1932

Abstract

Multiple sclerosis (MS) is a chronic autoimmune, inflammatory, and neurodegenerative disease that affects the central nervous system (CNS). MS is characterized by immune dysregulation, which results in the infiltration of the CNS by immune cells, triggering demyelination, axonal damage, and neurodegeneration. Although the exact causes of MS are not fully understood, genetic and environmental factors are thought to control MS onset and progression. In this article, we review the main immunological mechanisms involved in MS pathogenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-052920-040318
2022-01-24
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathol-052920-040318.html?itemId=/content/journals/10.1146/annurev-pathol-052920-040318&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sospedra M, Martin R. 2016. Immunology of multiple sclerosis. Semin. Neurol. 36:115–27
    [Google Scholar]
  2. 2. 
    Sospedra M, Martin R. 2005. Immunology of multiple sclerosis. Annu. Rev. Immunol. 23:683–747
    [Google Scholar]
  3. 3. 
    Compston A, Coles A. 2008. Multiple sclerosis. Lancet 372:96481502–17
    [Google Scholar]
  4. 4. 
    Dendrou CA, Fugger L, Friese MA. 2015. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15:9545–58
    [Google Scholar]
  5. 5. 
    Noseworthy JH, Lucchinetti CF, Rodriguez M, Weinshenker BG. 2000. Clinical course and diagnosis. N. Engl. J. Med. 343:938–52
    [Google Scholar]
  6. 6. 
    Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. 2018. Multiple sclerosis. Lancet 391:101301622–36
    [Google Scholar]
  7. 7. 
    Sawcer S, Hellenthal G, Pirinen M, Spencer CCA, Patsopoulos NA et al. 2011. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:7359214–19
    [Google Scholar]
  8. 8. 
    Ascherio A, Munger KL, Lünemann JD. 2012. The initiation and prevention of multiple sclerosis. Nat. Rev. Neurol. 8:11602–12
    [Google Scholar]
  9. 9. 
    Ascherio A, Munger KL, White R, Köchert K, Simon KC et al. 2014. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol 71:3306–14
    [Google Scholar]
  10. 10. 
    Ascherio A, Munger K. 2008. Epidemiology of multiple sclerosis: from risk factors to prevention. Semin. Neurol. 28:117–28
    [Google Scholar]
  11. 11. 
    Wang J, Jelcic I, Mühlenbruch L, Haunerdinger V, Toussaint NC et al. 2020. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 183:51264–81.e20
    [Google Scholar]
  12. 12. 
    Hu D, Notarbartolo S, Croonenborghs T, Patel B, Cialic R et al. 2017. Transcriptional signature of human pro-inflammatory TH17 cells identifies reduced IL10 gene expression in multiple sclerosis. Nat. Commun. 8:11600
    [Google Scholar]
  13. 13. 
    Grigoriadis N, van Pesch V. 2015. A basic overview of multiple sclerosis immunopathology. Eur. J. Neurol. 22:3–13
    [Google Scholar]
  14. 14. 
    Quintana FJ, Especial A, Pérez-Sánchez S, Farez MF. 2014. Inmunopatología de la esclerosis múltiple. Medicina 74:1404–10
    [Google Scholar]
  15. 15. 
    Venken K, Hellings N, Broekmans T, Hensen K, Rummens J-L, Stinissen P. 2008. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J. Immunol. 180:96411–20
    [Google Scholar]
  16. 16. 
    Martinez-Forero I, Garcia-Munoz R, Martinez-Pasamar S, Inoges S, de Cerio ALD et al. 2008. IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis. Eur. J. Immunol. 38:2576–86
    [Google Scholar]
  17. 17. 
    Venken K, Hellings N, Thewissen M, Somers V, Hensen K et al. 2008. Compromised CD4+ CD25high regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 123:179–89
    [Google Scholar]
  18. 18. 
    Feger U, Luther C, Poeschel S, Melms A, Tolosa E, Wiendl H 2007. Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin. Exp. Immunol. 147:3412–18
    [Google Scholar]
  19. 19. 
    Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H et al. 2009. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:51175–89
    [Google Scholar]
  20. 20. 
    Fogdell-Hahn A, Ligers A, Grønning M, Hillert J, Olerup O. 2000. Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 55:2140–48
    [Google Scholar]
  21. 21. 
    Patsopoulos NA, Barcellos LF, Hintzen RQ, Schaefer C, van Duijn CM et al. 2013. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. PLOS Genet 9:11e1003926
    [Google Scholar]
  22. 22. 
    Medana IM, Gallimore A, Oxenius A, Martinic MMA, Wekerle H, Neumann H. 2000. MHC class I-restricted killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. Eur. J. Immunol. 30:123623–33
    [Google Scholar]
  23. 23. 
    Giuliani F, Goodyer CG, Antel JP, Yong VW. 2003. Vulnerability of human neurons to T cell-mediated cytotoxicity. J. Immunol. 171:1368–79
    [Google Scholar]
  24. 24. 
    Biddison WE, Cruikshank WW, Center DM, Pelfrey CM, Taub DD, Turner RV. 1998. CD8+ myelin peptide-specific T cells can chemoattract CD4+ myelin peptide-specific T cells: importance of IFN-inducible protein 10. J. Immunol. 160:1444–48
    [Google Scholar]
  25. 25. 
    Bar-Or A. 2005. Immunology of multiple sclerosis. Neurol. Clin. 23:1149–75
    [Google Scholar]
  26. 26. 
    Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T et al. 2018. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:2162–73
    [Google Scholar]
  27. 27. 
    Bar-Or A, Fawaz L, Fan B, Darlington PJ, Rieger A et al. 2010. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS?. Ann. Neurol. 67:4452–61
    [Google Scholar]
  28. 28. 
    Ribot JC, Lopes N, Silva-Santos B. 2021. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 21:221–32
    [Google Scholar]
  29. 29. 
    Triebel F, Hercend T. 1989. Subpopulations of human peripheral T gamma delta lymphocytes. Immunol. Today 10:6186–88
    [Google Scholar]
  30. 30. 
    Zarobkiewicz MK, Kowalska W, Roliński J, Bojarska-Junak AA. 2019. γδ T lymphocytes in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neuroimmunol. 330:67–73
    [Google Scholar]
  31. 31. 
    Toubal A, Nel I, Lotersztajn S, Lehuen A 2019. Mucosal-associated invariant T cells and disease. Nat. Rev. Immunol. 19:643–57
    [Google Scholar]
  32. 32. 
    Held K, Beltrán E, Moser M, Hohlfeld R, Dornmair K 2015. T-cell receptor repertoire of human peripheral CD161hiTRAV1-2+ MAIT cells revealed by next generation sequencing and single cell analysis. Hum. Immunol. 76:9607–14
    [Google Scholar]
  33. 33. 
    Annibali V, Ristori G, Angelini DF, Serafini B, Mechelli R et al. 2011. CD161highCD8+T cells bear pathogenetic potential in multiple sclerosis. Brain 134:2542–54
    [Google Scholar]
  34. 34. 
    Abrahamsson SV, Angelini DF, Dubinsky AN, Morel E, Oh U et al. 2013. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136:92888–903
    [Google Scholar]
  35. 35. 
    Baranzini SE, Elfstrom C, Chang S-Y, Butunoi C, Murray R et al. 2000. Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. J. Immunol. 165:116576–82
    [Google Scholar]
  36. 36. 
    Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. 2013. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229:2176–85
    [Google Scholar]
  37. 37. 
    Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12:3231–38
    [Google Scholar]
  38. 38. 
    Prinz M, Jung S, Priller J 2019. Microglia biology: one century of evolving concepts. Cell 179:2292–311
    [Google Scholar]
  39. 39. 
    Raivich G, Banati R. 2004. Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res. Rev. 46:3261–81
    [Google Scholar]
  40. 40. 
    Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM et al. 2014. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211:81533–49
    [Google Scholar]
  41. 41. 
    Giovannoni F, Quintana FJ. 2020. The role of astrocytes in CNS inflammation. Trends Immunol 41:9805–19
    [Google Scholar]
  42. 42. 
    Mayo L, Trauger SA, Blain M, Nadeau M, Patel B et al. 2014. B4GALT6 regulates astrocyte activation during CNS inflammation. Nat. Med. 20:101147–56
    [Google Scholar]
  43. 43. 
    Chao CC, Gutiérrez-Vázquez C, Rothhammer V, Mayo L, Wheeler MA et al. 2019. Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS. Cell 179:71483–98.e22
    [Google Scholar]
  44. 44. 
    Wheeler MA, Jaronen M, Covacu R, Zandee SEJ, Scalisi G et al. 2019. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176:3581–96.e18
    [Google Scholar]
  45. 45. 
    Wheeler MA, Clark IC, Tjon EC, Li Z, Zandee SEJ et al. 2020. MAFG-driven astrocytes promote CNS inflammation. Nature 578:7796593–99
    [Google Scholar]
  46. 46. 
    Quintana FJ. 2019. Astrocytes play a crucial role in the formation and evolution of multiple sclerosis lesions. Mult. Scler. 25:19–20
    [Google Scholar]
  47. 47. 
    Wheeler MA, Quintana FJ. 2019. Regulation of astrocyte functions in multiple sclerosis. Cold Spring Harb. . Perspect. Med. 9:a029009
    [Google Scholar]
  48. 48. 
    Linnerbauer M, Wheeler MA, Quintana FJ 2020. Astrocyte crosstalk in CNS inflammation. Neuron 108:4608–22
    [Google Scholar]
  49. 49. 
    Prinz M, Masuda T, Wheeler MA, Quintana FJ 2021. Microglia and central nervous system–associated macrophages—from origin to disease modulation. Annu. Rev. Immunol. 39:251–77
    [Google Scholar]
  50. 50. 
    Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. 2008. Functions of natural killer cells. Nat. Immunol. 9:5503–10
    [Google Scholar]
  51. 51. 
    Munschauer FE, Hartrich LA, Stewart CC, Jacobs L. 1995. Circulating natural killer cells but not cytotoxic T lymphocytes are reduced in patients with active relapsing multiple sclerosis and little clinical disability as compared to controls. J. Neuroimmunol. 62:2177–81
    [Google Scholar]
  52. 52. 
    Matsumoto Y, Kohyama K, Aikawa Y, Shin T, Kawazoe Y et al. 1998. Role of natural killer cells and TCRγδ T cells in acute autoimmune encephalomyelitis. Eur. J. Immunol. 28:51681–88
    [Google Scholar]
  53. 53. 
    Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T 1997. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J. Exp. Med. 186:101677–87
    [Google Scholar]
  54. 54. 
    Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M 2006. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis.. PNAS 103:155941–46
    [Google Scholar]
  55. 55. 
    Hemmer B, Kerschensteiner M, Korn T. 2015. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 14:4406–19
    [Google Scholar]
  56. 56. 
    Baranzini SE, Oksenberg JR. 2017. The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet 33:12960–70
    [Google Scholar]
  57. 57. 
    Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P et al. 2007. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39:111329–37
    [Google Scholar]
  58. 58. 
    Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A et al. 2013. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45:111353–62
    [Google Scholar]
  59. 59. 
    Ascherio A, Munger KL, Simon KC. 2010. Vitamin D and multiple sclerosis. Lancet Neurol 9:6599–612
    [Google Scholar]
  60. 60. 
    Mokry LE, Ross S, Timpson NJ, Sawcer S, Davey Smith G, Richards JB 2016. Obesity and multiple sclerosis: a Mendelian randomization study. PLOS Med 13:6e1002053
    [Google Scholar]
  61. 61. 
    Hedström AK, Akerstedt T, Hillert J, Olsson T, Alfredsson L 2011. Shift work at young age is associated with increased risk for multiple sclerosis. Ann. Neurol. 70:5733–41
    [Google Scholar]
  62. 62. 
    Hernán MA, Jick SS, Logroscino G, Olek MJ, Ascherio A, Jick H 2005. Cigarette smoking and the progression of multiple sclerosis. Brain 128:61461–65
    [Google Scholar]
  63. 63. 
    Olsson T, Barcellos LF, Alfredsson L. 2016. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13:126–36
    [Google Scholar]
  64. 64. 
    Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki I. 2015. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol 14:3263–73
    [Google Scholar]
  65. 65. 
    Ascherio A, Munger KL, Lennette ET, Spiegelman D, Hernán MA et al. 2001. Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286:243083–88
    [Google Scholar]
  66. 66. 
    Gran B, Hemmer B, Vergelli M, McFarland HF, Martin R. 1999. Molecular mimicry and multiple sclerosis: degenerate T-cell recognition and the induction of autoimmunity. Ann. Neurol. 45:5559–67
    [Google Scholar]
  67. 67. 
    Ransohoff RM, Engelhardt B. 2012. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 12:9623–35
    [Google Scholar]
  68. 68. 
    McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. 2005. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11:3335–39
    [Google Scholar]
  69. 69. 
    Steinman L. 2014. Immunology of relapse and remission in multiple sclerosis. Annu. Rev. Immunol. 32:257–81
    [Google Scholar]
  70. 70. 
    Ransohoff RM. 1999. Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines. J. Neuroimmunol. 98:157–68
    [Google Scholar]
  71. 71. 
    Springer TA. 1995. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57:827–72
    [Google Scholar]
  72. 72. 
    Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L et al. 1992. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356:63–66
    [Google Scholar]
  73. 73. 
    Coisne C, Mao W, Engelhardt B 2009. Cutting edge: Natalizumab blocks adhesion but not initial contact of human T cells to the blood-brain barrier in vivo in an animal model of multiple sclerosis. J. Immunol. 182:105909–13
    [Google Scholar]
  74. 74. 
    Ulvestad E, Williams K, Bjerkvig R, Tiekotter K, Antel J, Matre R 1994. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J. Leukoc. Biol. 56:6732–40
    [Google Scholar]
  75. 75. 
    Ponomarev ED, Shriver LP, Maresz K, Dittel BN 2005. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res. 81:3374–89
    [Google Scholar]
  76. 76. 
    Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N et al. 2005. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11:3328–34
    [Google Scholar]
  77. 77. 
    van Langelaar J, Rijvers L, Smolders J, van Luijn MM. 2020. B and T cells driving multiple sclerosis: identity, mechanisms and potential triggers. Front. Immunol. 11:760
    [Google Scholar]
  78. 78. 
    Yong VW, Power C, Edwards DR. 2001. Metalloproteinases in biology and pathology of the nervous system. Nat. Rev. Neurosci. 2:7502–11
    [Google Scholar]
  79. 79. 
    Waxman SG. 2003. Nitric oxide and the axonal death cascade. Ann. Neurol. 53:2149–50
    [Google Scholar]
  80. 80. 
    Selmaj KW, Raine CS. 1988. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann. Neurol. 23:4339–46
    [Google Scholar]
  81. 81. 
    Suidan HS, Bouvier J, Schaerer E, Stone SR, Monard D, Tschopp J 1994. Granzyme A released upon stimulation of cytotoxic T lymphocytes activates the thrombin receptor on neuronal cells and astrocytes. PNAS 91:178112–16
    [Google Scholar]
  82. 82. 
    Ohl K, Tenbrock K, Kipp M 2016. Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp. Neurol. 277:58–67
    [Google Scholar]
  83. 83. 
    Lees JR, Golumbek PT, Sim J, Dorsey D, Russell JH 2008. Regional CNS responses to IFN-γ determine lesion localization patterns during EAE pathogenesis. J. Exp. Med. 205:112633–42
    [Google Scholar]
  84. 84. 
    Chao CC, Gutiérrez-Vázquez C, Rothhammer V, Mayo L, Wheeler MA et al. 2019. Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS. Cell 179:71483–98.e22
    [Google Scholar]
  85. 85. 
    Piddlesden SJ, Lassmann H, Zimprich F, Morgan BP, Linington C 1993. The demyelinating potential of antibodies to myelin oligodendrocyte glycoprotein is related to their ability to fix complement. Am. J. Pathol. 143:2555–64
    [Google Scholar]
  86. 86. 
    Aktas O, Smorodchenko A, Brocke S, Infante-Duarte C, Topphoff US et al. 2005. Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron 46:3421–32
    [Google Scholar]
  87. 87. 
    Mascanfroni ID, Yeste A, Vieira SM, Burns EJ, Patel B et al. 2013. IL-27 acts on DCs to suppress the T-cell response and autoimmunity by inducing the expression of CD39. Nat. Immunol. 14:101054–63
    [Google Scholar]
  88. 88. 
    Miron VE, Boyd A, Zhao J-W, Yuen TJ, Ruckh JM et al. 2013. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16:91211–18
    [Google Scholar]
  89. 89. 
    Mascanfroni ID, Takenaka MC, Yeste A, Patel B, Wu Y et al. 2016. Metabolic control of type 1 regulatory (Tr1) cell differentiation by AHR and HIF1-α. Nat. Med. 21:6638–46
    [Google Scholar]
  90. 90. 
    Frisullo G, Nociti V, Iorio R, Patanella AK, Caggiula M et al. 2009. Regulatory T cells fail to suppress CD4+ T-bet+ T cells in relapsing multiple sclerosis patients. Immunology 127:3418–28
    [Google Scholar]
  91. 91. 
    Lowther DE, Hafler DA. 2012. Regulatory T cells in the central nervous system. Immunol. Rev. 248:1156–69
    [Google Scholar]
  92. 92. 
    Franklin RJM, ffrench-Constant C. 2008. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9:11839–55
    [Google Scholar]
  93. 93. 
    Rawji KS, Mishra MK, Yong VW. 2016. Regenerative capacity of macrophages for remyelination. Front. Cell Dev. Biol. 4:47
    [Google Scholar]
  94. 94. 
    Reich DS, Lucchinetti CF, Calabresi PA. 2018. Multiple sclerosis. N. Engl. J. Med. 378:2169–80
    [Google Scholar]
  95. 95. 
    Rodriguez M, Lennon VA. 1990. Immunoglobulins promote remyelination in the central nervous system. Ann. Neurol. 27:112–17
    [Google Scholar]
  96. 96. 
    Lubetzki C, Zalc B, Williams A, Stadelmann C, Stankoff B 2020. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol 19:8678–88
    [Google Scholar]
  97. 97. 
    Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES et al. 2007. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med. 13:101228–33
    [Google Scholar]
  98. 98. 
    Martin R, Sospedra M, Rosito M, Engelhardt B 2016. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis. Eur. J. Immunol. 46:92078–90
    [Google Scholar]
  99. 99. 
    Hauser SL, Cree BAC. 2020. Treatment of multiple sclerosis: a review. Am. J. Med. 133:121380–90.e2
    [Google Scholar]
  100. 100. 
    Stüve O, Dooley NP, Uhm JH, Antel JP, Francis GS et al. 1996. Inteferon β-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann. Neurol. 40:853–63
    [Google Scholar]
  101. 101. 
    Kozovska ME, Hong J, Zang YCQ, Li S, Rivera VM et al. 1999. Interferon beta induces T-helper 2 immune deviation in MS. Neurology 53:81692–97
    [Google Scholar]
  102. 102. 
    Dhib-Jalbut S, Marks S 2010. Interferon-β mechanisms of action in multiple sclerosis. Neurology 74:Suppl. 1S17–24
    [Google Scholar]
  103. 103. 
    Teitelbaum D, Webb C, Bree M, Meshorer A, Arnon R, Sela M. 1974. Suppression of experimental allergic encephalomyelitis in rhesus monkeys by a synthetic basic copolymer. Clin. Immunol. Immunopathol. 3:2256–62
    [Google Scholar]
  104. 104. 
    Weber MS, Prod'homme T, Youssef S, Dunn SE, Rundle CD et al. 2007. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat. Med. 13:8935–43
    [Google Scholar]
  105. 105. 
    Lalive PH, Neuhaus O, Benkhoucha M, Burger D, Hohlfeld R et al. 2011. Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 25:5401–14
    [Google Scholar]
  106. 106. 
    Buttmann M. 2018. Where mitoxantrone for multiple sclerosis is still valuable in 2018. Eur. J. Neurol. 25:121400–1
    [Google Scholar]
  107. 107. 
    Goodin DS, Arnason BG, Coyle PK, Frohman EM, Paty DW. 2003. The use of mitoxantrone (Novantrone) for the treatment of multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 61:101332–38
    [Google Scholar]
  108. 108. 
    Baldwin KJ, Hogg JP. 2013. Progressive multifocal leukoencephalopathy in patients with multiple sclerosis. Curr. Opin. Neurol. 26:3318–23
    [Google Scholar]
  109. 109. 
    Coles AJ. 2013. Alemtuzumab therapy for multiple sclerosis. Neurotherapeutics 10:129–33
    [Google Scholar]
  110. 110. 
    Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M et al. 2006. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. PNAS 103:155941–46
    [Google Scholar]
  111. 111. 
    Roach CA, Cross AH. 2021. Anti-CD20 B cell treatment for relapsing multiple sclerosis. Front. Neurol. 11:595547
    [Google Scholar]
  112. 112. 
    Li R, Patterson KR, Bar-Or A. 2018. Reassessing B cell contributions in multiple sclerosis. Nat. Immunol. 19:7696–707
    [Google Scholar]
  113. 113. 
    Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J et al. 2008. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358:7676–88
    [Google Scholar]
  114. 114. 
    Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW et al. 2014. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol 13:6545–56
    [Google Scholar]
  115. 115. 
    Comi G, Kappos L, Selmaj KW, Bar-Or A, Arnold DL et al. 2019. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol 18:111009–20
    [Google Scholar]
  116. 116. 
    Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G et al. 2018. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391:101271263–73
    [Google Scholar]
  117. 117. 
    Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H et al. 2012. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J. Pharmacol. Exp. Ther. 341:1274–84
    [Google Scholar]
  118. 118. 
    Linker RA, Lee DH, Ryan S, Van Dam AM, Conrad R et al. 2011. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134:3678–92
    [Google Scholar]
  119. 119. 
    Ghoreschi K, Brück J, Kellerer C, Deng C, Peng H et al. 2011. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J. Exp. Med. 208:112291–303
    [Google Scholar]
  120. 120. 
    Lundy SK, Wu Q, Wang Q, Dowling CA, Taitano SH et al. 2016. Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets. Neurol. Neuroimmunol. Neuroinflamm. 3:2e211
    [Google Scholar]
  121. 121. 
    Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H. 2014. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 74:6659–74
    [Google Scholar]
  122. 122. 
    Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P et al. 2010. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med. 362:5416–26
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-052920-040318
Loading
/content/journals/10.1146/annurev-pathol-052920-040318
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error