1932

Abstract

Over the past three to four decades, the molecular pathogenesis of gastrointestinal stromal tumors (GISTs) has been elucidated in great detail. In this review, we discuss the biological genesis of GISTs, identification of the various primary activating driver mutations (focusing on and ), oncogene addiction and targeted therapies with imatinib and other tyrosine kinase inhibitors, and the subsequent characterization of the various mechanisms of drug resistance. We illustrate how GIST has become a quintessential paradigm for personalized medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042220-021510
2022-01-24
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathol-042220-021510.html?itemId=/content/journals/10.1146/annurev-pathol-042220-021510&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ramón y Cajal S 1911. Histologie du système nerveux de l'homme et des vertébrés Paris: Maloine
  2. 2. 
    Thuneberg L. 1982. Interstitial cells of Cajal: intestinal pacemaker cells?. Adv. Anat. Embryol. Cell Biol. 71:1–130
    [Google Scholar]
  3. 3. 
    Langton P, Ward SM, Carl A, Norell MA, Sanders KM 1989. Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. PNAS 86:187280–84
    [Google Scholar]
  4. 4. 
    Besmer P, Murphy JE, George PC, Qiu FH, Bergold PJ et al. 1986. A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 320:6061415–21
    [Google Scholar]
  5. 5. 
    Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S et al. 1987. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6:113341–51
    [Google Scholar]
  6. 6. 
    Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH et al. 1990. Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63:1213–24
    [Google Scholar]
  7. 7. 
    Blume-Jensen P, Claesson-Welsh L, Siegbahn A, Zsebo KM, Westermark B, Heldin CH 1991. Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis. EMBO J 10:134121–28
    [Google Scholar]
  8. 8. 
    Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S et al. 1992. Requirement of c-kit for development of intestinal pacemaker system. Development 116:2369–75
    [Google Scholar]
  9. 9. 
    Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM 1995. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res 280:197–111
    [Google Scholar]
  10. 10. 
    Komuro T, Zhou DS. 1996. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig small intestine. J. Auton. Nerv. Syst. 61:169–74
    [Google Scholar]
  11. 11. 
    Miettinen M, Lasota J. 2001. Gastrointestinal stromal tumors—definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch 438:11–12
    [Google Scholar]
  12. 12. 
    Ranchod M, Kempson RL. 1977. Smooth muscle tumors of the gastrointestinal tract and retroperitoneum: a pathologic analysis of 100 cases. Cancer 39:1255–62
    [Google Scholar]
  13. 13. 
    Mazur MT, Clark HB. 1983. Gastric stromal tumors. Reappraisal of histogenesis. Am. J. Surg. Pathol. 7:6507–19
    [Google Scholar]
  14. 14. 
    Walker P, Dvorak AM. 1986. Gastrointestinal autonomic nerve (GAN) tumor. Ultrastructural evidence for a newly recognized entity. Arch. Pathol. Lab. Med. 110:4309–16
    [Google Scholar]
  15. 15. 
    Kindblom LG, Remotti HE, Aldenborg F, Meis-Kindblom JM. 1998. Gastrointestinal pacemaker cell tumor (GIPACT): Gastrointestinal stromal tumors show phenotypic characteristics of interstitial cells of Cajal. Am. J. Pathol. 152:1259–69
    [Google Scholar]
  16. 16. 
    Sarlomo-Rikala M, Kovatich AJ, Barusevicius A, Miettinen M. 1998. CD-117: a sensitive marker for gastrointestinal stromal tumor more specific than CD34. Mod. Pathol. 11:728–34
    [Google Scholar]
  17. 17. 
    Sircar K, Hewlett BR, Huizinga JD, Chorneyko K, Berezin I, Riddell RH. 1999. Interstitial cells of Cajal as precursors of gastrointestinal stromal tumors. Am. J. Surg. Pathol. 23:377–89
    [Google Scholar]
  18. 18. 
    Kurahashi M, Mutafova-Yambolieva V, Koh SD, Sanders KM. 2014. Platelet-derived growth factor receptor-α-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. Am. J. Physiol. Cell Physiol. 307:C561–70
    [Google Scholar]
  19. 19. 
    Stenman G, Eriksson A, Claesson-Welsh L. 1989. Human PDGFA receptor gene maps to the same region on chromosome 4 as the KIT oncogene. Genes Chromosomes Cancer 1:2155–58
    [Google Scholar]
  20. 20. 
    Roberts WM, Look AT, Roussel MF, Sherr CJ. 1988. Tandem linkage of human CSF-1 receptor (c-fms) and PDGF receptor genes. Cell 55:4655–61
    [Google Scholar]
  21. 21. 
    Pawson T. 2002. Regulation and targets of receptor tyrosine kinases. Eur. J. Cancer 38:Suppl. 5S3–10
    [Google Scholar]
  22. 22. 
    Lemmon MA, Schlessinger J. 2010. Cell signaling by receptor tyrosine kinases. Cell 141:71117–34
    [Google Scholar]
  23. 23. 
    Ma Y, Cunningham ME, Wang X, Ghosh I, Regan L, Longley BJ 1999. Inhibition of spontaneous receptor phosphorylation by residues in a putative α-helix in the KIT intracellular juxtamembrane region. J. Biol. Chem. 274:1913399–402
    [Google Scholar]
  24. 24. 
    Chan PM, Ilangumaran S, La Rose J, Chakrabartty A, Rottapel R 2003. Autoinhibition of the Kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol. Cell. Biol. 23:93067–78
    [Google Scholar]
  25. 25. 
    Mol CD, Dougan DR, Schneider TR, Skene RJ, Michelle K et al. 2004. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J. Biol. Chem. 279:3031655–63
    [Google Scholar]
  26. 26. 
    Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T et al. 1998. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–80
    [Google Scholar]
  27. 27. 
    Rubin BP, Singer S, Tsao C, Duensing A, Lux ML et al. 2001. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 61:8118–21
    [Google Scholar]
  28. 28. 
    Corless CL, McGreevey L, Town A, Schroeder A, Bainbridge T et al. 2004. KIT gene deletions at the intron 10–exon 11 boundary in GI stromal tumors. J. Mol. Diagn. 6:4366–70
    [Google Scholar]
  29. 29. 
    Chen LL, Sabripour M, Wu EF, Prieto VG, Fuller GN, Frazer ML. 2005. A mutation-created novel intra-exonic pre-mRNA splice site causes constitutive activation of KIT in human gastrointestinal stromal tumors. Oncogene 24:264271–80
    [Google Scholar]
  30. 30. 
    Lasota J, Wozniak A, Sarlomo-Rikala M, Rys J, Kordek R et al. 2000. Mutations in exons 9 and 13 of KIT gene are rare events in gastrointestinal stromal tumors. A study of 200 cases. Am. J. Pathol. 157:41091–95
    [Google Scholar]
  31. 31. 
    Antonescu CR, Sommer G, Sarran L, Tschernyavsky SJ, Riedel E et al. 2003. Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin. Cancer Res. 9:93329–37
    [Google Scholar]
  32. 32. 
    Lux ML, Rubin BP, Biase TL, Chen CJ, Maclure T et al. 2000. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am. J. Pathol. 156:3791–95
    [Google Scholar]
  33. 33. 
    Hirota S, Nishida T, Isozaki K, Taniguchi M, Nakamura J et al. 2001. Gain-of-function mutation at the extracellular domain of KIT in gastrointestinal stromal tumours. J. Pathol. 193:4505–10
    [Google Scholar]
  34. 34. 
    Rubin BP, Antonescu CR, Scott-Browne JP, Comstock ML, Gu Y et al. 2005. A knock-in mouse model of gastrointestinal stromal tumor harboring Kit K641E. Cancer Res 65:156631–39
    [Google Scholar]
  35. 35. 
    Sommer G, Agosti V, Ehlers I, Rossi F, Corbacioglu S et al. 2003. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. PNAS 100:116706–11
    [Google Scholar]
  36. 36. 
    Hirota S, Ohashi A, Nishida T, Isozaki K, Kinoshita K et al. 2003. Gain-of-function mutations of platelet-derived growth factor receptor α gene in gastrointestinal stromal tumors. Gastroenterology 125:3660–67
    [Google Scholar]
  37. 37. 
    Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ et al. 2003. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299:5607708–10
    [Google Scholar]
  38. 38. 
    Corless CL, Schroeder A, Griffith D, Town A, McGreevey L 2005. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J. Clin. Oncol. 23:235357–64
    [Google Scholar]
  39. 39. 
    Rubin BP, Heinrich MC, Corless CL. 2007. Gastrointestinal stromal tumour. Lancet 369:95741731–41
    [Google Scholar]
  40. 40. 
    Hayashi Y, Bardsley MR, Toyomasu Y, Milosavljevic S, Gajdos GB et al. 2015. Platelet-derived growth factor receptor-α regulates proliferation of gastrointestinal stromal tumor cells with mutations in KIT by stabilizing ETV1. Gastroenterology 149:2420–32.e16
    [Google Scholar]
  41. 41. 
    Wardelmann E, Neidt I, Bierhoff E, Manegold C, Fischer HP et al. 2002. c-kit mutations in gastrointestinal stromal tumors occur preferentially in the spindle rather than in the epithelioid cell variant. Mod. Pathol. 15:2125–36
    [Google Scholar]
  42. 42. 
    Penzel R, Aulmann S, Moock M, Schwarzbach M, Rieker RJ, Mechtersheimer G. 2005. The location of KIT and PDGFRA gene mutations in gastrointestinal stromal tumours is site and phenotype associated. J. Clin. Pathol. 58:6634–39
    [Google Scholar]
  43. 43. 
    Wardelmann E, Hrychyk A, Merkelbach-Bruse S, Pauls K, Goldstein J et al. 2004. Association of platelet-derived growth factor receptor α mutations with gastric primary site and epithelioid or mixed cell morphology in gastrointestinal stromal tumors. J. Mol. Diagn. 6:3197–204
    [Google Scholar]
  44. 44. 
    Wasag B, Debiec-Rychter M, Pauwels P, Stul M, Vranchx H et al. 2004. Differential expression of KIT/PDGFRA mutant isoforms in epithelioid and mixed variants of gastrointestinal stromal tumors depends predominantly on the tumor site. Mod. Pathol. 17:8889–94
    [Google Scholar]
  45. 45. 
    West RB, Corless CL, Chen X, Rubin BP, Subramanian S et al. 2004. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am. J. Pathol. 165:1107–13
    [Google Scholar]
  46. 46. 
    Espinosa I, Lee CH, Kim MK, Rouse BT, Subramanian S et al. 2008. A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am. J. Surg. Pathol. 32:2210–18
    [Google Scholar]
  47. 47. 
    Liegl B, Hornick JL, Corless CL, Fletcher CD. 2009. Monoclonal antibody DOG1.1 shows higher sensitivity than KIT in the diagnosis of gastrointestinal stromal tumors, including unusual subtypes. Am. J. Surg. Pathol. 33:3437–46
    [Google Scholar]
  48. 48. 
    Hirota S, Nishida T, Isozaki K, Taniguchi M, Nishikawa K et al. 2002. Familial gastrointestinal stromal tumors associated with dysphagia and novel type germline mutation of KIT gene. Gastroenterology 122:51493–99
    [Google Scholar]
  49. 49. 
    Maeyama H, Hidaka E, Ota H, Minami S, Kajiyama M et al. 2001. Familial gastrointestinal stromal tumor with hyperpigmentation: association with a germline mutation of the c-kit gene. Gastroenterology 120:1210–15
    [Google Scholar]
  50. 50. 
    Nishida T, Hirota S, Taniguchi M, Hashimoto K, Isozaki K et al. 1998. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat. Genet. 19:4323–24
    [Google Scholar]
  51. 51. 
    Li FP, Fletcher JA, Heinrich MC, Garber JE, Sallan SE et al. 2005. Familial gastrointestinal stromal tumor syndrome: phenotypic and molecular features in a kindred. J. Clin. Oncol. 23:122735–43
    [Google Scholar]
  52. 52. 
    Chompret A, Kannengiesser C, Barrois M, Terrier P, Dahan P et al. 2004. PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology 126:1318–21
    [Google Scholar]
  53. 53. 
    Hartmann K, Wardelmann E, Ma Y, Merkelbach-Bruse S, Preussner LM et al. 2005. Novel germline mutation of KIT associated with familial gastrointestinal stromal tumors and mastocytosis. Gastroenterology 129:31042–46
    [Google Scholar]
  54. 54. 
    Thalheimer A, Schlemmer M, Bueter M, Merkelbach-Bruse S, Schildhaus HU et al. 2008. Familial gastrointestinal stromal tumors caused by the novel KIT exon 17 germline mutation N822Y. Am. J. Surg. Pathol. 32:101560–65
    [Google Scholar]
  55. 55. 
    de Raedt T, Cools J, Debiec-Rychter M, Brems H, Mentens N et al. 2006. Intestinal neurofibromatosis is a subtype of familial GIST and results from a dominant activating mutation in PDGFRA. Gastroenterology 131:61907–12
    [Google Scholar]
  56. 56. 
    Nowell PC. 1962. The minute chromosome (Phl) in chronic granulocytic leukemia. Blut 8:65–66
    [Google Scholar]
  57. 57. 
    Rowley JD. 1973. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:5405290–93
    [Google Scholar]
  58. 58. 
    de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A et al. 1982. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300:5894765–67
    [Google Scholar]
  59. 59. 
    Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. 1985. Structural organization of the bcr gene and its role in the Ph′ translocation. Nature 315:6022758–61
    [Google Scholar]
  60. 60. 
    Witte ON, Dasgupta A, Baltimore D. 1980. Abelson murine leukaemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature 283:5750826–31
    [Google Scholar]
  61. 61. 
    Witte ON, Goff S, Rosenberg N, Baltimore D. 1980. A transformation-defective mutant of Abelson murine leukemia virus lacks protein kinase activity. PNAS 77:84993–97
    [Google Scholar]
  62. 62. 
    Lugo TG, Pendergast AM, Muller AJ, Witte ON. 1990. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:49461079–82
    [Google Scholar]
  63. 63. 
    Daley GQ, Van Etten RA, Baltimore D. 1990. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:4944824–30
    [Google Scholar]
  64. 64. 
    Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. 1990. Acute leukaemia in bcr/abl transgenic mice. Nature 344:6263251–53
    [Google Scholar]
  65. 65. 
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM et al. 1996. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2:5561–66
    [Google Scholar]
  66. 66. 
    Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J et al. 1997. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 90:124947–52
    [Google Scholar]
  67. 67. 
    O'Dwyer ME, Druker BJ. 2000. STI571: an inhibitor of the BCR-ABL tyrosine kinase for the treatment of chronic myelogenous leukaemia. Lancet Oncol 1:207–11
    [Google Scholar]
  68. 68. 
    Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E et al. 2001. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344:141031–37
    [Google Scholar]
  69. 69. 
    Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. 2000. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96:3925–32
    [Google Scholar]
  70. 70. 
    Tuveson DA, Willis NA, Jacks T, Griffin JD, Singer S et al. 2001. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 20:365054–58
    [Google Scholar]
  71. 71. 
    Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P et al. 2001. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med. 344:141052–56
    [Google Scholar]
  72. 72. 
    Demetri GD. 2002. Identification and treatment of chemoresistant inoperable or metastatic GIST: experience with the selective tyrosine kinase inhibitor imatinib mesylate (STI571). Eur. J. Cancer 38:Suppl. 5S52–59
    [Google Scholar]
  73. 73. 
    Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B et al. 2002. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347:7472–80
    [Google Scholar]
  74. 74. 
    Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M et al. 2003. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 21:234342–49
    [Google Scholar]
  75. 75. 
    Debiec-Rychter M, Sciot R, Le Cesne A, Schlemmer M, Hohenberger P et al. 2006. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur. J. Cancer 42:81093–103
    [Google Scholar]
  76. 76. 
    Heinrich MC, Owzar K, Corless CL, Hollis D, Borden EC et al. 2008. Correlation of kinase genotype and clinical outcome in the North American intergroup phase III trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 study by Cancer and Leukemia Group B and Southwest Oncology Group. J. Clin. Oncol. 26:335360–67
    [Google Scholar]
  77. 77. 
    Chen LL, Trent JC, Wu EF, Fuller GN, Ramdas L et al. 2004. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res. 64:175913–19
    [Google Scholar]
  78. 78. 
    Tamborini E, Bonadiman L, Greco A, Albertini V, Negri T et al. 2004. A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology 127:1294–99
    [Google Scholar]
  79. 79. 
    Antonescu CR, Besmer P, Guo T, Arkun K, Hom G et al. 2005. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin. Cancer Res. 11:114182–90
    [Google Scholar]
  80. 80. 
    Heinrich MC, Corless CL, Blanke CD, Demetri GD, Joensuu H et al. 2006. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J. Clin. Oncol. 24:294764–74
    [Google Scholar]
  81. 81. 
    Wardelmann E, Thomas N, Merkelbach-Bruse S, Pauls K, Speidel N et al. 2005. Acquired resistance to imatinib in gastrointestinal stromal tumours caused by multiple KIT mutations. Lancet Oncol 6:4249–51
    [Google Scholar]
  82. 82. 
    Wardelmann E, Merkelbach-Bruse S, Pauls K, Thomas N, Schildhaus HU et al. 2006. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin. Cancer Res. 12:61743–49
    [Google Scholar]
  83. 83. 
    Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH et al. 2006. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368:95441329–38
    [Google Scholar]
  84. 84. 
    Guo T, Hajdu M, Agaram NP, Shinoda H, Veach D et al. 2009. Mechanisms of sunitinib resistance in gastrointestinal stromal tumors harboring KITAY502-3ins mutation: an in vitro mutagenesis screen for drug resistance. Clin. Cancer Res. 15:226862–70
    [Google Scholar]
  85. 85. 
    Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P et al. 2013. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:9863295–302
    [Google Scholar]
  86. 86. 
    Serrano C, Mariño-Enríquez A, Tao DL, Ketzer J, Eilers G et al. 2019. Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours. Br. J. Cancer 120:6612–620
    [Google Scholar]
  87. 87. 
    Smith BD, Kaufman MD, Lu WP, Gupta A, Leary CB et al. 2019. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell 35:5738–51.e9
    [Google Scholar]
  88. 88. 
    Lostes-Bardaji MJ, García-Illescas D, Valverde C, Serrano C. 2021. Ripretinib in gastrointestinal stromal tumor: the long-awaited step forward. Ther. Adv. Med. Oncol. https://doi.org/10.1177/1758835920986498
    [Crossref] [Google Scholar]
  89. 89. 
    Janku F, Abdul Razak AR, Chi P, Heinrich MC, von Mehren M et al. 2020. Switch control inhibition of KIT and PDGFRA in patients with advanced gastrointestinal stromal tumor: a phase I study of ripretinib. J. Clin. Oncol. 38:283294–303
    [Google Scholar]
  90. 90. 
    Blay JY, Serrano C, Heinrich MC, Zalcberg J, Bauer S et al. 2020. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 21:7923–34
    [Google Scholar]
  91. 91. 
    Cassier PA, Fumagalli E, Rutkowski P, Schoffski P, Van Glabbeke M et al. 2012. Outcome of patients with platelet-derived growth factor receptor alpha-mutated gastrointestinal stromal tumors in the tyrosine kinase inhibitor era. Clin. Cancer Res. 18:164458–64
    [Google Scholar]
  92. 92. 
    Indio V, Astolfi A, Tarantino G, Urbini M, Patterson J et al. 2018. Integrated molecular characterization of gastrointestinal stromal tumors (GIST) harboring the rare D842V mutation in PDGFRA gene. Int. J. Mol. Sci. 19:3732
    [Google Scholar]
  93. 93. 
    Evans EK, Gardino AK, Kim JL, Hodous BL, Shutes A et al. 2017. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci. Transl. Med. 9:414eaao1690
    [Google Scholar]
  94. 94. 
    Klug LR, Kent JD, Heinrich MC 2018. Structural and clinical consequences of activation loop mutations in class III receptor tyrosine kinases. Pharmacol. Ther. 191:123–34
    [Google Scholar]
  95. 95. 
    Heinrich MC, Jones RL, von Mehren M, Schoffski P, Serrano C et al. 2020. Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial. Lancet Oncol. 21:7935–46
    [Google Scholar]
  96. 96. 
    Duensing A, Medeiros F, McConarty B, Joseph NE, Panigrahy D et al. 2004. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene 23:223999–4006
    [Google Scholar]
  97. 97. 
    Duensing A, Joseph NE, Medeiros F, Smith F, Hornick JL et al. 2004. Protein kinase C θ (PKCθ) expression and constitutive activation in gastrointestinal stromal tumors (GISTs). Cancer Res. 64:155127–31
    [Google Scholar]
  98. 98. 
    Zhu MJ, Ou WB, Fletcher CD, Cohen PS, Demetri GD, Fletcher JA 2007. KIT oncoprotein interactions in gastrointestinal stromal tumors: therapeutic relevance. Oncogene 26:446386–95
    [Google Scholar]
  99. 99. 
    Bauer S, Duensing A, Demetri GD, Fletcher JA 2007. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene 26:547560–68
    [Google Scholar]
  100. 100. 
    Pelczar P, Zibat A, van Dop WA, Heijamans J, Bleckmann A et al. 2013. Inactivation of Patched1 in mice leads to development of gastrointestinal stromal-like tumors that express Pdgfrα but not Kit. Gastroenterology 144:1134–44.e6
    [Google Scholar]
  101. 101. 
    Tang CM, Lee TE, Syed SA, Burgoyne AM, Leonard SY et al. 2016. Hedgehog pathway dysregulation contributes to the pathogenesis of human gastrointestinal stromal tumors via GLI-mediated activation of KIT expression. Oncotarget 7:4878226–41
    [Google Scholar]
  102. 102. 
    Javidi-Sharifi N, Traer E, Martinez J, Gupta A, Taguchi T et al. 2015. Crosstalk between KIT and FGFR3 promotes gastrointestinal stromal tumor cell growth and drug resistance. Cancer Res 75:5880–91
    [Google Scholar]
  103. 103. 
    Li F, Huynh H, Li X, Ruddy DA, Wang Y et al. 2015. FGFR-mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors. Cancer Discov 5:4438–51
    [Google Scholar]
  104. 104. 
    Cohen NA, Zeng S, Seifert AM, Sorenson EC, Greer JB et al. 2015. Pharmacological inhibition of KIT activates MET signaling in gastrointestinal stromal tumors. Cancer Res 75:102061–70
    [Google Scholar]
  105. 105. 
    Chi P, Chen Y, Zhang L, Guo X, Waongvipat J, Shamu T et al. 2010. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 467:7317849–53
    [Google Scholar]
  106. 106. 
    Ran L, Sirota I, Cao Z, Murphy D, Chen Y et al. 2015. Combined inhibition of MAP kinase and KIT signaling synergistically destabilizes ETV1 and suppresses GIST tumor growth. Cancer Discov. 5:3304–15
    [Google Scholar]
  107. 107. 
    Fumo G, Akin C, Metcalfe DD, Neckers L. 2004. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is effective in down-regulating mutated, constitutively activated KIT protein in human mast cells. Blood 103:31078–84
    [Google Scholar]
  108. 108. 
    Bauer S, Yu LK, Demetri GD, Fletcher JA 2006. Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal stromal tumor. Cancer Res. 66:189153–61
    [Google Scholar]
  109. 109. 
    Agaram NP, Wong GC, Guo T, Maki RG, Singer S et al. 2008. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer 47:10853–59
    [Google Scholar]
  110. 110. 
    Agaimy A, Terracciano LM, Dirnhofer S, Tornillo L, Hartmann A, Bihl MP. 2009. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J. Clin. Pathol. 62:7613–16
    [Google Scholar]
  111. 111. 
    Lasota J, Felisiak-Golabek A, Wasag B, Kowalik A, Zieba S et al. 2016. Frequency and clinicopathologic profile of PIK3CA mutant GISTs: molecular genetic study of 529 cases. Mod. Pathol. 29:3275–82
    [Google Scholar]
  112. 112. 
    Shi SS, Wu N, He Y, Wei X, Xia Q et al. 2017. EGFR gene mutation in gastrointestinal stromal tumours. Histopathology 71:4553–61
    [Google Scholar]
  113. 113. 
    Brenca M, Rossi S, Polano M, Gasparotto D, Zanatta L et al. 2016. Transcriptome sequencing identifies ETV6-NTRK3 as a gene fusion involved in GIST. J. Pathol. 238:4543–49
    [Google Scholar]
  114. 114. 
    Shi E, Chmielecki J, Tang CM, Wang K, Heinrich MC et al. 2016. FGFR1 and NTRK3 actionable alterations in “Wild-Type” gastrointestinal stromal tumors. J. Transl. Med. 14:1339
    [Google Scholar]
  115. 115. 
    Pantaleo MA, Astolfi A, Indio V, Moore R, Thiessen N et al. 2011. SDHA loss-of-function mutations in KITPDGFRA wild-type gastrointestinal stromal tumors identified by massively parallel sequencing. J. Natl. Cancer Inst. 103:12983–87
    [Google Scholar]
  116. 116. 
    Janeway KA, Kim SY, Lodish M, Nose V, Rustin P et al. 2011. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. PNAS 108:1314–18
    [Google Scholar]
  117. 117. 
    Carney JA, Sheps SG, Go VL, Gordon H. 1977. The triad of gastric leiomyosarcoma, functioning extra-adrenal paraganglioma and pulmonary chondroma. N. Engl. J. Med. 296:261517–18
    [Google Scholar]
  118. 118. 
    Haller F, Moskalev EA, Faucz FR, Barthelmeb S, Wiemann S et al. 2014. Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocr. Relat. Cancer 21:4567–77
    [Google Scholar]
  119. 119. 
    Killian JK, Kim SY, Miettinen M, Smith C, Merino M et al. 2013. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov 3:6648–57
    [Google Scholar]
  120. 120. 
    Carney JA, Stratakis CA. 2002. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am. J. Med. Genet. 108:2132–39
    [Google Scholar]
  121. 121. 
    McWhinney SR, Pasini B, Stratakis CAInt. Carney Triad Carney-Stratakis Syndr. Consort. 2007. Familial gastrointestinal stromal tumors and germ-line mutations. N. Engl. J. Med. 357:101054–56
    [Google Scholar]
  122. 122. 
    Miettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P, Lasota J 2011. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am. J. Surg. Pathol. 35:111712–21
    [Google Scholar]
  123. 123. 
    Gaal J, Stratakis CA, Carney JA, Ball ER, Korpershoek E et al. 2011. SDHB immunohistochemistry: a useful tool in the diagnosis of Carney-Stratakis and Carney triad gastrointestinal stromal tumors. Mod. Pathol. 24:1147–51
    [Google Scholar]
  124. 124. 
    Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG et al. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7:177–85
    [Google Scholar]
  125. 125. 
    Mei L, Smith SC, Faber AC, Trent J, Grossman SR 2018. Gastrointestinal stromal tumors: the GIST of precision medicine. Trends Cancer 4:174–91
    [Google Scholar]
  126. 126. 
    Andersson J, Sihto H, Meis-Kindblom JM, Joensuu H, Nupponen N, Kindblom LG. 2005. NF1-associated gastrointestinal stromal tumors have unique clinical, phenotypic, and genotypic characteristics. Am. J. Surg. Pathol. 29:91170–76
    [Google Scholar]
  127. 127. 
    Miettinen M, Fetsch JF, Sobin LH, Lasota J. 2006. Gastrointestinal stromal tumors in patients with neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am. J. Surg. Pathol. 30:190–96
    [Google Scholar]
  128. 128. 
    Kinoshita K, Hirota S, Isozaki K, Qhashi A, Nishida N et al. 2004. Absence of c-kit gene mutations in gastrointestinal stromal tumours from neurofibromatosis type 1 patients. J. Pathol. 202:180–85
    [Google Scholar]
  129. 129. 
    Yantiss RK, Rosenberg AE, Sarran L, Besmer P, Antonescu CR. 2005. Multiple gastrointestinal stromal tumors in type I neurofibromatosis: a pathologic and molecular study. Mod. Pathol. 18:4475–84
    [Google Scholar]
  130. 130. 
    Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J 1992. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356:6371713–15
    [Google Scholar]
  131. 131. 
    Zöller ME, Rembeck B, Odén A, Samuelsson M, Angervall L. 1997. Malignant and benign tumors in patients with neurofibromatosis type 1 in a defined Swedish population. Cancer 79:112125–31
    [Google Scholar]
  132. 132. 
    Belinsky MG, Rink L, Cai KQ, Capuzzi SJ, Hoang Y et al. 2015. Somatic loss of function mutations in neurofibromin 1 and MYC associated factor X genes identified by exome-wide sequencing in a wild-type GIST case. BMC Cancer 15:887
    [Google Scholar]
  133. 133. 
    Lartigue L, Neuville A, Lagarde P, Brulard C, Rutkowski P et al. 2015. Genomic index predicts clinical outcome of intermediate-risk gastrointestinal stromal tumours, providing a new inclusion criterion for imatinib adjuvant therapy. Eur. J. Cancer 51:175–83
    [Google Scholar]
  134. 134. 
    Heinrich MC, Patterson J, Beadling C, Wang Y, Debiec-Rychter M et al. 2019. Genomic aberrations in cell cycle genes predict progression of KIT-mutant gastrointestinal stromal tumors (GISTs). Clin. Sarcoma Res. 9:3
    [Google Scholar]
  135. 135. 
    Wang Y, Marino-Enriquez A, Bennett RR et al. 2014. Dystrophin is a tumor suppressor in human cancers with myogenic programs. Nat. Genet. 46:6601–6
    [Google Scholar]
  136. 136. 
    Schaefer IM, Wang Y, Liang CW, Bahri N, Quattrone A et al. 2017. MAX inactivation is an early event in GIST development that regulates p16 and cell proliferation. Nat. Commun. 8:14674
    [Google Scholar]
  137. 137. 
    Liang CW, Yang CY, Flavin R, Fletcher JA, Lu TP et al. 2021. Loss of SFRP1 expression is a key progression event in gastrointestinal stromal tumor pathogenesis. Hum. Pathol. 107:69–79
    [Google Scholar]
  138. 138. 
    Ordog T, Zörnig M, Hayashi Y. 2015. Targeting disease persistence in gastrointestinal stromal tumors. Stem Cells Transl. Med. 4:7702–7
    [Google Scholar]
  139. 139. 
    Lorincz A, Redelman D, Horváth VJ, Bardsley MR, Chen H, Ordög T 2008. Progenitors of interstitial cells of Cajal in the postnatal murine stomach. Gastroenterology 134:41083–93
    [Google Scholar]
  140. 140. 
    Bardsley MR, Horváth VJ, Asuzu DT, Lorincz A, Redelman D et al. 2010. Kitlow stem cells cause resistance to Kit/platelet-derived growth factor α inhibitors in murine gastrointestinal stromal tumors. Gastroenterology 139:3942–52
    [Google Scholar]
  141. 141. 
    Gupta A, Roy S, Lazar AJ, Wang WL, McAuliffe JC et al. 2010. Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). PNAS 107:3214333–38
    [Google Scholar]
  142. 142. 
    Liu Y, Perdreau SA, Chatterjee P, Wang L, Kuan SF, Duensing A 2008. Imatinib mesylate induces quiescence in gastrointestinal stromal tumor cells through the CDH1-SKP2-p27Kip1 signaling axis. Cancer Res. 68:219015–23
    [Google Scholar]
  143. 143. 
    Boichuk S, Parry JA, Makielski KR, Litovchick L, Baron JL et al. 2013. The DREAM complex mediates GIST cell quiescence and is a novel therapeutic target to enhance imatinib-induced apoptosis. Cancer Res 73:165120–29
    [Google Scholar]
  144. 144. 
    Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM et al. 2011. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med. 17:91094–100
    [Google Scholar]
  145. 145. 
    Vitiello GA, Bowler TG, Liu M, Medina BD, Zhang JQ et al. 2019. Differential immune profiles distinguish the mutational subtypes of gastrointestinal stromal tumor. J. Clin. Investig. 129:51863–77
    [Google Scholar]
  146. 146. 
    Liu M, Etherington MS, Hanna A, Medina BD, Vitiello GA et al. 2021. Oncogenic KIT modulates type I interferon-mediated antitumor immunity in GIST. Cancer Immunol. Res. 9:5542–53
    [Google Scholar]
  147. 147. 
    Bertucci F, Finetti P, Mamessier E, Pantaleo MA, Astolfi A et al. 2015. PDL1 expression is an independent prognostic factor in localized GIST. Oncoimmunology 4:5e1002729
    [Google Scholar]
  148. 148. 
    D'Angelo SP, Shoushtari AN, Keohan ML, Dickson MA, Gounder MM et al. 2017. Combined KIT and CTLA-4 blockade in patients with refractory GIST and other advanced sarcomas: a phase Ib study of dasatinib plus ipilimumab. Clin. Cancer Res. 23:122972–80
    [Google Scholar]
  149. 149. 
    Reilley MJ, Bailey A, Subbiah V, Janku F, Naing A et al. 2017. Phase I clinical trial of combination imatinib and ipilimumab in patients with advanced malignancies. J. Immunother. Cancer 5:35
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042220-021510
Loading
/content/journals/10.1146/annurev-pathol-042220-021510
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error