1932

Abstract

Polycystic liver disease (PLD) is a group of genetic disorders characterized by progressive development of cholangiocyte-derived fluid-filled hepatic cysts. PLD is the most common manifestation of autosomal dominant and autosomal recessive polycystic kidney diseases and rarely occurs as autosomal dominant PLD. The mechanisms of PLD are a sequence of the primary (mutations in PLD-causative genes), secondary (initiation of cyst formation), and tertiary (progression of hepatic cystogenesis) interconnected molecular and cellular events in cholangiocytes. Nonsurgical, surgical, and limited pharmacological treatment options are currently available for clinical management of PLD. Substantial evidence suggests that pharmacological targeting of the signaling pathways and intracellular processes involved in the progression of hepatic cystogenesis is beneficial for PLD. Many of these targets have been evaluated in preclinical and clinical trials. In this review, we discuss the genetic, molecular, and cellular mechanisms of PLD and clinical and preclinical treatment strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042320-121247
2022-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathol-042320-121247.html?itemId=/content/journals/10.1146/annurev-pathol-042320-121247&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Norio R. 1983. Polycystic disease of liver: an entity of its own or not?. Clin. Genet. 23:78–79
    [Google Scholar]
  2. 2. 
    Neijenhuis MK, Kievit W, Verheesen SM, D'Agnolo HM, Gevers TJ, Drenth JP 2018. Impact of liver volume on polycystic liver disease-related symptoms and quality of life. United Eur. . Gastroenterol. J. 6:81–88
    [Google Scholar]
  3. 3. 
    Barten TRM, Bernts LHP, Drenth JPH, Gevers TJG. 2020. New insights into targeting hepatic cystogenesis in autosomal dominant polycystic liver and kidney disease. Expert Opin. Ther. Targets 24:589–99
    [Google Scholar]
  4. 4. 
    van Aerts RMM, Kolkman M, Kievit W, Gevers TJG, Nevens F, Drenth JPH. 2018. Drug holiday in patients with polycystic liver disease treated with somatostatin analogues. Therap. Adv. Gastroenterol. 11: https://doi.org/10.1177/1756284818804784
    [Crossref] [Google Scholar]
  5. 5. 
    Masyuk TV, Masyuk AI, LaRusso NF. 2017. Therapeutic targets in polycystic liver disease. Curr. Drug Targets 18:950–57
    [Google Scholar]
  6. 6. 
    Abu-Wasel B, Walsh C, Keough V, Molinari M 2013. Pathophysiology, epidemiology, classification and treatment options for polycystic liver diseases. World J. Gastroenterol. 19:5775–86
    [Google Scholar]
  7. 7. 
    Masyuk T, Masyuk A, LaRusso N. 2009. Cholangiociliopathies: genetics, molecular mechanisms and potential therapies. Curr. Opin. Gastroenterol. 25:265–71
    [Google Scholar]
  8. 8. 
    Cornec-Le Gall E, Torres VE, Harris PC 2018. Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J. Am. Soc. Nephrol. 29:13–23
    [Google Scholar]
  9. 9. 
    van de Laarschot LFM, Drenth JPH. 2018. Genetics and mechanisms of hepatic cystogenesis. Biochim. Biophys. Acta Mol. Basis Dis. 1864:1491–97
    [Google Scholar]
  10. 10. 
    Lee-Law PY, van de Laarschot LFM, Banales JM, Drenth JPH. 2019. Genetics of polycystic liver diseases. Curr. Opin. Gastroenterol. 35:65–72
    [Google Scholar]
  11. 11. 
    Gevers TJ, Drenth JP. 2013. Diagnosis and management of polycystic liver disease. Nat. Rev. Gastroenterol. Hepatol. 10:101–8
    [Google Scholar]
  12. 12. 
    Tahvanainen E, Tahvanainen P, Kaariainen H, Hockerstedt K. 2005. Polycystic liver and kidney diseases. Ann. Med. 37:546–55
    [Google Scholar]
  13. 13. 
    Lasagni A, Cadamuro M, Morana G, Fabris L, Strazzabosco M. 2021. Fibrocystic liver disease: novel concepts and translational perspectives. Transl. Gastroenterol. Hepatol. 6:26
    [Google Scholar]
  14. 14. 
    Hoevenaren IA, Wester R, Schrier RW, McFann K, Doctor RB et al. 2008. Polycystic liver: clinical characteristics of patients with isolated polycystic liver disease compared with patients with polycystic liver and autosomal dominant polycystic kidney disease. Liver Int 28:264–70
    [Google Scholar]
  15. 15. 
    Van Keimpema L, De Koning DB, Van Hoek B, Van Den Berg AP, Van Oijen MG et al. 2011. Patients with isolated polycystic liver disease referred to liver centres: clinical characterization of 137 cases. Liver Int 31:92–98
    [Google Scholar]
  16. 16. 
    Qian Q. 2010. Isolated polycystic liver disease. Adv. Chronic Kidney Dis. 17:181–89
    [Google Scholar]
  17. 17. 
    Waanders E, van Keimpema L, Brouwer JT, van Oijen MG, Aerts R et al. 2009. Carbohydrate antigen 19-9 is extremely elevated in polycystic liver disease. Liver Int 29:1389–95
    [Google Scholar]
  18. 18. 
    Hogan MC, Masyuk TV, Page L, Holmes DR3rd, Li X et al. 2012. Somatostatin analog therapy for severe polycystic liver disease: results after 2 years. Nephrol. Dial. Transplant. 27:3532–39
    [Google Scholar]
  19. 19. 
    van Keimpema L, Nevens F, Vanslembrouck R, van Oijen MG, Hoffmann AL et al. 2009. Lanreotide reduces the volume of polycystic liver: a randomized, double-blind, placebo-controlled trial. Gastroenterology 137:1661–68.e2
    [Google Scholar]
  20. 20. 
    Hogan MC, Masyuk TV, Page LJ, Kubly VJ, Bergstralh EJ et al. 2010. Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J. Am. Soc. Nephrol. 21:1052–61
    [Google Scholar]
  21. 21. 
    Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. 2018. Polycystic kidney disease. Nat. Rev. Dis. Primers 4:50
    [Google Scholar]
  22. 22. 
    Masyuk TV, Masyuk AI, LaRusso NF. 2018. Polycystic liver disease: the interplay of genes causative for hepatic and renal cystogenesis. Hepatology 67:2462–64
    [Google Scholar]
  23. 23. 
    Perugorria MJ, Masyuk TV, Marin JJ, Marzioni M, Bujanda L et al. 2014. Polycystic liver diseases: advanced insights into the molecular mechanisms. Nat. Rev. Gastroenterol. Hepatol. 11:750–61
    [Google Scholar]
  24. 24. 
    Boerrigter MM, Bongers E, Lugtenberg D, Nevens F, Drenth JPH. 2021. Polycystic liver disease genes: practical considerations for genetic testing. Eur. J. Med. Genet. 64:104160
    [Google Scholar]
  25. 25. 
    Harris PC, Torres VE 2002. Polycystic kidney disease, autosomal dominant. In GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean et al. Seattle, WA: Univ. Wash.
    [Google Scholar]
  26. 26. 
    Mikolajczyk AE, Te HS, Chapman AB. 2017. Gastrointestinal manifestations of autosomal-dominant polycystic kidney disease. Clin. Gastroenterol. Hepatol. 15:17–24
    [Google Scholar]
  27. 27. 
    Sussman CR, Wang X, Chebib FT, Torres VE. 2020. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell. Signal. 72:109649
    [Google Scholar]
  28. 28. 
    Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM et al. 2016. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am. J. Hum. Genet. 98:1193–207
    [Google Scholar]
  29. 29. 
    Besse W, Choi J, Ahram D, Mane S, Sanna-Cherchi S et al. 2018. A noncoding variant in GANAB explains isolated polycystic liver disease (PCLD) in a large family. Hum. Mutat. 39:378–82
    [Google Scholar]
  30. 30. 
    Besse W, Dong K, Choi J, Punia S, Fedeles SV et al. 2017. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J. Clin. Investig. 127:1772–85
    [Google Scholar]
  31. 31. 
    Cornec-Le Gall E, Olson RJ, Besse W, Heyer CM, Gainullin VG et al. 2018. Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease. Am. J. Hum. Genet. 102:832–44
    [Google Scholar]
  32. 32. 
    Besse W, Chang AR, Luo JZ, Triffo WJ, Moore BS et al. 2019. ALG9 mutation carriers develop kidney and liver cysts. J. Am. Soc. Nephrol. 30:2091–102
    [Google Scholar]
  33. 33. 
    Cornec-Le Gall E, Alam A, Perrone RD 2019. Autosomal dominant polycystic kidney disease. Lancet 393:919–35
    [Google Scholar]
  34. 34. 
    Chebib FT, Hogan MC, El-Zoghby ZM, Irazabal MV, Senum SR et al. 2017. Autosomal dominant polycystic kidney patients may be predisposed to various cardiomyopathies. Kidney Int. Rep. 2:913–23
    [Google Scholar]
  35. 35. 
    Lu H, Galeano MCR, Ott E, Kaeslin G, Kausalya PJ et al. 2017. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat. Genet. 49:1025–34
    [Google Scholar]
  36. 36. 
    Buscher R, Buscher AK, Weber S, Mohr J, Hegen B et al. 2014. Clinical manifestations of autosomal recessive polycystic kidney disease (ARPKD): kidney-related and non-kidney-related phenotypes. Pediatr. Nephrol. 29:1915–25
    [Google Scholar]
  37. 37. 
    Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T et al. 2002. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am. J. Hum. Genet. 70:1305–17
    [Google Scholar]
  38. 38. 
    Cnossen WR, te Morsche RH, Hoischen A, Gilissen C, Chrispijn M et al. 2014. Whole-exome sequencing reveals LRP5 mutations and canonical Wnt signaling associated with hepatic cystogenesis. PNAS 111:5343–48
    [Google Scholar]
  39. 39. 
    Cnossen WR, te Morsche RH, Hoischen A, Gilissen C, Venselaar H et al. 2016. LRP5 variants may contribute to ADPKD. Eur. J. Hum. Genet. 24:237–42
    [Google Scholar]
  40. 40. 
    Drenth JP, te Morsche RH, Smink R, Bonifacino JS, Jansen JB. 2003. Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat. Genet. 33:345–47
    [Google Scholar]
  41. 41. 
    Drenth JP, Martina JA, te Morsche RH, Jansen JB, Bonifacino JS. 2004. Molecular characterization of hepatocystin, the protein that is defective in autosomal dominant polycystic liver disease. Gastroenterology 126:1819–27
    [Google Scholar]
  42. 42. 
    Davila S, Furu L, Gharavi AG, Tian X, Onoe T et al. 2004. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat. Genet. 36:575–77
    [Google Scholar]
  43. 43. 
    Waanders E, te Morsche RH, de Man RA, Jansen JB, Drenth JP. 2006. Extensive mutational analysis of PRKCSH and SEC63 broadens the spectrum of polycystic liver disease. Hum. Mutat. 27:830
    [Google Scholar]
  44. 44. 
    Masyuk TV, Huang BQ, Masyuk AI, Ritman EL, Torres VE et al. 2004. Biliary dysgenesis in the PCK rat, an orthologous model of autosomal recessive polycystic kidney disease. Am. J. Pathol. 165:1719–30
    [Google Scholar]
  45. 45. 
    Stroope A, Radtke B, Huang B, Masyuk T, Torres V et al. 2010. Hepato-renal pathology in Pkd2ws25/− mice, an animal model of autosomal dominant polycystic kidney disease. Am. J. Pathol. 176:31282–91
    [Google Scholar]
  46. 46. 
    Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV et al. 2008. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 295:G725–34
    [Google Scholar]
  47. 47. 
    Masyuk AI, Masyuk TV, LaRusso NF. 2008. Cholangiocyte primary cilia in liver health and disease. Dev. Dyn. 237:2007–12
    [Google Scholar]
  48. 48. 
    Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF. 2006. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131:911–20
    [Google Scholar]
  49. 49. 
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P et al. 2003. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33:129–37
    [Google Scholar]
  50. 50. 
    Douguet D, Patel A, Honore E 2019. Structure and function of polycystins: insights into polycystic kidney disease. Nat. Rev. Nephrol. 15:412–22
    [Google Scholar]
  51. 51. 
    Masyuk TV, Lee SO, Radtke BN, Stroope AJ, Huang B et al. 2014. Centrosomal abnormalities characterize human and rodent cystic cholangiocytes and are associated with Cdc25A overexpression. Am. J. Pathol. 184:110–21
    [Google Scholar]
  52. 52. 
    Calvet JP 2015. The role of calcium and cyclic AMP in PKD. Polycystic Kidney Disease X Li 169–96 Brisbane, Aust: Codon
    [Google Scholar]
  53. 53. 
    Masyuk TV, Masyuk AI, LaRusso NF. 2015. TGR5 in the cholangiociliopathies. Dig. Dis. 33:420–25
    [Google Scholar]
  54. 54. 
    Masyuk TV, Masyuk AI, Lorenzo Pisarello M, Howard BN, Huang BQ et al. 2017. TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Gαs signaling. Hepatology 66:1197–218
    [Google Scholar]
  55. 55. 
    Munoz-Garrido P, Marin JJ, Perugorria MJ, Urribarri AD, Erice O et al. 2015. Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease. J. Hepatol. 63:952–61
    [Google Scholar]
  56. 56. 
    Masyuk AI, Masyuk TV, Lorenzo Pisarello MJ, Ding JF, Loarca L et al. 2018. Cholangiocyte autophagy contributes to hepatic cystogenesis in polycystic liver disease and represents a potential therapeutic target. Hepatology 67:1088–108
    [Google Scholar]
  57. 57. 
    Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A et al. 2008. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J. Clin. Investig. 118:3714–24
    [Google Scholar]
  58. 58. 
    Masyuk T, Masyuk A, LaRusso N. 2009. MicroRNAs in cholangiociliopathies. Cell Cycle 8:1324–28
    [Google Scholar]
  59. 59. 
    Gigot JF, Jadoul P, Que F, Van Beers BE, Etienne J et al. 1997. Adult polycystic liver disease: Is fenestration the most adequate operation for long-term management?. Ann. Surg. 225:286–94
    [Google Scholar]
  60. 60. 
    Schnelldorfer T, Torres VE, Zakaria S, Rosen CB, Nagorney DM. 2009. Polycystic liver disease: a critical appraisal of hepatic resection, cyst fenestration, and liver transplantation. Ann. Surg. 250:112–18
    [Google Scholar]
  61. 61. 
    van Aerts RMM, van de Laarschot LFM, Banales JM, Drenth JPH. 2018. Clinical management of polycystic liver disease. J. Hepatol. 68:827–37
    [Google Scholar]
  62. 62. 
    Torres VE. 2007. Treatment of polycystic liver disease: One size does not fit all. Am. J. Kidney Dis. 49:725–28
    [Google Scholar]
  63. 63. 
    Drenth JP, Chrispijn M, Nagorney DM, Kamath PS, Torres VE. 2010. Medical and surgical treatment options for polycystic liver disease. Hepatology 52:2223–30
    [Google Scholar]
  64. 64. 
    Takenaka T, Miura S, Kitajima M 2020. The management of polycystic liver disease by tolvaptan. Clin. Mol. Hepatol. 26:70–73
    [Google Scholar]
  65. 65. 
    Griffiths J, Mills MT, Ong AC. 2020. Long-acting somatostatin analogue treatments in autosomal dominant polycystic kidney disease and polycystic liver disease: a systematic review and meta-analysis. BMJ Open 10:e032620
    [Google Scholar]
  66. 66. 
    Masyuk TV, Masyuk AI, Torres VE, Harris PC, Larusso NF. 2007. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology 132:1104–16
    [Google Scholar]
  67. 67. 
    Masyuk TV, Radtke BN, Stroope AJ, Banales JM, Gradilone SA et al. 2013. Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases. Hepatology 58:409–21
    [Google Scholar]
  68. 68. 
    Chrispijn M, Nevens F, Gevers TJ, Vanslembrouck R, van Oijen MG et al. 2012. The long-term outcome of patients with polycystic liver disease treated with lanreotide. Aliment Pharmacol. Ther. 35:266–74
    [Google Scholar]
  69. 69. 
    Gevers TJ, Hol JC, Monshouwer R, Dekker HM, Wetzels JF, Drenth JP. 2015. Effect of lanreotide on polycystic liver and kidneys in autosomal dominant polycystic kidney disease: an observational trial. Liver Int 35:1607–14
    [Google Scholar]
  70. 70. 
    Hogan MC, Masyuk T, Bergstralh E, Li B, Kremers WK et al. 2015. Efficacy of 4 years of octreotide long-acting release therapy in patients with severe polycystic liver disease. Mayo Clin. Proc. 90:1030–37
    [Google Scholar]
  71. 71. 
    Neijenhuis MK, Gevers TJ, Nevens F, Hogan MC, Torres VE et al. 2015. Somatostatin analogues improve health-related quality of life in polycystic liver disease: a pooled analysis of two randomised, placebo-controlled trials. Aliment Pharmacol. Ther. 42:591–98
    [Google Scholar]
  72. 72. 
    Pisani A, Sabbatini M, Imbriaco M, Riccio E, Rubis N et al. 2016. Long-term effects of octreotide on liver volume in patients with polycystic kidney and liver disease. Clin. Gastroenterol. Hepatol. 14:1022–30.e4
    [Google Scholar]
  73. 73. 
    Hogan MC, Chamberlin JA, Vaughan LE, Waits AL, Banks C et al. 2020. Pansomatostatin agonist pasireotide long-acting release for patients with autosomal dominant polycystic kidney or liver disease with severe liver involvement: a randomized clinical trial. Clin. J. Am. Soc. Nephrol. 15:1267–78
    [Google Scholar]
  74. 74. 
    Wijnands TFM, Gevers TJG, Lantinga MA, te Morsche RH, Schultze Kool LJ, Drenth JPH 2018. Pasireotide does not improve efficacy of aspiration sclerotherapy in patients with large hepatic cysts, a randomized controlled trial. Eur. Radiol. 28:2682–89
    [Google Scholar]
  75. 75. 
    Ren XS, Sato Y, Harada K, Sasaki M, Furubo S et al. 2014. Activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat. PLOS ONE 9:e87660
    [Google Scholar]
  76. 76. 
    Spirli C, Okolicsanyi S, Fiorotto R, Fabris L, Cadamuro M et al. 2010. Mammalian target of rapamycin regulates vascular endothelial growth factor-dependent liver cyst growth in polycystin-2-defective mice. Hepatology 51:1778–88
    [Google Scholar]
  77. 77. 
    Temmerman F, Chen F, Libbrecht L, Vander Elst I, Windmolders P et al. 2017. Everolimus halts hepatic cystogenesis in a rodent model of polycystic-liver-disease. World J. Gastroenterol. 23:5499–507
    [Google Scholar]
  78. 78. 
    Renken C, Fischer DC, Kundt G, Gretz N, Haffner D 2011. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol. Dial. Transplant. 26:92–100
    [Google Scholar]
  79. 79. 
    Qian Q, Du H, King BF, Kumar S, Dean PG et al. 2008. Sirolimus reduces polycystic liver volume in ADPKD patients. J. Am. Soc. Nephrol. 19:631–38
    [Google Scholar]
  80. 80. 
    Chrispijn M, Gevers TJ, Hol JC, Monshouwer R, Dekker HM, Drenth JP. 2013. Everolimus does not further reduce polycystic liver volume when added to long acting octreotide: results from a randomized controlled trial. J. Hepatol. 59:153–59
    [Google Scholar]
  81. 81. 
    Iijima T, Hoshino J, Suwabe T, Sumida K, Mise K et al. 2016. Ursodeoxycholic acid for treatment of enlarged polycystic liver. Ther. Apher. Dial. 20:73–78
    [Google Scholar]
  82. 82. 
    D'Agnolo HM, Kievit W, Takkenberg RB, Riano I, Bujanda L et al. 2016. Ursodeoxycholic acid in advanced polycystic liver disease: a phase 2 multicenter randomized controlled trial. J. Hepatol. 65:601–7
    [Google Scholar]
  83. 83. 
    Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ et al. 2007. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. PNAS 104:19138–43
    [Google Scholar]
  84. 84. 
    Gradilone SA, Masyuk TV, Huang BQ, Banales JM, Lehmann GL et al. 2010. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 139:304–14.e2
    [Google Scholar]
  85. 85. 
    Gradilone SA, Habringer S, Masyuk TV, Howard BN, Masyuk AI, Larusso NF. 2014. HDAC6 is overexpressed in cystic cholangiocytes and its inhibition reduces cystogenesis. Am. J. Pathol. 184:600–8
    [Google Scholar]
  86. 86. 
    Lorenzo Pisarello M, Masyuk TV, Gradilone SA, Masyuk AI, Ding JF et al. 2018. Combination of a histone deacetylase 6 inhibitor and a somatostatin receptor agonist synergistically reduces hepatorenal cystogenesis in an animal model of polycystic liver disease. Am. J. Pathol. 188:981–94
    [Google Scholar]
  87. 87. 
    Masyuk TV, Radtke BN, Stroope AJ, Banales JM, Masyuk AI et al. 2012. Inhibition of Cdc25A suppresses hepato-renal cystogenesis in rodent models of polycystic kidney and liver disease. Gastroenterology 142:622–33.e4
    [Google Scholar]
  88. 88. 
    Urribarri AD, Munoz-Garrido P, Perugorria MJ, Erice O, Merino-Azpitarte M et al. 2014. Inhibition of metalloprotease hyperactivity in cystic cholangiocytes halts the development of polycystic liver diseases. Gut 63:1658–67
    [Google Scholar]
  89. 89. 
    Santos-Laso A, Izquierdo-Sanchez L, Rodrigues PM, Huang BQ, Azkargorta M et al. 2020. Proteostasis disturbances and endoplasmic reticulum stress contribute to polycystic liver disease: new therapeutic targets. Liver Int 40:1670–85
    [Google Scholar]
  90. 90. 
    Lee-Law PY, Olaizola P, Caballero-Camino FJ, Izquierdo-Sanchez L, Rodrigues PM et al. 2021. Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models. J. Hepatol. 74:394–406
    [Google Scholar]
  91. 91. 
    Strazzabosco M, Fiorotto R, Melero S, Glaser S, Francis H et al. 2009. Differentially expressed adenylyl cyclase isoforms mediate secretory functions in cholangiocyte subpopulation. Hepatology 50:244–52
    [Google Scholar]
  92. 92. 
    Spirli C, Mariotti V, Villani A, Fabris L, Fiorotto R, Strazzabosco M. 2017. Adenylyl cyclase 5 links changes in calcium homeostasis to cAMP-dependent cyst growth in polycystic liver disease. J. Hepatol. 66:571–80
    [Google Scholar]
  93. 93. 
    Sato Y, Qiu J, Hirose T, Miura T, Sato Y et al. 2021. Metformin slows liver cyst formation and fibrosis in experimental model of polycystic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 320:4G464–73
    [Google Scholar]
  94. 94. 
    Spirli C, Okolicsanyi S, Fiorotto R, Fabris L, Cadamuro M et al. 2010. ERK1/2-dependent vascular endothelial growth factor signaling sustains cyst growth in polycystin-2 defective mice. Gastroenterology 138:360–71.e7
    [Google Scholar]
  95. 95. 
    Amura CR, Brodsky KS, Groff R, Gattone VH, Voelkel NF, Doctor RB. 2007. VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/−) mice. Am. J. Physiol. Cell Physiol. 293:C419–28
    [Google Scholar]
  96. 96. 
    Smithline ZB, Nikonova AS, Hensley HH, Cai KQ, Egleston BL et al. 2014. Inhibiting heat shock protein 90 (HSP90) limits the formation of liver cysts induced by conditional deletion of Pkd1 in mice. PLOS ONE 9:e114403
    [Google Scholar]
  97. 97. 
    Yoshihara D, Kurahashi H, Morita M, Kugita M, Hiki Y et al. 2011. PPAR-γ agonist ameliorates kidney and liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease. Am. J. Physiol. Ren. Physiol. 300:F465–74
    [Google Scholar]
  98. 98. 
    Yoshihara D, Kugita M, Sasaki M, Horie S, Nakanishi K et al. 2013. Telmisartan ameliorates fibrocystic liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease. PLOS ONE 8:e81480
    [Google Scholar]
  99. 99. 
    Lakhia R, Yheskel M, Flaten A, Quittner-Strom EB, Holland WL, Patel V 2018. PPARα agonist fenofibrate enhances fatty acid β-oxidation and attenuates polycystic kidney and liver disease in mice. Am. J. Physiol. Ren. Physiol. 314:F122–31
    [Google Scholar]
  100. 100. 
    Kugita M, Nishii K, Yamaguchi T, Suzuki A, Yuzawa Y et al. 2017. Beneficial effect of combined treatment with octreotide and pasireotide in PCK rats, an orthologous model of human autosomal recessive polycystic kidney disease. PLOS ONE 12:e0177934
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042320-121247
Loading
/content/journals/10.1146/annurev-pathol-042320-121247
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error