1932

Abstract

is the leading cause of peptic ulcer disease. The infection has been implicated in more than 75% of duodenal ulcer cases and 17% of gastric ulcer cases. has been classified as a human carcinogen, since it is the main cause of distal gastric adenocarcinoma and B cell mucosa-associated lymphoid tissue lymphoma. Evidence also links with extragastric conditions including iron deficiency anemia, idiopathic thrombocytopenic purpura, and vitamin B deficiency. Studies indicate that may be protective against other conditions of the gastrointestinal tract (e.g., reflux esophagitis and related pathologies) and elsewhere in the body (e.g., asthma). The infection is asymptomatic in the vast majority of cases; more serious outcomes occur in only 10–15% of infected individuals. Despite extensive research over the past 3 decades, there is no effective vaccine, and the circumstances leading to disease development remain unclear. In addition, there is now a growing prevalence of antimicrobial resistance in This review discusses these important issues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-032520-024949
2021-01-24
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/16/1/annurev-pathol-032520-024949.html?itemId=/content/journals/10.1146/annurev-pathol-032520-024949&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Marshall BJ, Warren JR. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 323:1311–15
    [Google Scholar]
  2. 2. 
    Blaser MJ, Atherton JC. 2004. Helicobacter pylori persistence: biology and disease. J. Clin. Investig. 113:321–33
    [Google Scholar]
  3. 3. 
    Huang JY, Goers Sweeney E, Guillemin K, Amieva MR 2017. Multiple acid sensors control Helicobacter pylori colonization of the stomach. PLOS Pathog 13:e1006118
    [Google Scholar]
  4. 4. 
    Weeks DL, Eskandari S, Scott DR, Sachs G 2000. A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287:482–75
    [Google Scholar]
  5. 5. 
    Peleteiro B, Bastos A, Ferro A, Lunet N 2014. Prevalence of Helicobacter pylori infection worldwide: a systematic review of studies with national coverage. Dig. Dis. Sci. 59:1698–709
    [Google Scholar]
  6. 6. 
    Nagy P, Johansson S, Molloy-Bland M 2016. Systematic review of time trends in the prevalence of Helicobacter pylori infection in China and the USA. Gut Pathog 8:8
    [Google Scholar]
  7. 7. 
    Arnold M, Park JY, Camargo MC, Lunet N, Forman D, Soerjomataram I 2020. Is gastric cancer becoming a rare disease? A global assessment of predicted incidence trends to 2035. Gut 69:823–29
    [Google Scholar]
  8. 8. 
    Goodman KJ, Correa P. 2000. Transmission of Helicobacter pylori among siblings. Lancet 355:358–62
    [Google Scholar]
  9. 9. 
    Dore MP, Sepulveda AR, El-Zimaity H, Yamaoka Y, Osato MS et al. 2001. Isolation of Helicobacter pylori from sheep—implications for transmission to humans. Am. J. Gastroenterol. 96:1396–401
    [Google Scholar]
  10. 10. 
    Padra M, Benktander J, Robinson K, Linden SK 2019. Carbohydrate-dependent and antimicrobial peptide defence mechanisms against Helicobacter pylori infections. Curr. Top. Microbiol. Immunol. 421:179–207
    [Google Scholar]
  11. 11. 
    Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D et al. 1998. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–77
    [Google Scholar]
  12. 12. 
    Mahdavi J, Sonden B, Hurtig M, Olfat FO, Forsberg L et al. 2002. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–78
    [Google Scholar]
  13. 13. 
    Rossez Y, Gosset P, Boneca IG, Magalhaes A, Ecobichon C et al. 2014. The LacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter pylori to human gastric mucosa. J. Infect. Dis. 210:1286–95
    [Google Scholar]
  14. 14. 
    Smith SM, Moran AP, Duggan SP, Ahmed SE, Mohamed AS et al. 2011. Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide. J. Immunol. 186:2462–71
    [Google Scholar]
  15. 15. 
    Pachathundikandi SK, Tegtmeyer N, Arnold IC, Lind J, Neddermann M et al. 2019. T4SS-dependent TLR5 activation by Helicobacter pylori infection. Nat. Commun. 10:5717
    [Google Scholar]
  16. 16. 
    El-Omar EM, Ng MT, Hold GL 2008. Polymorphisms in Toll-like receptor genes and risk of cancer. Oncogene 27:244–52
    [Google Scholar]
  17. 17. 
    Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE et al. 2004. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5:1166–74
    [Google Scholar]
  18. 18. 
    Pachathundikandi SK, Blaser N, Backert S 2019. Mechanisms of inflammasome signaling, microRNA induction and resolution of inflammation by Helicobacter pylori.Curr. Top.Microbiol. . Immunol 421:267–302
    [Google Scholar]
  19. 19. 
    Cook KW, Letley DP, Ingram RJ, Staples E, Skjoldmose H et al. 2014. CCL20/CCR6-mediated migration of regulatory T cells to the Helicobacter pylori–infected human gastric mucosa. Gut 63:1550–59
    [Google Scholar]
  20. 20. 
    White JR, Winter JA, Robinson K 2015. Differential inflammatory response to Helicobacter pylori infection: etiology and clinical outcomes. J. Inflamm. Res. 8:137–47
    [Google Scholar]
  21. 21. 
    El-Omar EM, Rabkin CS, Gammon MD, Vaughan TL, Risch HA et al. 2003. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124:1193–201
    [Google Scholar]
  22. 22. 
    Eslami M, Yousefi B, Kokhaei P, Arabkari V, Ghasemian A 2019. Current information on the association of Helicobacter pylori with autophagy and gastric cancer. J. Cell Physiol. 234:14800–11
    [Google Scholar]
  23. 23. 
    Allen LA, Beecher BR, Lynch JT, Rohner OV, Wittine LM 2005. Helicobacter pylori disrupts NADPH oxidase targeting in human neutrophils to induce extracellular superoxide release. J. Immunol. 174:3658–67
    [Google Scholar]
  24. 24. 
    Schwartz JT, Allen LA. 2006. Role of urease in megasome formation and Helicobacter pylori survival in macrophages. J. Leukoc. Biol. 79:1214–25
    [Google Scholar]
  25. 25. 
    Gobert AP, McGee DJ, Akhtar M, Mendz GL, Newton JC et al. 2001. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. PNAS 98:13844–49
    [Google Scholar]
  26. 26. 
    Rudnicka K, Matusiak A, Miszczyk E, Rudnicka W, Tenderenda M, Chmiela M 2013. Immunophenotype of peripheral blood natural killer cells and IL-10 serum levels in relation to Helicobacter pylori status. APMIS 121:806–13
    [Google Scholar]
  27. 27. 
    Oertli M, Sundquist M, Hitzler I, Engler DB, Arnold IC et al. 2012. DC-derived IL-18 drives Treg differentiation, murine Helicobacter pylori–specific immune tolerance, and asthma protection. J. Clin. Investig. 122:1082–96
    [Google Scholar]
  28. 28. 
    Robinson K, Kenefeck R, Pidgeon EL, Shakib S, Patel S et al. 2008. Helicobacter pylori–induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut 57:1375–85
    [Google Scholar]
  29. 29. 
    Ikuse T, Blanchard TG, Czinn SJ 2019. Inflammation, immunity, and vaccine development for the gastric pathogen Helicobacter pylori.Curr. Top.Microbiol. . Immunol 421:1–19
    [Google Scholar]
  30. 30. 
    Chang WJ, Du Y, Zhao X, Ma LY, Cao GW 2014. Inflammation-related factors predicting prognosis of gastric cancer. World J. Gastroenterol. 20:4586–96
    [Google Scholar]
  31. 31. 
    Wilke CM, Bishop K, Fox D, Zou W 2011. Deciphering the role of Th17 cells in human disease. Trends Immunol 32:603–11
    [Google Scholar]
  32. 32. 
    Liu T, Peng L, Yu P, Zhao Y, Shi Y et al. 2012. Increased circulating Th22 and Th17 cells are associated with tumor progression and patient survival in human gastric cancer. J. Clin. Immunol. 32:1332–39
    [Google Scholar]
  33. 33. 
    Kao JY, Zhang M, Miller MJ, Mills JC, Wang B et al. 2010. Helicobacter pylori immune escape is mediated by dendritic cell–induced Treg skewing and Th17 suppression in mice. Gastroenterology 138:1046–54
    [Google Scholar]
  34. 34. 
    Ono M. 2020. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. Immunology 160:2437Corrigendum 2020. Immunology 160:393
    [Google Scholar]
  35. 35. 
    Robinson K. 2015. Helicobacter pylori–mediated protection against extra-gastric immune and inflammatory disorders: the evidence and controversies. Diseases 3:34–55
    [Google Scholar]
  36. 36. 
    Das S, Suarez G, Beswick EJ, Sierra JC, Graham DY, Reyes VE 2006. Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection. J. Immunol. 176:3000–9
    [Google Scholar]
  37. 37. 
    Oertli M, Noben M, Engler DB, Semper RP, Reuter S et al. 2013. Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. PNAS 110:3047–52
    [Google Scholar]
  38. 38. 
    Gebert B, Fischer W, Weiss E, Hoffmann R, Haas R 2003. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301:1099–102
    [Google Scholar]
  39. 39. 
    Telford JL, Ghiara P, Dell'Orco M, Comanducci M, Burroni D et al. 1994. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J. Exp. Med. 179:1653–58
    [Google Scholar]
  40. 40. 
    Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL 2016. An overview of Helicobacter pylori VacA toxin biology. Toxins 8:173
    [Google Scholar]
  41. 41. 
    Chauhan N, Tay ACY, Marshall BJ, Jain U 2019. Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells: an overview. Helicobacter 24:e12544
    [Google Scholar]
  42. 42. 
    Atherton JC, Cao P, Peek RM Jr., Tummuru MK, Blaser MJ, Cover TL 1995. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem 270:17771–77
    [Google Scholar]
  43. 43. 
    Rhead JL, Letley DP, Mohammadi M, Hussein N, Mohagheghi MA et al. 2007. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology 133:926–36
    [Google Scholar]
  44. 44. 
    Basso D, Zambon CF, Letley DP, Stranges A, Marchet A et al. 2008. Clinical relevance of Helicobacter pyloricagA and vacA gene polymorphisms. Gastroenterology 135:91–99
    [Google Scholar]
  45. 45. 
    Winter JA, Letley DP, Cook KW, Rhead JL, Zaitoun AA et al. 2014. A role for the vacuolating cytotoxin, VacA, in colonization and Helicobacter pylori–induced metaplasia in the stomach. J. Infect. Dis. 210:954–63
    [Google Scholar]
  46. 46. 
    Tombola F, Morbiato L, Del Giudice G, Rappuoli R, Zoratti M, Papini E 2001. The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. J. Clin. Investig. 108:929–37
    [Google Scholar]
  47. 47. 
    Blaser N, Backert S, Pachathundikandi SK 2019. Immune cell signaling by Helicobacter pylori: impact on gastric pathology. Adv. Exp. Med. Biol. 1149:77–106
    [Google Scholar]
  48. 48. 
    Engler DB, Reuter S, van Wijck Y, Urban S, Kyburz A et al. 2014. Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10. PNAS 111:11810–15
    [Google Scholar]
  49. 49. 
    Hu B, Khara P, Song L, Lin AS, Frick-Cheng AE et al. 2019. In situ molecular architecture of the Helicobacter pylori Cag type IV secretion system. mBio 10:e00849–19
    [Google Scholar]
  50. 50. 
    Gorrell RJ, Guan J, Xin Y, Tafreshi MA, Hutton ML et al. 2013. A novel NOD1- and CagA-independent pathway of interleukin-8 induction mediated by the Helicobacter pylori type IV secretion system. Cell Microbiol 15:554–70
    [Google Scholar]
  51. 51. 
    Naumann M, Sokolova O, Tegtmeyer N, Backert S 2017. Helicobacter pylori: a paradigm pathogen for subverting host cell signal transmission. Trends Microbiol 25:316–28
    [Google Scholar]
  52. 52. 
    Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S 2003. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300:1430–34
    [Google Scholar]
  53. 53. 
    Franco AT, Israel DA, Washington MK, Krishna U, Fox JG et al. 2005. Activation of β-catenin by carcinogenic Helicobacter pylori. . PNAS 102:10646–51
    [Google Scholar]
  54. 54. 
    Skoog EC, Morikis VA, Martin ME, Foster GA, Cai LP et al. 2018. CagY-dependent regulation of type IV secretion in Helicobacter pylori is associated with alterations in integrin binding. mBio 9:e00717–18
    [Google Scholar]
  55. 55. 
    Patel SR, Smith K, Letley DP, Cook KW, Memon AA et al. 2013. Helicobacter pylori downregulates expression of human β-defensin 1 in the gastric mucosa in a type IV secretion–dependent fashion. Cell Microbiol 15:2080–92
    [Google Scholar]
  56. 56. 
    Bauer B, Pang E, Holland C, Kessler M, Bartfeld S, Meyer TF 2012. The Helicobacter pylori virulence effector CagA abrogates human β-defensin 3 expression via inactivation of EGFR signaling. Cell Host Microbe 11:576–86
    [Google Scholar]
  57. 57. 
    Oldani A, Cormont M, Hofman V, Chiozzi V, Oregioni O et al. 2009. Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLOS Pathog 5:e1000603
    [Google Scholar]
  58. 58. 
    Akada JK, Aoki H, Torigoe Y, Kitagawa T, Kurazono H et al. 2010. Helicobacter pylori CagA inhibits endocytosis of cytotoxin VacA in host cells. Dis. Model. Mech. 3:605–17
    [Google Scholar]
  59. 59. 
    Lu H, Hsu PI, Graham DY, Yamaoka Y 2005. Duodenal ulcer promoting gene of Helicobacter pylori. . Gastroenterology 128:833–48
    [Google Scholar]
  60. 60. 
    Hussein NR, Argent RH, Marx CK, Patel SR, Robinson K, Atherton JC 2010. Helicobacter pyloridupA is polymorphic, and its active form induces proinflammatory cytokine secretion by mononuclear cells. J. Infect. Dis. 202:261–69
    [Google Scholar]
  61. 61. 
    Shiota S, Matsunari O, Watada M, Hanada K, Yamaoka Y 2010. Systematic review and meta-analysis: the relationship between the Helicobacter pyloridupA gene and clinical outcomes. Gut Pathog 2:13
    [Google Scholar]
  62. 62. 
    Satin B, Del Giudice G, Della Bianca V, Dusi S, Laudanna C et al. 2000. The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J. Exp. Med. 191:1467–76
    [Google Scholar]
  63. 63. 
    Ansari S, Yamaoka Y. 2019. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity. Toxins 11:677
    [Google Scholar]
  64. 64. 
    Aspholm-Hurtig M, Dailide G, Lahmann M, Kalia A, Ilver D et al. 2004. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 305:519–22
    [Google Scholar]
  65. 65. 
    Yamaoka Y, Ojo O, Fujimoto S, Odenbreit S, Haas R et al. 2006. Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut 55:775–81
    [Google Scholar]
  66. 66. 
    Yamaoka Y, Graham DY. 2014. Helicobacter pylori virulence and cancer pathogenesis. Future Oncol 10:1487–500
    [Google Scholar]
  67. 67. 
    Senkovich OA, Yin J, Ekshyyan V, Conant C, Traylor J et al. 2011. Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect. Immun. 79:3106–16
    [Google Scholar]
  68. 68. 
    Lu H, Wu JY, Beswick EJ, Ohno T, Odenbreit S et al. 2007. Functional and intracellular signaling differences associated with the Helicobacter pylori AlpAB adhesin from Western and East Asian strains. J. Biol. Chem. 282:6242–54
    [Google Scholar]
  69. 69. 
    Robinson K, Argent RH, Atherton JC 2007. The inflammatory and immune response to Helicobacter pylori infection. Best Pract. Res. Clin. Gastroenterol. 21:237–59
    [Google Scholar]
  70. 70. 
    Shimoyama T, Everett SM, Dixon MF, Axon AT, Crabtree JE 1998. Chemokine mRNA expression in gastric mucosa is associated with Helicobacter pyloricagA positivity and severity of gastritis. J. Clin. Pathol. 51:765–70
    [Google Scholar]
  71. 71. 
    Yamaoka Y, Kita M, Kodama T, Sawai N, Kashima K, Imanishi J 1997. Induction of various cytokines and development of severe mucosal inflammation by cagA gene positive Helicobacter pylori strains. Gut 41:442–51
    [Google Scholar]
  72. 72. 
    Fox JG, Wang TC. 2007. Inflammation, atrophy, and gastric cancer. J. Clin. Investig. 117:60–69
    [Google Scholar]
  73. 73. 
    Necchi V, Candusso ME, Tava F, Luinetti O, Ventura U et al. 2007. Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori. . Gastroenterology 132:1009–23
    [Google Scholar]
  74. 74. 
    Correa P, Haenszel W, Cuello C, Tannenbaum S, Archer M 1975. A model for gastric cancer epidemiology. Lancet 2:58–60
    [Google Scholar]
  75. 75. 
    Malaty HM. 2007. Epidemiology of Helicobacter pylori infection. Best Pract. Res. Clin. Gastroenterol. 21:205–14
    [Google Scholar]
  76. 76. 
    Zavros Y, Rathinavelu S, Kao JY, Todisco A, Del Valle J et al. 2003. Treatment of Helicobacter gastritis with IL-4 requires somatostatin. PNAS 100:12944–49
    [Google Scholar]
  77. 77. 
    Zavros Y, Merchant JL. 2005. Modulating the cytokine response to treat Helicobacter gastritis. Biochem. Pharmacol. 69:365–71
    [Google Scholar]
  78. 78. 
    IARC (Int. Agency Res. Cancer) 1994. Schistosomes, Liver Flukes and Helicobacter pylori Lyon, Fr.: IARC
    [Google Scholar]
  79. 79. 
    Venerito M, Link A, Rokkas T, Malfertheiner P 2019. Gastric cancer—clinical aspects. Helicobacter 24:Suppl. 1e12643
    [Google Scholar]
  80. 80. 
    Park JY, Forman D, Waskito LA, Yamaoka Y, Crabtree JE 2018. Epidemiology of Helicobacter pylori and cagA-positive infections and global variations in gastric cancer. Toxins 10:163
    [Google Scholar]
  81. 81. 
    Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M 1998. Helicobacter pylori infection induces gastric cancer in Mongolian gerbils. Gastroenterology 115:642–48
    [Google Scholar]
  82. 82. 
    Correa P, Fontham ET, Bravo JC, Bravo LE, Ruiz B et al. 2000. Chemoprevention of gastric dysplasia: randomized trial of antioxidant supplements and anti–Helicobacterpylori therapy. J. Natl. Cancer Inst. 92:1881–88
    [Google Scholar]
  83. 83. 
    Kuipers EJ, Nelis GF, Klinkenberg-Knol EC, Snel P, Goldfain D et al. 2004. Cure of Helicobacter pylori infection in patients with reflux oesophagitis treated with long term omeprazole reverses gastritis without exacerbation of reflux disease: results of a randomised controlled trial. Gut 53:12–20
    [Google Scholar]
  84. 84. 
    Cai X, Carlson J, Stoicov C, Li H, Wang TC, Houghton J 2005. Helicobacterfelis eradication restores normal architecture and inhibits gastric cancer progression in C57BL/6 mice. Gastroenterology 128:1937–52
    [Google Scholar]
  85. 85. 
    Leung WK, Wong IOL, Cheung KS, Yeung KF, Chan EW et al. 2018. Effects of Helicobacter pylori treatment on incidence of gastric cancer in older individuals. Gastroenterology 155:67–75
    [Google Scholar]
  86. 86. 
    Wong BC, Lam SK, Wong WM, Chen JS, Zheng TT et al. 2004. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA 291:187–94
    [Google Scholar]
  87. 87. 
    Pimentel-Nunes P, Libânio D, Marcos-Pinto R, Areia M, Leja M et al. 2019. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) guideline update 2019. Endoscopy 51:365–88
    [Google Scholar]
  88. 88. 
    Parsonnet J. 1994. Gastric adenocarcinoma and Helicobacter pylori infection. West. J. Med. 161:60
    [Google Scholar]
  89. 89. 
    Pinto-Santini D, Salama NR. 2005. The biology of Helicobacter pylori infection, a major risk factor for gastric adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 14:1853–58
    [Google Scholar]
  90. 90. 
    Hishida A, Ugai T, Fujii R, Nakatochi M, Wu MC et al. 2019. GWAS analysis reveals a significant contribution of PSCA to the risk of Heliobacterpylori–induced gastric atrophy. Carcinogenesis 40:661–68
    [Google Scholar]
  91. 91. 
    Cai M, Dai S, Chen W, Xia C, Lu L et al. 2017. Environmental factors, seven GWAS-identified susceptibility loci, and risk of gastric cancer and its precursors in a Chinese population. Cancer Med 6:708–20
    [Google Scholar]
  92. 92. 
    Hold GL, Rabkin CS, Chow WH, Smith MG, Gammon MD et al. 2007. A functional polymorphism of Toll-like receptor 4 gene increases risk of gastric carcinoma and its precursors. Gastroenterology 132:905–12
    [Google Scholar]
  93. 93. 
    Hsu PI, Lu PJ, Wang EM, Ger LP, Lo GH et al. 2008. Polymorphisms of death pathway genes FAS and FASL and risk of premalignant gastric lesions. Anticancer Res 28:97–103
    [Google Scholar]
  94. 94. 
    Touati E, Michel V, Thiberge JM, Wuscher N, Huerre M, Labigne A 2003. Chronic Helicobacter pylori infections induce gastric mutations in mice. Gastroenterology 124:1408–19
    [Google Scholar]
  95. 95. 
    Na HK, Woo JH. 2014. Helicobacter pylori induces hypermethylation of CpG islands through upregulation of DNA methyltransferase: possible involvement of reactive oxygen/nitrogen species. J. Cancer Prev. 19:259–64
    [Google Scholar]
  96. 96. 
    Negrini R, Lisato L, Zanella I, Cavazzini L, Gullini S et al. 1991. Helicobacter pylori infection induces antibodies cross-reacting with human gastric mucosa. Gastroenterology 101:437–45
    [Google Scholar]
  97. 97. 
    Kitadai Y, Sasaki A, Ito M, Tanaka S, Oue N et al. 2003. Helicobacter pylori infection influences expression of genes related to angiogenesis and invasion in human gastric carcinoma cells. Biochem. Biophys. Res. Commun. 311:809–14
    [Google Scholar]
  98. 98. 
    Sokolova O, Naumann M. 2019. Crosstalk between DNA damage and inflammation in the multiple steps of gastric carcinogenesis. Curr. Top. Microbiol. Immunol. 421:107–37
    [Google Scholar]
  99. 99. 
    Sigal M, Rothenberg ME, Logan CY, Lee JY, Honaker RW et al. 2015. Helicobacter pylori activates and expands Lgr5+ stem cells through direct colonization of the gastric glands. Gastroenterology 148:1392–404.e21
    [Google Scholar]
  100. 100. 
    Fu L, Bu L, Yasuda T, Koiwa M, Akiyama T et al. 2020. Gastric cancer stem cells: current insights into the immune microenvironment and therapeutic targets. Biomedicines 8:7
    [Google Scholar]
  101. 101. 
    Du MQ, Atherton JC. 2006. Molecular subtyping of gastric MALT lymphomas: implications for prognosis and management. Gut 55:886–93
    [Google Scholar]
  102. 102. 
    D'Elios MM, Amedei A, Manghetti M, Costa F, Baldari CT et al. 1999. Impaired T-cell regulation of B-cell growth in Helicobacter pylori–related gastric low-grade MALT lymphoma. Gastroenterology 117:1105–12
    [Google Scholar]
  103. 103. 
    Montalban C, Manzanal A, Castrillo JM, Escribano L, Bellas C 1995. Low grade gastric B-cell MALT lymphoma progressing into high grade lymphoma. Clonal identity of the two stages of the tumour, unusual bone involvement and leukemic dissemination. Histopathology 27:89–91
    [Google Scholar]
  104. 104. 
    Marcelis L, Tousseyn T, Sagaert X 2019. MALT lymphoma as a model of chronic inflammation–induced gastric tumor development. Curr. Top. Microbiol. Immunol. 421:77–106
    [Google Scholar]
  105. 105. 
    Ho L, Davis RE, Conne B, Chappuis R, Berczy M et al. 2005. MALT1 and the API2-MALT1 fusion act between CD40 and IKK and confer NF-κB-dependent proliferative advantage and resistance against FAS-induced cell death in B cells. Blood 105:2891–99
    [Google Scholar]
  106. 106. 
    Marignani M, Angeletti S, Bordi C, Malagnino F, Mancino C et al. 1997. Reversal of long-standing iron deficiency anaemia after eradication of Helicobacter pylori infection. Scand. J. Gastroenterol. 32:617–22
    [Google Scholar]
  107. 107. 
    Conrad ME, Schade SG. 1968. Ascorbic acid chelates in iron absorption: a role for hydrochloric acid and bile. Gastroenterology 55:35–45
    [Google Scholar]
  108. 108. 
    Annibale B, Capurso G, Lahner E, Passi S, Ricci R et al. 2003. Concomitant alterations in intragastric pH and ascorbic acid concentration in patients with Helicobacter pylori gastritis and associated iron deficiency anaemia. Gut 52:496–501
    [Google Scholar]
  109. 109. 
    Yokota S, Konno M, Mino E, Sato K, Takahashi M, Fujii N 2008. Enhanced Fe ion-uptake activity in Helicobacter pylori strains isolated from patients with iron-deficiency anemia. Clin. Infect. Dis. 46:e31–33
    [Google Scholar]
  110. 110. 
    Choe YH, Oh YJ, Lee NG, Imoto I, Adachi Y et al. 2003. Lactoferrin sequestration and its contribution to iron-deficiency anemia in Helicobacter pylori–infected gastric mucosa. J. Gastroenterol. Hepatol. 18:980–85
    [Google Scholar]
  111. 111. 
    Döscherholmen A, Ripley D, Chang S, Silvis SE 1977. Influence of age and stomach function on serum vitamin B12 concentration. Scand. J. Gastroenterol. 12:313–19
    [Google Scholar]
  112. 112. 
    Suter PM, Golner BB, Goldin BR, Morrow FD, Russell RM 1991. Reversal of protein-bound vitamin B12 malabsorption with antibiotics in atrophic gastritis. Gastroenterology 101:1039–45
    [Google Scholar]
  113. 113. 
    Kaptan K, Beyan C, Ifran A 2006. Helicobacter pylori and vitamin B12 deficiency. Haematologica 91:ELT10
    [Google Scholar]
  114. 114. 
    Franchini M, Cruciani M, Mengoli C, Pizzolo G, Veneri D 2007. Effect of Helicobacter pylori eradication on platelet count in idiopathic thrombocytopenic purpura: a systematic review and meta-analysis. J. Antimicrob. Chemother. 60:237–46
    [Google Scholar]
  115. 115. 
    Emilia G, Luppi M, Zucchini P, Morselli M, Potenza L et al. 2007. Helicobacter pylori infection and chronic immune thrombocytopenic purpura: long-term results of bacterium eradication and association with bacterium virulence profiles. Blood 110:3833–41
    [Google Scholar]
  116. 116. 
    Takahashi T, Yujiri T, Shinohara K, Inoue Y, Sato Y et al. 2004. Molecular mimicry by Helicobacter pylori CagA protein may be involved in the pathogenesis of H. pylori–associated chronic idiopathic thrombocytopenic purpura. Br. J. Haematol. 124:91–96
    [Google Scholar]
  117. 117. 
    Wang JW, Tseng KL, Hsu CN, Liang CM, Tai WC et al. 2018. Association between Helicobacter pylori eradication and the risk of coronary heart diseases. PLOS ONE 13:e0190219
    [Google Scholar]
  118. 118. 
    Kowalski M. 2001. Helicobacter pylori (H. pylori) infection in coronary artery disease: influence of H. pylori eradication on coronary artery lumen after percutaneous transluminal coronary angioplasty. The detection of H. pylori specific DNA in human coronary atherosclerotic plaque. J. Physiol. Pharmacol. 52:3–31
    [Google Scholar]
  119. 119. 
    Schweeger I, Fitscha P, Sinzinger H 2000. Successful eradication of Helicobacter pylori as determined by 13C-urea breath test does not alter fibrinogen and acute phase response markers. Thromb. Res. 97:411–20
    [Google Scholar]
  120. 120. 
    Nikolopoulou A, Tousoulis D, Antoniades C, Petroheilou K, Vasiliadou C et al. 2008. Common community infections and the risk for coronary artery disease and acute myocardial infarction: evidence for chronic over-expression of tumor necrosis factor alpha and vascular cells adhesion molecule-1. Int. J. Cardiol. 130:246–50
    [Google Scholar]
  121. 121. 
    Kowalski M, Konturek PC, Pieniazek P, Karczewska E, Kluczka A et al. 2001. Prevalence of Helicobacter pylori infection in coronary artery disease and effect of its eradication on coronary lumen reduction after percutaneous coronary angioplasty. Dig. Liver Dis. 33:222–29
    [Google Scholar]
  122. 122. 
    Kanbay M, Gür G, Yucel M, Yilmaz U, Boyacioĝlu S 2005. Does eradication of Helicobacter pylori infection help normalize serum lipid and CRP levels. Dig. Dis. Sci. 50:1228–31
    [Google Scholar]
  123. 123. 
    Strang RR. 1965. The association of gastro-duodenal ulceration and Parkinson's disease. Med. J. Aust. 1:842–43
    [Google Scholar]
  124. 124. 
    Dardiotis E, Tsouris Z, Mentis AA, Siokas V, Michalopoulou A et al. 2018. H. pylori and Parkinson's disease: meta-analyses including clinical severity. Clin. Neurol. Neurosurg. 175:16–24
    [Google Scholar]
  125. 125. 
    Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW 1999. Association of circulating TNF-α and IL-6 with ageing and parkinsonism. Acta Neurol. Scand. 100:34–41
    [Google Scholar]
  126. 126. 
    Patel P, Mendall MA, Khulusi S, Northfield TC, Strachan DP 1994. Helicobacter pylori infection in childhood: risk factors and effect on growth. BMJ 309:1119–23
    [Google Scholar]
  127. 127. 
    Furuta T, Shirai N, Xiao F, Takashima M, Hanai H 2002. Effect of Helicobacter pylori infection and its eradication on nutrition. Aliment. Pharmacol. Ther. 16:799–806
    [Google Scholar]
  128. 128. 
    Taye B, Enquselassie F, Tsegaye A, Amberbir A, Medhin G et al. 2016. Effect of Helicobacter pylori infection on growth trajectories in young Ethiopian children: a longitudinal study. Int. J. Infect. Dis. 50:57–66
    [Google Scholar]
  129. 129. 
    Mion F, Dargent J. 2014. Gastro-oesophageal reflux disease and obesity: pathogenesis and response to treatment. Best Pract. Res. Clin. Gastroenterol. 28:611–22
    [Google Scholar]
  130. 130. 
    Labenz J, Blum AL, Bayerdorffer E, Meining A, Stolte M, Borsch G 1997. Curing Helicobacter pylori infection in patients with duodenal ulcer may provoke reflux esophagitis. Gastroenterology 112:1442–47
    [Google Scholar]
  131. 131. 
    Fallone CA, Barkun AN, Friedman G, Mayrand S, Loo V et al. 2000. Is Helicobacter pylori eradication associated with gastroesophageal reflux disease. Am. J. Gastroenterol. 95:914–20
    [Google Scholar]
  132. 132. 
    Vakil N, Talley NJ, Stolte M, Sundin M, Junghard O, Bolling-Sternevald E 2006. Patterns of gastritis and the effect of eradicating Helicobacter pylori on gastro-oesophageal reflux disease in Western patients with non-ulcer dyspepsia. Aliment. Pharmacol. Ther. 24:55–63
    [Google Scholar]
  133. 133. 
    Mooney PD, Hadjivassiliou M, Sanders DS 2014. Coeliac disease. BMJ 348:g1561
    [Google Scholar]
  134. 134. 
    Ciacci C, Squillante A, Rendina D, Limauro S, Bencivenga C et al. 2000. Helicobacter pylori infection and peptic disease in coeliac disease. Eur. J. Gastroenterol. Hepatol. 12:1283–87
    [Google Scholar]
  135. 135. 
    Lebwohl B, Blaser MJ, Ludvigsson JF, Green PH, Rundle A et al. 2013. Decreased risk of celiac disease in patients with Helicobacter pylori colonization. Am. J. Epidemiol. 178:1721–30
    [Google Scholar]
  136. 136. 
    Chen Y, Blaser MJ. 2008. Helicobacter pylori colonization is inversely associated with childhood asthma. J. Infect. Dis. 198:553–60
    [Google Scholar]
  137. 137. 
    Reibman J, Marmor M, Filner J, Fernandez-Beros ME, Rogers L et al. 2008. Asthma is inversely associated with Helicobacter pylori status in an urban population. PLOS ONE 3:e4060
    [Google Scholar]
  138. 138. 
    Dunn BE, Cohen H, Blaser MJ 1997. Helicobacter pylori. Clin. Microbiol. Rev. 10:720–41
  139. 139. 
    Belgrave DC, Buchan I, Bishop C, Lowe L, Simpson A, Custovic A 2014. Trajectories of lung function during childhood. Am. J. Respir. Crit. Care Med. 189:1101–9
    [Google Scholar]
  140. 140. 
    Codolo G, Mazzi P, Amedei A, Del Prete G, Berton G et al. 2008. The neutrophil-activating protein of Helicobacter pylori down-modulates Th2 inflammation in ovalbumin-induced allergic asthma. Cell Microbiol 10:2355–63
    [Google Scholar]
  141. 141. 
    Arnold IC, Dehzad N, Reuter S, Martin H, Becher B et al. 2011. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J. Clin. Investig. 121:3088–93
    [Google Scholar]
  142. 142. 
    Fallone CA, Moss SF, Malfertheiner P 2019. Reconciliation of recent Helicobacter pylori treatment guidelines in a time of increasing resistance to antibiotics. Gastroenterology 157:44–53
    [Google Scholar]
  143. 143. 
    Savoldi A, Carrara E, Graham DY, Conti M, Tacconelli E 2018. Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization regions. Gastroenterology 155:1372–82.e17
    [Google Scholar]
  144. 144. 
    Phan TN, Tran VH, Tran TN, Le VA, Santona A et al. 2015. Antimicrobial resistance in Helicobacter pylori: current situation and management strategy in Vietnam. J. Infect. Dev. Ctries. 9:609–13
    [Google Scholar]
  145. 145. 
    Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18:318–27
    [Google Scholar]
  146. 146. 
    Malfertheiner P, Megraud F, O'Morain CA, Gisbert JP, Kuipers EJ et al. 2017. Management of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report. Gut 66:6–30
    [Google Scholar]
  147. 147. 
    Graham DY, Lu H, Dore MP 2019. Relative potency of proton-pump inhibitors, Helicobacter pylori therapy cure rates, and meaning of double-dose PPI. Helicobacter 24:e12554
    [Google Scholar]
  148. 148. 
    Sherwood PV, Wibawa JI, Atherton JC, Jordan N, Jenkins D et al. 2002. Impact of acid secretion, gastritis, and mucus thickness on gastric transfer of antibiotics in rats. Gut 51:490–95
    [Google Scholar]
  149. 149. 
    McNulty CA, Gearty JC, Crump B, Davis M, Donovan IA et al. 1986. Campylobacterpyloridis and associated gastritis: investigator blind, placebo controlled trial of bismuth salicylate and erythromycin ethylsuccinate. BMJ 293:645–49
    [Google Scholar]
  150. 150. 
    Walduck AK, Raghavan S. 2019. Immunity and vaccine development against Helicobacter pylori. Adv. Exp. Med. . Biol 1149:257–75
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-032520-024949
Loading
/content/journals/10.1146/annurev-pathol-032520-024949
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error