1932

Abstract

Triple-negative breast cancer (TNBC) encompasses a heterogeneous group of fundamentally different diseases with different histologic, genomic, and immunologic profiles, which are aggregated under this term because of their lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Massively parallel sequencing and other omics technologies have demonstrated the level of heterogeneity in TNBCs and shed light into the pathogenesis of this therapeutically challenging entity in breast cancer. In this review, we discuss the histologic and molecular classifications of TNBC, the genomic alterations these different tumor types harbor, and the potential impact of these alterations on the pathogenesis of these tumors. We also explore the role of the tumor microenvironment in the biology of TNBCs and its potential impact on therapeutic response. Dissecting the biology and understanding the therapeutic dependencies of each TNBC subtype will be essential to delivering on the promise of precision medicine for patients with triple-negative disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042420-093238
2022-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathol-042420-093238.html?itemId=/content/journals/10.1146/annurev-pathol-042420-093238&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brenton JD, Carey LA, Ahmed AA, Caldas C 2005. Molecular classification and molecular forecasting of breast cancer: ready for clinical application?. J. Clin. Oncol. 23:7350–60
    [Google Scholar]
  2. 2. 
    Foulkes WD, Smith IE, Reis-Filho JS. 2010. Triple-negative breast cancer. N. Engl. J. Med. 363:1938–48
    [Google Scholar]
  3. 3. 
    Reis-Filho JS, Pusztai L. 2011. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378:1812–23
    [Google Scholar]
  4. 4. 
    O'Brien KM, Cole SR, Tse CK, Perou CM, Carey LA et al. 2010. Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clin. Cancer Res. 16:6100–10
    [Google Scholar]
  5. 5. 
    Stevens KN, Vachon CM, Couch FJ. 2013. Genetic susceptibility to triple-negative breast cancer. Cancer Res 73:2025–30
    [Google Scholar]
  6. 6. 
    Mavaddat N, Peock S, Frost D, Ellis S, Platte R et al. 2013. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J. Natl. Cancer Inst. 105:812–22
    [Google Scholar]
  7. 7. 
    Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM et al. 2017. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317:2402–16
    [Google Scholar]
  8. 8. 
    Turner NC, Reis-Filho JS. 2013. Tackling the diversity of triple-negative breast cancer. Clin. Cancer Res. 19:6380–88
    [Google Scholar]
  9. 9. 
    Spring LM, Fell G, Arfe A, Sharma C, Greenup R et al. 2020. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis. Clin. Cancer Res. 26:2838–48
    [Google Scholar]
  10. 10. 
    Savas P, Loi S. 2020. Metastatic breast cancer: TIL it is too late. Clin. Cancer Res. 26:526–28
    [Google Scholar]
  11. 11. 
    Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH et al. 2020. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 21:44–59
    [Google Scholar]
  12. 12. 
    Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA et al. 2020. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 396:1817–28
    [Google Scholar]
  13. 13. 
    Denkert C, Liedtke C, Tutt A, von Minckwitz G. 2017. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet 389:2430–42
    [Google Scholar]
  14. 14. 
    Pareja F, Geyer FC, Marchio C, Burke KA, Weigelt B, Reis-Filho JS. 2016. Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer 2:16036
    [Google Scholar]
  15. 15. 
    Geyer FC, Pareja F, Weigelt B, Rakha E, Ellis IO et al. 2017. The spectrum of triple-negative breast disease: high- and low-grade lesions. Am. J. Pathol. 187:2139–51
    [Google Scholar]
  16. 16. 
    Reis-Filho JS, Tutt AN. 2008. Triple negative tumours: a critical review. Histopathology 52:108–18
    [Google Scholar]
  17. 17. 
    Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI et al. 2006. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod. Pathol. 19:264–71
    [Google Scholar]
  18. 18. 
    Reis-Filho JS, Milanezi F, Steele D, Savage K, Simpson PT et al. 2006. Metaplastic breast carcinomas are basal-like tumours. Histopathology 49:10–21
    [Google Scholar]
  19. 19. 
    Vincent-Salomon A, Gruel N, Lucchesi C, MacGrogan G, Dendale R et al. 2007. Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity. Breast Cancer Res 9:R24
    [Google Scholar]
  20. 20. 
    Weigelt B, Ng CK, Shen R, Popova T, Schizas M et al. 2015. Metastatic breast carcinomas display genomic and transcriptomic heterogeneity. Mod. Pathol. 28:340–51Erratum 2015.Metaplastic breast carcinomas display genomic and transcriptomic heterogeneity Mod. Pathol. 28:607
    [Google Scholar]
  21. 21. 
    Weisman PS, Ng CK, Brogi E, Eisenberg RE, Won HH et al. 2016. Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. Mod. Pathol. 29:476–88
    [Google Scholar]
  22. 22. 
    Mills AM, Gottlieb CE, Wendroth SM, Brenin CM, Atkins KA. 2016. Pure apocrine carcinomas represent a clinicopathologically distinct androgen receptor-positive subset of triple-negative breast cancers. Am. J. Surg. Pathol. 40:1109–16
    [Google Scholar]
  23. 23. 
    Newman LA, Reis-Filho JS, Morrow M, Carey LA, King TA 2015. The 2014 Society of Surgical Oncology Susan G. Komen for the Cure Symposium: triple-negative breast cancer. Ann. Surg. Oncol. 22:874–82
    [Google Scholar]
  24. 24. 
    Piscuoglio S, Ng CKY, Geyer FC, Burke KA, Cowell CF et al. 2017. Genomic and transcriptomic heterogeneity in metaplastic carcinomas of the breast. NPJ Breast Cancer 3:48
    [Google Scholar]
  25. 25. 
    Ng CKY, Piscuoglio S, Geyer FC, Burke KA, Pareja F et al. 2017. The landscape of somatic genetic alterations in metaplastic breast carcinomas. Clin. Cancer Res. 23:3859–70
    [Google Scholar]
  26. 26. 
    Pareja F, Weigelt B, Reis-Filho JS. 2021. Problematic breast tumors reassessed in light of novel molecular data. Mod. Pathol. 34:38–47
    [Google Scholar]
  27. 27. 
    Pia-Foschini M, Reis-Filho JS, Eusebi V, Lakhani SR 2003. Salivary gland-like tumours of the breast: surgical and molecular pathology. J. Clin. Pathol. 56:497–506
    [Google Scholar]
  28. 28. 
    Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N et al. 2002. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2:367–76
    [Google Scholar]
  29. 29. 
    Wetterskog D, Lopez-Garcia MA, Lambros MB, A'Hern R, Geyer FC et al. 2012. Adenoid cystic carcinomas constitute a genomically distinct subgroup of triple-negative and basal-like breast cancers. J. Pathol. 226:84–96
    [Google Scholar]
  30. 30. 
    Andreasen S, Tan Q, Agander TK, Steiner P, Bjorndal K et al. 2018. Adenoid cystic carcinomas of the salivary gland, lacrimal gland, and breast are morphologically and genetically similar but have distinct microRNA expression profiles. Mod. Pathol. 31:1211–25
    [Google Scholar]
  31. 31. 
    Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G 2009. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. PNAS 106:18740–44
    [Google Scholar]
  32. 32. 
    Kim J, Geyer FC, Martelotto LG, Ng CK, Lim RS et al. 2018. MYBL1 rearrangements and MYB amplification in breast adenoid cystic carcinomas lacking the MYB-NFIB fusion gene. J. Pathol. 244:143–50
    [Google Scholar]
  33. 33. 
    Bean GR, Krings G, Otis CN, Solomon DA, Garcia JJ et al. 2019. CRTC1-MAML2 fusion in mucoepidermoid carcinoma of the breast. Histopathology 74:463–73
    [Google Scholar]
  34. 34. 
    Pareja F, Da Cruz Paula A, Gularte-Merida R, Vahdatinia M, Li A et al. 2020. Pleomorphic adenomas and mucoepidermoid carcinomas of the breast are underpinned by fusion genes. NPJ Breast Cancer 6:20
    [Google Scholar]
  35. 35. 
    Marchio C, Scaltriti M, Ladanyi M, Iafrate AJ, Bibeau F et al. 2019. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann. Oncol. 30:1417–27
    [Google Scholar]
  36. 36. 
    Cocco E, Scaltriti M, Drilon A. 2018. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15:731–47
    [Google Scholar]
  37. 37. 
    Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN et al. 2018. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 378:731–39
    [Google Scholar]
  38. 38. 
    Weinreb I, Piscuoglio S, Martelotto LG, Waggott D, Ng CK et al. 2014. Hotspot activating PRKD1 somatic mutations in polymorphous low-grade adenocarcinomas of the salivary glands. Nat. Genet. 46:1166–69
    [Google Scholar]
  39. 39. 
    Xu B, Barbieri AL, Bishop JA, Chiosea SI, Dogan S et al. 2020. Histologic classification and molecular signature of polymorphous adenocarcinoma (PAC) and cribriform adenocarcinoma of salivary gland (CASG): an international interobserver study. Am. J. Surg. Pathol. 44:545–52
    [Google Scholar]
  40. 40. 
    Sebastiao APM, Xu B, Lozada JR, Pareja F, Geyer FC et al. 2020. Histologic spectrum of polymorphous adenocarcinoma of the salivary gland harbor genetic alterations affecting PRKD genes. Mod. Pathol. 33:65–73
    [Google Scholar]
  41. 41. 
    Geyer FC, Li A, Papanastasiou AD, Smith A, Selenica P et al. 2018. Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas. Nat. Commun. 9:1816
    [Google Scholar]
  42. 42. 
    Ali RH, Hayes MM 2012. Combined epithelial-myoepithelial lesions of the breast. Surg. Pathol. Clin. 5:661–99
    [Google Scholar]
  43. 43. 
    Piscuoglio S, Hodi Z, Katabi N, Guerini-Rocco E, Macedo GS et al. 2015. Are acinic cell carcinomas of the breast and salivary glands distinct diseases?. Histopathology 67:529–37
    [Google Scholar]
  44. 44. 
    Geyer FC, Berman SH, Marchio C, Burke KA, Guerini-Rocco E et al. 2017. Genetic analysis of microglandular adenosis and acinic cell carcinomas of the breast provides evidence for the existence of a low-grade triple-negative breast neoplasia family. Mod. Pathol. 30:69–84
    [Google Scholar]
  45. 45. 
    Guerini-Rocco E, Hodi Z, Piscuoglio S, Ng CK, Rakha EA et al. 2015. The repertoire of somatic genetic alterations of acinic cell carcinomas of the breast: an exploratory, hypothesis-generating study. J. Pathol. 237:166–78
    [Google Scholar]
  46. 46. 
    Beca F, Lee SSK, Pareja F, Da Cruz Paula A, Selenica P et al. 2019. Whole-exome sequencing and RNA sequencing analyses of acinic cell carcinomas of the breast. Histopathology 75:931–37
    [Google Scholar]
  47. 47. 
    Shin SJ, Simpson PT, Da Silva L, Jayanthan J, Reid L et al. 2009. Molecular evidence for progression of microglandular adenosis (MGA) to invasive carcinoma. Am. J. Surg. Pathol. 33:496–504
    [Google Scholar]
  48. 48. 
    Chiang S, Weigelt B, Wen HC, Pareja F, Raghavendra A et al. 2016. IDH2 mutations define a unique subtype of breast cancer with altered nuclear polarity. Cancer Res 76:7118–29
    [Google Scholar]
  49. 49. 
    Pareja F, da Silva EM, Frosina D, Geyer FC, Lozada JR et al. 2020. Immunohistochemical analysis of IDH2 R172 hotspot mutations in breast papillary neoplasms: applications in the diagnosis of tall cell carcinoma with reverse polarity. Mod. Pathol. 33:1056–64
    [Google Scholar]
  50. 50. 
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS et al. 2000. Molecular portraits of human breast tumours. Nature 406:747–52
    [Google Scholar]
  51. 51. 
    Prat A, Ellis MJ, Perou CM. 2011. Practical implications of gene-expression-based assays for breast oncologists. Nat. Rev. Clin. Oncol. 9:48–57
    [Google Scholar]
  52. 52. 
    Prat A, Perou CM. 2011. Deconstructing the molecular portraits of breast cancer. Mol. Oncol. 5:5–23
    [Google Scholar]
  53. 53. 
    Weigelt B, Mackay A, A'Hern R, Natrajan R, Tan DS et al. 2010. Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol 11:339–49
    [Google Scholar]
  54. 54. 
    Parker JS, Mullins M, Cheang MC, Leung S, Voduc D et al. 2009. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27:1160–67
    [Google Scholar]
  55. 55. 
    Rakha EA, Tan DS, Foulkes WD, Ellis IO, Tutt A et al. 2007. Are triple-negative tumours and basal-like breast cancer synonymous?. Breast Cancer Res 9:404
    [Google Scholar]
  56. 56. 
    Prat A, Parker JS, Karginova O, Fan C, Livasy C et al. 2010. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68
    [Google Scholar]
  57. 57. 
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB et al. 2011. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 121:2750–67
    [Google Scholar]
  58. 58. 
    Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN et al. 2016. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLOS ONE 11:e0157368
    [Google Scholar]
  59. 59. 
    He Y, Jiang Z, Chen C, Wang X 2018. Classification of triple-negative breast cancers based on immunogenomic profiling. J. Exp. Clin. Cancer Res. 37:327
    [Google Scholar]
  60. 60. 
    Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A et al. 2015. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res. 21:1688–98
    [Google Scholar]
  61. 61. 
    Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J et al.Cancer Genome Atlas Network 2012. Comprehensive molecular portraits of human breast tumours. Nature 490:61–70
    [Google Scholar]
  62. 62. 
    Liu YR, Jiang YZ, Xu XE, Yu KD, Jin X et al. 2016. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res 18:33
    [Google Scholar]
  63. 63. 
    Garrido-Castro AC, Lin NU, Polyak K 2019. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov 9:176–98
    [Google Scholar]
  64. 64. 
    Bareche Y, Venet D, Ignatiadis M, Aftimos P, Piccart M et al. 2018. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann. Oncol. 29:895–902
    [Google Scholar]
  65. 65. 
    Gruosso T, Gigoux M, Manem VSK, Bertos N, Zuo D et al. 2019. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J. Clin. Investig. 129:1785–800
    [Google Scholar]
  66. 66. 
    Ng CK, Schultheis AM, Bidard FC, Weigelt B, Reis-Filho JS. 2015. Breast cancer genomics from microarrays to massively parallel sequencing: paradigms and new insights. J. Natl. Cancer Inst. 107:djv015
    [Google Scholar]
  67. 67. 
    Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D et al. 2016. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534:47–54
    [Google Scholar]
  68. 68. 
    Shah SP, Roth A, Goya R, Oloumi A, Ha G et al. 2012. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–99
    [Google Scholar]
  69. 69. 
    Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R et al. 2010. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29:2013–23
    [Google Scholar]
  70. 70. 
    Shiu KK, Natrajan R, Geyer FC, Ashworth A, Reis-Filho JS. 2010. DNA amplifications in breast cancer: genotypic-phenotypic correlations. Future Oncol 6:967–84
    [Google Scholar]
  71. 71. 
    Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W et al. 2018. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33:690–705.e9
    [Google Scholar]
  72. 72. 
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM et al. 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–52
    [Google Scholar]
  73. 73. 
    Bareche Y, Buisseret L, Gruosso T, Girard E, Venet D et al. 2020. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach. J. Natl. Cancer Inst. 112:708–19
    [Google Scholar]
  74. 74. 
    Jiang YZ, Ma D, Suo C, Shi J, Xue M et al. 2019. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell 35:428–40.e5
    [Google Scholar]
  75. 75. 
    Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ et al. 2015. Clock-like mutational processes in human somatic cells. Nat. Genet. 47:1402–7
    [Google Scholar]
  76. 76. 
    Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT et al. 2020. The repertoire of mutational signatures in human cancer. Nature 578:94–101
    [Google Scholar]
  77. 77. 
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S et al. 2013. Signatures of mutational processes in human cancer. Nature 500:415–21
    [Google Scholar]
  78. 78. 
    Degasperi A, Amarante TD, Czarnecki J, Shooter S, Zou X et al. 2020. A practical framework and online tool for mutational signature analyses show inter-tissue variation and driver dependencies. Nat. Cancer 1:249–63
    [Google Scholar]
  79. 79. 
    Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD et al. 2012. Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–93
    [Google Scholar]
  80. 80. 
    Nik-Zainal S, Morganella S 2017. Mutational signatures in breast cancer: the problem at the DNA level. Clin. Cancer Res. 23:2617–29
    [Google Scholar]
  81. 81. 
    Menghi F, Inaki K, Woo X, Kumar PA, Grzeda KR et al. 2016. The tandem duplicator phenotype as a distinct genomic configuration in cancer. PNAS 113:E2373–82
    [Google Scholar]
  82. 82. 
    Menghi F, Barthel FP, Yadav V, Tang M, Ji B et al. 2018. The tandem duplicator phenotype is a prevalent genome-wide cancer configuration driven by distinct gene mutations. Cancer Cell 34:197–210.e5
    [Google Scholar]
  83. 83. 
    Liu Y, Chen C, Xu Z, Scuoppo C, Rillahan CD et al. 2016. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature 531:471–75
    [Google Scholar]
  84. 84. 
    Lopez S, Lim EL, Horswell S, Haase K, Huebner A et al. 2020. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat. Genet. 52:283–93
    [Google Scholar]
  85. 85. 
    Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W et al. 2018. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50:1189–95
    [Google Scholar]
  86. 86. 
    Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G et al. 2013. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45:1134–40
    [Google Scholar]
  87. 87. 
    Carter SL, Cibulskis K, Helman E, McKenna A, Shen H et al. 2012. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30:413–21
    [Google Scholar]
  88. 88. 
    Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S et al. 2017. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32:169–84.e7
    [Google Scholar]
  89. 89. 
    Roy R, Chun J, Powell SN 2011. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat. Rev. Cancer 12:68–78
    [Google Scholar]
  90. 90. 
    Hartman AR, Kaldate RR, Sailer LM, Painter L, Grier CE et al. 2012. Prevalence of BRCA mutations in an unselected population of triple-negative breast cancer. Cancer 118:2787–95
    [Google Scholar]
  91. 91. 
    Turner N, Tutt A, Ashworth A. 2004. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat. Rev. Cancer 4:814–19
    [Google Scholar]
  92. 92. 
    Easton DF, Pharoah PD, Antoniou AC, Tischkowitz M, Tavtigian SV et al. 2015. Gene-panel sequencing and the prediction of breast-cancer risk. N. Engl. J. Med. 372:2243–57
    [Google Scholar]
  93. 93. 
    Buys SS, Sandbach JF, Gammon A, Patel G, Kidd J et al. 2017. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 123:1721–30
    [Google Scholar]
  94. 94. 
    Couch FJ, Hart SN, Sharma P, Toland AE, Wang X et al. 2015. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J. Clin. Oncol. 33:304–11
    [Google Scholar]
  95. 95. 
    Riaz N, Blecua P, Lim RS, Shen R, Higginson DS et al. 2017. Pan-cancer analysis of bi-allelic alterations in homologous recombination DNA repair genes. Nat. Commun. 8:857
    [Google Scholar]
  96. 96. 
    Polak P, Kim J, Braunstein LZ, Karlic R, Haradhavala NJ et al. 2017. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet. 49:1476–86
    [Google Scholar]
  97. 97. 
    Weigelt B, Bi R, Kumar R, Blecua P, Mandelker DL et al. 2018. The landscape of somatic genetic alterations in breast cancers from ATM germline mutation carriers. J. Natl. Cancer Inst. 110:1030–34
    [Google Scholar]
  98. 98. 
    Mandelker D, Kumar R, Pei X, Selenica P, Setton J et al. 2019. The landscape of somatic genetic alterations in breast cancers from CHEK2 germline mutation carriers. JNCI Cancer Spectr 3:pkz027
    [Google Scholar]
  99. 99. 
    Staaf J, Glodzik D, Bosch A, Vallon-Christersson J, Reutersward C et al. 2019. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med. 25:1526–33
    [Google Scholar]
  100. 100. 
    Watkins JA, Irshad S, Grigoriadis A, Tutt ANJ 2014. Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res 16:211
    [Google Scholar]
  101. 101. 
    Gao R, Davis A, McDonald TO, Sei E, Shi X et al. 2016. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48:1119–30
    [Google Scholar]
  102. 102. 
    Mutter RW, Riaz N, Ng CK, Delsite R, Piscuoglio S et al. 2017. Bi-allelic alterations in DNA repair genes underpin homologous recombination DNA repair defects in breast cancer. J. Pathol. 242:165–77
    [Google Scholar]
  103. 103. 
    Ng CKY, Bidard FC, Piscuoglio S, Geyer FC, Lim RS et al. 2017. Genetic heterogeneity in therapy-naive synchronous primary breast cancers and their metastases. Clin. Cancer Res. 23:4402–15
    [Google Scholar]
  104. 104. 
    Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G et al. 2015. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21:751–59
    [Google Scholar]
  105. 105. 
    Claus EB, Petruzella S, Matloff E, Carter D 2005. Prevalence of BRCA1 and BRCA2 mutations in women diagnosed with ductal carcinoma in situ. JAMA 293:964–69
    [Google Scholar]
  106. 106. 
    Casasent AK, Schalck A, Gao R, Sei E, Long A et al. 2018. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172:205–17.e12
    [Google Scholar]
  107. 107. 
    Tutt A, Tovey H, Cheang MCU, Kernaghan S, Kilburn L et al. 2018. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat. Med. 24:628–37
    [Google Scholar]
  108. 108. 
    Ma J, Setton J, Lee NY, Riaz N, Powell SN 2018. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat. Commun. 9:3292
    [Google Scholar]
  109. 109. 
    Graeser M, McCarthy A, Lord CJ, Savage K, Hills M et al. 2010. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 16:6159–68
    [Google Scholar]
  110. 110. 
    Wang Y, Waters J, Leung ML, Unruh A, Roh W et al. 2014. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155–60
    [Google Scholar]
  111. 111. 
    Martelotto LG, Baslan T, Kendall J, Geyer FC, Burke KA et al. 2017. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat. Med. 23:376–85
    [Google Scholar]
  112. 112. 
    Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK et al. 2016. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat. Rev. Clin. Oncol. 13:228–41
    [Google Scholar]
  113. 113. 
    Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F et al. 2015. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26:259–71
    [Google Scholar]
  114. 114. 
    Denkert C, Wienert S, Poterie A, Loibl S, Budczies J et al. 2016. Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: results of the ring studies of the international immuno-oncology biomarker working group. Mod. Pathol. 29:1155–64
    [Google Scholar]
  115. 115. 
    Kos Z, Roblin E, Kim RS, Michiels S, Gallas BD et al. 2020. Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer. NPJ Breast Cancer 6:17
    [Google Scholar]
  116. 116. 
    Loi S, Drubay D, Adams S, Pruneri G, Francis PA et al. 2019. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J. Clin. Oncol. 37:559–69
    [Google Scholar]
  117. 117. 
    Park JH, Jonas SF, Bataillon G, Criscitiello C, Salgado R et al. 2019. Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did not receive adjuvant chemotherapy. Ann. Oncol. 30:1941–49
    [Google Scholar]
  118. 118. 
    Loi S, Adams S, Schmid P, Cortés J, Cescon DW et al. 2017. Relationship between tumor infiltrating lymphocyte (TIL) levels and response to pembrolizumab (pembro) in metastatic triple-negative breast cancer (mTNBC): results from KEYNOTE-086. Ann. Oncol. 28:Suppl. 5v608
    [Google Scholar]
  119. 119. 
    Schmid P, Salgado R, Park YH, Munoz-Couselo E, Kim SB et al. 2020. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann. Oncol. 31:569–81
    [Google Scholar]
  120. 120. 
    Martinez-Morilla S, McGuire J, Gaule P, Moore L, Acs B et al. 2020. Quantitative assessment of PD-L1 as an analyte in immunohistochemistry diagnostic assays using a standardized cell line tissue microarray. Lab. Investig. 100:4–15
    [Google Scholar]
  121. 121. 
    Huang X, Ding Q, Guo H, Gong Y, Zhao J et al. 2021. Comparison of three FDA-approved diagnostic immunohistochemistry assays of PD-L1 in triple-negative breast carcinoma. Hum. Pathol. 108:42–50
    [Google Scholar]
  122. 122. 
    Noske A, Ammann JU, Wagner DC, Denkert C, Lebeau A et al. 2021. A multicentre analytical comparison study of inter-reader and inter-assay agreement of four programmed death-ligand 1 immunohistochemistry assays for scoring in triple-negative breast cancer. Histopathology 78:567–77
    [Google Scholar]
  123. 123. 
    Kim IS, Gao Y, Welte T, Wang H, Liu J et al. 2019. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat. Cell Biol. 21:1113–26
    [Google Scholar]
  124. 124. 
    Su S, Chen J, Yao H, Liu J, Yu S et al. 2018. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172:841–56.e16
    [Google Scholar]
  125. 125. 
    Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, Slagter M et al. 2019. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572:538–42
    [Google Scholar]
  126. 126. 
    Stingl J, Caldas C. 2007. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat. Rev. Cancer 7:791–99
    [Google Scholar]
  127. 127. 
    Behbod F, Rosen JM. 2005. Will cancer stem cells provide new therapeutic targets?. Carcinogenesis 26:703–11
    [Google Scholar]
  128. 128. 
    Lim E, Vaillant F, Wu D, Forrest NC, Pal B et al. 2009. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat. Med. 15:907–13
    [Google Scholar]
  129. 129. 
    Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS 2003. Stem cells in normal breast development and breast cancer. Cell Prolif 36:Suppl. 159–72
    [Google Scholar]
  130. 130. 
    Smalley M, Ashworth A. 2003. Stem cells and breast cancer: a field in transit. Nat. Rev. Cancer 3:832–44
    [Google Scholar]
  131. 131. 
    Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H et al. 2010. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7:403–17
    [Google Scholar]
  132. 132. 
    Drost RM, Jonkers J. 2009. Preclinical mouse models for BRCA1-associated breast cancer. Br. J. Cancer 101:1651–57
    [Google Scholar]
  133. 133. 
    Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J et al. 2007. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. PNAS 104:12111–16
    [Google Scholar]
  134. 134. 
    Bai F, Smith MD, Chan HL, Pei XH 2013. Germline mutation of Brca1 alters the fate of mammary luminal cells and causes luminal-to-basal mammary tumor transformation. Oncogene 32:2715–25
    [Google Scholar]
  135. 135. 
    Ng T, Irshad S, Stebbing J. 2013. BRCA1 mutations and luminal-basal transformation. Oncogene 32:2712–14
    [Google Scholar]
  136. 136. 
    Melchor L, Molyneux G, Mackay A, Magnay FA, Atienza M et al. 2014. Identification of cellular and genetic drivers of breast cancer heterogeneity in genetically engineered mouse tumour models. J. Pathol. 233:124–37
    [Google Scholar]
  137. 137. 
    Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R et al. 2018. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat. Commun. 9:3588
    [Google Scholar]
  138. 138. 
    Abdel-Fatah TM, Powe DG, Hodi Z, Reis-Filho JS, Lee AH, Ellis IO 2008. Morphologic and molecular evolutionary pathways of low nuclear grade invasive breast cancers and their putative precursor lesions: further evidence to support the concept of low nuclear grade breast neoplasia family. Am. J. Surg. Pathol. 32:513–23
    [Google Scholar]
  139. 139. 
    Tamimi RM, Baer HJ, Marotti J, Galan M, Galaburda L et al. 2008. Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res 10:R67
    [Google Scholar]
  140. 140. 
    Geyer FC, Lacroix-Triki M, Colombo PE, Patani N, Gauthier A et al. 2012. Molecular evidence in support of the neoplastic and precursor nature of microglandular adenosis. Histopathology 60:E115–30
    [Google Scholar]
  141. 141. 
    Guerini-Rocco E, Piscuoglio S, Ng CK, Geyer FC, De Filippo MR et al. 2016. Microglandular adenosis associated with triple-negative breast cancer is a neoplastic lesion of triple-negative phenotype harbouring TP53 somatic mutations. J. Pathol. 238:677–88
    [Google Scholar]
  142. 142. 
    Fusco N, Geyer FC, De Filippo MR, Martelotto LG, Ng CK et al. 2016. Genetic events in the progression of adenoid cystic carcinoma of the breast to high-grade triple-negative breast cancer. Mod. Pathol. 29:1292–305
    [Google Scholar]
  143. 143. 
    Ho AS, Ochoa A, Jayakumaran G, Zehir A, Valero Mayor C et al. 2019. Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. J. Clin. Investig. 129:4276–89
    [Google Scholar]
  144. 144. 
    Angus L, Smid M, Wilting SM, van Riet J, Van Hoeck A et al. 2019. The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat. Genet. 51:1450–58
    [Google Scholar]
  145. 145. 
    Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S et al. 2019. Genomic characterization of metastatic breast cancers. Nature 569:560–64
    [Google Scholar]
  146. 146. 
    Schrijver W, Suijkerbuijk KPM, van Gils CH, van der Wall E, Moelans CB, van Diest PJ. 2018. Receptor conversion in distant breast cancer metastases: a systematic review and meta-analysis. J. Natl. Cancer Inst. 110:568–80
    [Google Scholar]
  147. 147. 
    Hutchinson KE, Yost SE, Chang CW, Johnson RM, Carr AR et al. 2020. Comprehensive profiling of poor-risk paired primary and recurrent triple-negative breast cancers reveals immune phenotype shifts. Clin. Cancer Res. 26:657–68
    [Google Scholar]
  148. 148. 
    Schettini F, Chic N, Braso-Maristany F, Pare L, Pascual T et al. 2021. Clinical, pathological, and PAM50 gene expression features of HER2-low breast cancer. NPJ Breast Cancer 7:1
    [Google Scholar]
  149. 149. 
    Modi S, Saura C, Yamashita T, Park YH, Kim SB et al. 2020. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 382:610–21
    [Google Scholar]
  150. 150. 
    Modi S, Park H, Murthy RK, Iwata H, Tamura K et al. 2020. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J. Clin. Oncol. 38:1887–96
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042420-093238
Loading
/content/journals/10.1146/annurev-pathol-042420-093238
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error