biophys. Acta Bioenerg. 1858:723–31
    [Google Scholar]
  203. 203. 
    Shi Y, Zheng W, Yang K, Harris KG, Ni K et al. 2020. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J. Exp. Med. 217:e20192282
    [Google Scholar]
  204. 204. 
    Guilhot F, Chastang C, Michallet M, Guerci A, Harousseau JL et al. 1997. Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. French Chronic Myeloid Leukemia Study Group. N. Engl. J. Med. 337:223–29
    [Google Scholar]
  205. 205. 
    Mandelli F, Avvisati G, Amadori S, Boccadoro M, Gernone A et al. 1990. Maintenance treatment with recombinant interferon alfa-2b in patients with multiple myeloma responding to conventional induction chemotherapy. New Engl. J. Med. 322:1430–34
    [Google Scholar]
  206. 206. 
    Osterborg A, Björkholm M, Björeman M, Brenning G, Carlson K et al. 1993. Natural interferon-alpha in combination with melphalan/prednisone versus melphalan/prednisone in the treatment of multiple myeloma stages II and III: a randomized study from the Myeloma Group of Central Sweden. Blood 81:1428–34
    [Google Scholar]
  207. 207. 
    Gogas H, Abali H, Ascierto PA, Demidov L, Pehamberger H et al. 2015. Who benefits most from adjuvant interferon treatment for melanoma. Am. J. Ther. 22:54–60
    [Google Scholar]
  208. 208. 
    Alberts DS, Hannigan EV, Liu P-Y, Jiang C, Wilczynski S et al. 2006. Randomized trial of adjuvant intraperitoneal alpha-interferon in stage III ovarian cancer patients who have no evidence of disease after primary surgery and chemotherapy: an intergroup study. Gynecol. Oncol. 100:133–38
    [Google Scholar]
  209. 209. 
    Hall GD, Brown JM, Coleman RE, Stead M, Metcalf KS et al. 2004. Maintenance treatment with interferon for advanced ovarian cancer: results of the Northern and Yorkshire gynaecology group randomised phase III study. Br. J. Cancer 91:621–26
    [Google Scholar]
  210. 210. 
    Muss HB, Kempf RA, Martino S, Rudnick SA, Greiner J et al. 1984. A phase II study of recombinant alpha interferon in patients with recurrent or metastatic breast cancer. J. Clin. Oncol. 2:1012–16
    [Google Scholar]
  211. 211. 
    Bald T, Landsberg J, Lopez-Ramos D, Renn M, Glodde N et al. 2014. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov 4:674–87
    [Google Scholar]
  212. 212. 
    Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN et al. 2011. The efficacy of radiotherapy relies upon induction of type I interferon–dependent innate and adaptive immunity. Cancer Res 71:2488–96
    [Google Scholar]
  213. 213. 
    Liang Y, Tang H, Guo J, Qiu X, Yang Z et al. 2018. Targeting IFNα to tumor by anti-PD-L1 creates feedforward antitumor responses to overcome checkpoint blockade resistance. Nat. Commun. 9:4586
    [Google Scholar]
  214. 214. 
    Mehrotra S, Britten CD, Chin S, Garrett-Mayer E, Cloud CA et al. 2017. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J. Hematol. Oncol. 10:82
    [Google Scholar]
  215. 215. 
    Bell J, McFadden G. 2014. Viruses for tumor therapy. Cell Host Microbe 15:260–65
    [Google Scholar]
  216. 216. 
    Aref S, Castleton AZ, Bailey K, Burt R, Dey A et al. 2020. Type 1 interferon responses underlie tumor-selective replication of oncolytic measles virus. Mol. Ther. 28:41043–55
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-031920-093932
Loading
/content/journals/10.1146/annurev-pathol-031920-093932
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error