1932

Abstract

Arterial tone is coordinated among vessel segments to optimize nutrient transport and organ function. Coordinated vasomotor activity is remarkable to observe and depends on stimuli, sparsely generated in tissue, eliciting electrical responses that conduct lengthwise among electrically coupled vascular cells. The conducted response is the focus of this topical review, and in this regard, the authors highlight literature that advances an appreciation of functional significance, cellular mechanisms, and biophysical principles. Of particular note, this review stresses that conduction is enabled by a defined pattern of charge movement along the arterial wall as set by three key parameters (tissue structure, gap junctional resistivity, and ion channel activity). The impact of disease on conduction is carefully discussed, as are potential strategies to restore this key biological response and, along with it, the match of blood flow delivery with tissue energetic demand.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010617-052623
2018-01-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/58/1/annurev-pharmtox-010617-052623.html?itemId=/content/journals/10.1146/annurev-pharmtox-010617-052623&mimeType=html&fmt=ahah

Literature Cited

  1. Duling BR, Hogan RD, Langille BL, Lelkes P, Segal SS. 1.  et al. 1987. Vasomotor control: functional hyperemia and beyond. Fed. Proc. 46:251–63 [Google Scholar]
  2. Segal SS, Kurjiaka DT. 2.  1995. Coordination of blood flow control in the resistance vasculature of skeletal muscle. Med. Sci. Sports Exerc. 27:1158–64 [Google Scholar]
  3. Harder DR, Alkayed NJ, Lange AR, Gebremedhin D, Roman RJ. 3.  1998. Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke 29:229–34 [Google Scholar]
  4. Cole WC, Welsh DG. 4.  2011. Role of myosin light chain kinase and myosin light chain phosphatase in the resistance arterial myogenic response to intravascular pressure. Arch. Biochem. Biophys. 510:160–73 [Google Scholar]
  5. Tran CH, Welsh DG. 5.  2009. Current perspective on differential communication in small resistance arteries. Can. J. Physiol. Pharmacol. 87:21–28 [Google Scholar]
  6. Segal SS, Duling BR. 6.  1986. Communication between feed arteries and microvessels in hamster striated muscle: segmental vascular responses are functionally coordinated. Circ. Res. 59:283–90 [Google Scholar]
  7. Welsh DG, Jackson WF, Segal SS. 7.  1998. Oxygen induces electromechanical coupling in arteriolar smooth muscle cells: a role for L-type Ca2+ channels. Am. J. Physiol. Heart Circ. Physiol. 274:H2018–24 [Google Scholar]
  8. Xia J, Duling BR. 8.  1998. Patterns of excitation-contraction coupling in arterioles: dependence on time and concentration. Am. J. Physiol. Heart Circ. Physiol. 274:H323–30 [Google Scholar]
  9. Xia J, Duling BR. 9.  1995. Electromechanical coupling and the conducted vasomotor response. Am. J. Physiol. Heart Circ. Physiol. 269:H2022–30 [Google Scholar]
  10. Mita M, Yanagihara H, Hishinuma S, Saito M, Walsh MP. 10.  2002. Membrane depolarization-induced contraction of rat caudal arterial smooth muscle involves Rho-associated kinase. Biochem. J. 364:431–40 [Google Scholar]
  11. Diep HK, Vigmond EJ, Segal SS, Welsh DG. 11.  2005. Defining electrical communication in skeletal muscle resistance arteries: a computational approach. J. Physiol. 568:267–81 [Google Scholar]
  12. Segal SS, Duling BR. 12.  1986. Flow control among microvessels coordinated by intercellular conduction. Science 234:868–70 [Google Scholar]
  13. Segal SS, Duling BR. 13.  1989. Conduction of vasomotor responses in arterioles: a role for cell-to-cell coupling?. Am. J. Physiol. Heart Circ. Physiol. 256:H838–45 [Google Scholar]
  14. Segal SS. 14.  1994. Cell-to-cell communication coordinates blood flow control. Hypertension 23:1113–20 [Google Scholar]
  15. Fraser GM, Goldman D, Ellis CG. 15.  2013. Comparison of generated parallel capillary arrays to three-dimensional reconstructed capillary networks in modeling oxygen transport in discrete microvascular volumes. Microcirculation 20:748–63 [Google Scholar]
  16. Fraser GM, Goldman D, Ellis CG. 16.  2012. Microvascular flow modeling using in vivo hemodynamic measurements in reconstructed 3D capillary networks. Microcirculation 19:510–20 [Google Scholar]
  17. Williams DA, Segal SS. 17.  1993. Feed artery role in blood flow control to rat hindlimb skeletal muscles. J. Physiol. 463:631–46 [Google Scholar]
  18. Welsh DG, Segal SS. 18.  1994. A holder and calibration chamber for micropressure measurements. Microvasc. Res. 48:403–5 [Google Scholar]
  19. Davis MJ. 19.  1993. Myogenic response gradient in an arteriolar network. Am. J. Physiol. Heart Circ. Physiol. 264:H2168–79 [Google Scholar]
  20. Heistad DD, Busija DW, Marcus ML. 20.  1981. Neural effects on cerebral vessels: alteration of pressure-flow relationship. Fed. Proc. 40:2317–21 [Google Scholar]
  21. Jacobs TL, Segal SS. 21.  2000. Attenuation of vasodilatation with skeletal muscle fatigue in hamster retractor. J. Physiol. 524:929–41 [Google Scholar]
  22. Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM. 22.  2014. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J. Am. Heart Assoc. 3:e000787 [Google Scholar]
  23. Tran CH, Vigmond EJ, Goldman D, Plane F, Welsh DG. 23.  2012. Electrical communication in branching arterial networks. Am. J. Physiol. Heart Circ. Physiol. 303:H680–92 [Google Scholar]
  24. Hilton SM. 24.  1959. A peripheral arterial conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasodilatation in skeletal muscle. J. Physiol. 149:93–111 [Google Scholar]
  25. Segal SS, Welsh DG, Kurjiaka DT. 25.  1999. Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle. J. Physiol. 516:283–91 [Google Scholar]
  26. Arciero JC, Carlson BE, Secomb TW. 26.  2008. Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses. Am. J. Physiol. Heart Circ. Physiol. 295:H1562–71 [Google Scholar]
  27. Krogh A, Harrop GA, Rehberg PB. 27.  1922. Studies on the physiology of capillaries: III. The innervation of the blood vessels in the hind legs of the frog. J. Physiol. 56:179–89 [Google Scholar]
  28. Duling BR, Berne RM. 28.  1970. Propagated vasodilation in the microcirculation of the hamster cheek pouch. Circ. Res. 26:163–70 [Google Scholar]
  29. Hirst GD, Neild TO. 29.  1978. An analysis of excitatory junctional potentials recorded from arterioles. J. Physiol. 280:87–104 [Google Scholar]
  30. Segal SS, Damon DN, Duling BR. 30.  1989. Propagation of vasomotor responses coordinates arteriolar resistances. Am. J. Physiol. Heart Circ. Physiol. 256:H832–37 [Google Scholar]
  31. de Wit C, Roos F, Bolz SS, Kirchhoff S, Krüger O. 31.  et al. 2000. Impaired conduction of vasodilation along arterioles in connexin40-deficient mice. Circ. Res. 86:649–55 [Google Scholar]
  32. Murrant CL, Sarelius IH. 32.  2000. Local and remote arteriolar dilations initiated by skeletal muscle contraction. Am. J. Physiol. Heart Circ. Physiol. 279:H2285–94 [Google Scholar]
  33. Cohen KD, Berg BR, Sarelius IH. 33.  2000. Remote arteriolar dilations in response to muscle contraction under capillaries. Am. J. Physiol. Heart Circ. Physiol. 278:H1916–23 [Google Scholar]
  34. Yu J, Bihari A, Lidington D, Tyml K. 34.  2000. Gap junction uncouplers attenuate arteriolar response to distal capillary stimuli. Microvasc. Res. 59:162–68 [Google Scholar]
  35. Tran CH, Vigmond EJ, Plane F, Welsh DG. 35.  2009. Mechanistic basis of differential conduction in skeletal muscle arteries. J. Physiol. 587:1301–18 [Google Scholar]
  36. Delashaw JB, Duling BR. 36.  1991. Heterogeneity in conducted arteriolar vasomotor response is agonist dependent. Am. J. Physiol. Heart Circ. Physiol. 260:H1276–82 [Google Scholar]
  37. Kurjiaka DT, Segal SS. 37.  1995. Conducted vasodilation elevates flow in arteriole networks of hamster striated muscle. Am. J. Physiol. Heart Circ. Physiol. 269:H1723–28 [Google Scholar]
  38. Segal SS, Neild TO. 38.  1996. Conducted depolarization in arteriole networks of the guinea-pig small intestine: effect of branching of signal dissipation. J. Physiol. 496:229–44 [Google Scholar]
  39. Xia J, Little TL, Duling BR. 39.  1995. Cellular pathways of the conducted electrical response in arterioles of hamster cheek pouch in vitro. Am. J. Physiol. Heart Circ. Physiol. 269:H2031–38 [Google Scholar]
  40. Welsh DG, Segal SS. 40.  1998. Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. Am. J. Physiol. Heart Circ. Physiol. 274:H178–86 [Google Scholar]
  41. Emerson GG, Neild TO, Segal SS. 41.  2002. Conduction of hyperpolarization along hamster feed arteries: augmentation by acetylcholine. Am. J. Physiol. Heart Circ. Physiol. 283:H102–9 [Google Scholar]
  42. Emerson GG, Segal SS. 42.  2000. Endothelial cell pathway for conduction of hyperpolarization and vasodilation along hamster feed artery. Circ. Res. 86:94–100 [Google Scholar]
  43. Beach JM, McGahren ED, Xia J, Duling BR. 43.  1996. Ratiometric measurement of endothelial depolarization in arterioles with a potential-sensitive dye. Am. J. Physiol. Heart Circ. Physiol. 270:H2216–27 [Google Scholar]
  44. Beach JM, McGahren ED, Duling BR. 44.  1998. Capillaries and arterioles are electrically coupled in hamster cheek pouch. Am. J. Physiol. Heart Circ. Physiol. 275:H1489–96 [Google Scholar]
  45. Emerson GG, Segal SS. 45.  2000. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: role in vasomotor control. Circ. Res. 87:474–79 [Google Scholar]
  46. Bartlett IS, Segal SS. 46.  2000. Resolution of smooth muscle and endothelial pathways for conduction along hamster cheek pouch arterioles. Am. J. Physiol. Heart Circ. Physiol. 278:H604–12 [Google Scholar]
  47. Hald BO, Welsh DG, Holstein-Rathlou NH, Jacobsen JC. 47.  2015. Origins of variation in conducted vasomotor responses. Pflüg. Arch. 467:2055–67 [Google Scholar]
  48. Hald BO, Jacobsen JC, Sandow SL, Holstein-Rathlou NH, Welsh DG. 48.  2014. Less is more: minimal expression of myoendothelial gap junctions optimizes cell-cell communication in virtual arterioles. J. Physiol. 592:3243–55 [Google Scholar]
  49. Moore DH, Ruska H. 49.  1957. The fine structure of capillaries and small arteries. J. Biophys. Biochem. Cytol. 3:457–62 [Google Scholar]
  50. Haas TL, Duling BR. 50.  1997. Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles. Microvasc. Res. 53:113–20 [Google Scholar]
  51. Sandow SL, Hill CE. 51.  2000. Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor–mediated responses. Circ. Res. 86:341–46 [Google Scholar]
  52. Sandow SL, Looft-Wilson R, Doran B, Grayson TH, Segal SS, Hill CE. 52.  2003. Expression of homocellular and heterocellular gap junctions in hamster arterioles and feed arteries. Cardiovasc. Res. 60:643–53 [Google Scholar]
  53. Rhodin JA. 53.  1967. The ultrastructure of mammalian arterioles and precapillary sphincters. J. Ultrastruct. Res. 18:181–223 [Google Scholar]
  54. McNeish AJ, Sandow SL, Neylon CB, Chen MX, Dora KA, Garland CJ. 54.  2006. Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery. Stroke 37:1277–82 [Google Scholar]
  55. Yeh HI, Rothery S, Dupont E, Coppen SR, Severs NJ. 55.  1998. Individual gap junction plaques contain multiple connexins in arterial endothelium. Circ. Res. 83:1248–63 [Google Scholar]
  56. Tran CH, Taylor MS, Plane F, Nagaraja S, Tsoukias NM. 56.  et al. 2012. Endothelial Ca2+ wavelets and the induction of myoendothelial feedback. Am. J. Physiol. Cell Physiol. 302:C1226–42 [Google Scholar]
  57. Maarouf N, Sancho M, Furstenhaupt T, Tran CH, Welsh DG. 57.  2016. Structural analysis of endothelial projections from mesenteric arteries. Microcirculation 24:e12330 [Google Scholar]
  58. Sandow SL, Gzik DJ, Lee RM. 58.  2009. Arterial internal elastic lamina holes: relationship to function?. J. Anat. 214:258–66 [Google Scholar]
  59. Little TL, Beyer EC, Duling BR. 59.  1995. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am. J. Physiol. Heart Circ. Physiol. 268:H729–39 [Google Scholar]
  60. Little TL, Xia J, Duling BR. 60.  1995. Dye tracers define differential endothelial and smooth muscle coupling patterns within the arteriolar wall. Circ. Res. 76:498–504 [Google Scholar]
  61. Caspar DL, Goodenough DA, Makowski L, Phillips WC. 61.  1977. Gap junction structures. I. Correlated electron microscopy and X-ray diffraction. J. Cell Biol. 74:605–28 [Google Scholar]
  62. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. 62.  2003. Plasma membrane channels formed by connexins: their regulation and functions. Physiol. Rev. 83:1359–400 [Google Scholar]
  63. Johnstone SR, Billaud M, Lohman AW, Taddeo EP, Isakson BE. 63.  2012. Posttranslational modifications in connexins and pannexins. J. Membr. Biol. 245:319–32 [Google Scholar]
  64. Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. 64.  2014. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol. Rev. 66:513–69 [Google Scholar]
  65. Yamamoto Y, Klemm MF, Edwards FR, Suzuki H. 65.  2001. Intercellular electrical communication among smooth muscle and endothelial cells in guinea-pig mesenteric arterioles. J. Physiol. 535:181–95 [Google Scholar]
  66. Yamamoto Y, Fukuta H, Nakahira Y, Suzuki H. 66.  1998. Blockade by 18β-glycyrrhetinic acid of intercellular electrical coupling in guinea-pig arterioles. J. Physiol. 511:501–8 [Google Scholar]
  67. Behringer EJ, Socha MJ, Polo-Parada L, Segal SS. 67.  2012. Electrical conduction along endothelial cell tubes from mouse feed arteries: confounding actions of glycyrrhetinic acid derivatives. Br. J. Pharmacol. 166:774–87 [Google Scholar]
  68. Rose K, Ouellette Y, Bolon M, Tyml K. 68.  2005. Hypoxia/reoxygenation reduces microvascular endothelial cell coupling by a tyrosine and MAP kinase dependent pathway. J. Cell Physiol. 204:131–38 [Google Scholar]
  69. Lidington D, Ouellette Y, Tyml K. 69.  2002. Communication of agonist-induced electrical responses along ‘capillaries’ in vitro can be modulated by lipopolysaccharide, but not nitric oxide. J. Vasc. Res. 39:405–13 [Google Scholar]
  70. Lidington D, Tyml K, Ouellette Y. 70.  2002. Lipopolysaccharide-induced reductions in cellular coupling correlate with tyrosine phosphorylation of connexin 43. J. Cell Physiol. 193:373–79 [Google Scholar]
  71. Yamazaki J, Kitamura K. 71.  2003. Intercellular electrical coupling in vascular cells present in rat intact cerebral arterioles. J. Vasc. Res. 40:11–27 [Google Scholar]
  72. Knot HJ, Nelson MT. 72.  1998. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J. Physiol. 508:199–209 [Google Scholar]
  73. Knot HJ, Nelson MT. 73.  1995. Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 269:H348–55 [Google Scholar]
  74. Luykenaar KD, Welsh DG. 74.  2007. Activators of the PKA and PKG pathways attenuate RhoA-mediated suppression of the KDR current in cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 292:H2654–63 [Google Scholar]
  75. Wu BN, Luykenaar KD, Brayden JE, Giles WR, Corteling RL. 75.  et al. 2007. Hyposmotic challenge inhibits inward rectifying K+ channels in cerebral arterial smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 292:H1085–94 [Google Scholar]
  76. Thorneloe KS, Nelson MT. 76.  2005. Ion channels in smooth muscle: regulators of intracellular calcium and contractility. Can. J. Physiol. Pharmacol. 83:215–42 [Google Scholar]
  77. Nelson MT, Patlak JB, Worley JF, Standen NB. 77.  1990. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am. J. Physiol. Cell Physiol. 259:C3–18 [Google Scholar]
  78. Quayle JM, Nelson MT, Standen NB. 78.  1997. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev. 77:1165–232 [Google Scholar]
  79. Stott JB, Jepps TA, Greenwood IA. 79.  2014. KV7 potassium channels: a new therapeutic target in smooth muscle disorders. Drug Discov. Today 19:413–24 [Google Scholar]
  80. Nieves-Cintrón M, Nystoriak MA, Prada MP, Johnson K, Fayer W. 80.  et al. 2016. Selective down-regulation of KV2.1 function contributes to enhanced arterial tone during diabetes. J. Biol. Chem. 291:4912 [Google Scholar]
  81. Plane F, Johnson R, Kerr P, Wiehler W, Thorneloe K. 81.  et al. 2005. Heteromultimeric Kv1 channels contribute to myogenic control of arterial diameter. Circ. Res. 96:216–24 [Google Scholar]
  82. Earley S, Brayden JE. 82.  2015. Transient receptor potential channels in the vasculature. Physiol. Rev. 95:645–90 [Google Scholar]
  83. Wang Q, Leo MD, Narayanan D, Kuruvilla KP, Jaggar JH. 83.  2016. Local coupling of TRPC6 to ANO1/TMEM16A channels in smooth muscle cells amplifies vasoconstriction in cerebral arteries. Am. J. Physiol. Cell Physiol. 310:C1001–9 [Google Scholar]
  84. Ledoux J, Bonev AD, Nelson MT. 84.  2008. Ca2+-activated K+ channels in murine endothelial cells: block by intracellular calcium and magnesium. J. Gen. Physiol. 131:125–35 [Google Scholar]
  85. Sancho M, Samson NC, Hald BO, Hashad AM, Marrelli SP. 85.  et al. 2016. KIR channels tune electrical communication in cerebral arteries. J. Cereb. Blood Flow Metab. 37:2171–84 [Google Scholar]
  86. Nagaraja S, Kapela A, Tran CH, Welsh DG, Tsoukias NM. 86.  2013. Role of microprojections in myoendothelial feedback—a theoretical study. J. Physiol. 591:2795–812 [Google Scholar]
  87. Kapela A, Bezerianos A, Tsoukias NM. 87.  2009. A mathematical model of vasoreactivity in rat mesenteric arterioles: I. Myoendothelial communication. Microcirculation 16:694–713 [Google Scholar]
  88. Kapela A, Nagaraja S, Tsoukias NM. 88.  2010. A mathematical model of vasoreactivity in rat mesenteric arterioles. II. Conducted vasoreactivity. Am. J. Physiol. Heart Circ. Physiol. 298:H52–65 [Google Scholar]
  89. Hald BO, Welsh DG, Holstein-Rathlou NH, Jacobsen JC. 89.  2014. Gap junctions suppress electrical but not [Ca2+] heterogeneity in resistance arteries. Biophys. J. 107:2467–76 [Google Scholar]
  90. Bagher P, Davis MJ, Segal SS. 90.  2011. Visualizing calcium responses to acetylcholine convection along endothelium of arteriolar networks in Cx40BAC-GCaMP2 transgenic mice. Am. J. Physiol. Heart Circ. Physiol. 301:H794–802 [Google Scholar]
  91. Jantzi MC, Brett SE, Jackson WF, Corteling RL, Vigmond EJ, Welsh DG. 91.  2006. Inward rectifying potassium channels facilitate cell-to-cell communication in hamster retractor muscle feed arteries. Am. J. Physiol. Heart Circ. Physiol. 291:H1319–28 [Google Scholar]
  92. Sonkusare SK, Dalsgaard T, Bonev AD, Nelson MT. 92.  2016. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators. J. Physiol. 594:3271–85 [Google Scholar]
  93. Haug SJ, Segal SS. 93.  2004. Sympathetic inhibition of conducted vasodilatation along hamster feed arteries: complementary effects of α1- and α2-adrenoreceptor activation. J. Physiol. 563:541–55 [Google Scholar]
  94. Lidington D, Ouellette Y, Li F, Tyml K. 94.  2003. Conducted vasoconstriction is reduced in a mouse model of sepsis. J. Vasc. Res. 40:149–58 [Google Scholar]
  95. Goldman D, Bateman RM, Ellis CG. 95.  2006. Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow. Am. J. Physiol. Heart Circ. Physiol. 290:H2277–85 [Google Scholar]
  96. Tyml K, Wang X, Lidington D, Ouellette Y. 96.  2001. Lipopolysaccharide reduces intercellular coupling in vitro and arteriolar conducted response in vivo. Am. J. Physiol. Heart Circ. Physiol. 281:H1397–406 [Google Scholar]
  97. McKinnon RL, Lidington D, Bolon M, Ouellette Y, Kidder GM, Tyml K. 97.  2006. Reduced arteriolar conducted vasoconstriction in septic mouse cremaster muscle is mediated by nNOS-derived NO. Cardiovasc. Res. 69:236–44 [Google Scholar]
  98. Bolon ML, Ouellette Y, Li F, Tyml K. 98.  2005. Abrupt reoxygenation following hypoxia reduces electrical coupling between endothelial cells of wild-type but not connexin40 null mice in oxidant- and PKA-dependent manner. FASEB J 19:1725–27 [Google Scholar]
  99. Wagner C, de Wit C, Kurtz L, Grunberger C, Kurtz A, Schweda F. 99.  2007. Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ. Res. 100:556–63 [Google Scholar]
  100. Kurjiaka DT, Bender SB, Nye DD, Wiehler WB, Welsh DG. 100.  2005. Hypertension attenuates cell-to-cell communication in hamster retractor muscle feed arteries. Am. J. Physiol. Heart Circ. Physiol. 288:H861–70 [Google Scholar]
  101. Rai A, Riemann M, Gustafsson F, Holstein-Rathlou NH, Torp-Pedersen C. 101.  2008. Streptozotocin-induced diabetes decreases conducted vasoconstrictor response in mouse cremaster arterioles. Horm. Metab. Res. 40:651–54 [Google Scholar]
  102. Behringer EJ, Shaw RL, Westcott EB, Socha MJ, Segal SS. 102.  2013. Aging impairs electrical conduction along endothelium of resistance arteries through enhanced Ca2+-activated K+ channel activation. Arterioscler. Thromb. Vasc. Biol. 33:1892–901 [Google Scholar]
  103. Ngai AC, Nguyen TS, Meno JR, Britz GW. 103.  2007. Postischemic augmentation of conducted dilation in cerebral arterioles. Stroke 38:124–30 [Google Scholar]
  104. Tesfamariam B, DeFelice AF. 104.  2007. Endothelial injury in the initiation and progression of vascular disorders. Vascul. Pharmacol. 46:229–37 [Google Scholar]
  105. Boisseau MR. 105.  2005. Roles of mechanical blood forces in vascular diseases. A clinical overview. Clin. Hemorheol. Microcirc. 33:201–7 [Google Scholar]
  106. Arpino JM, Nong Z, Li F, Yin H, Ghonaim NW. 106.  et al. 2017. 4D microvascular analysis reveals that regenerative angiogenesis in ischemic muscle produces a flawed microcirculation. Circ. Res. 120:1453–65 [Google Scholar]
  107. Perrotta I. 107.  2013. Ultrastructural features of human atherosclerosis. Ultrastruct. Pathol. 37:43–51 [Google Scholar]
  108. Rossman EI, Liu K, Morgan GA, Swillo RE, Krueger JA. 108.  et al. 2009. The gap junction modifier, GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], improves conduction and reduces atrial fibrillation/flutter in the canine sterile pericarditis model. J. Pharmacol. Exp. Ther. 329:1127–33 [Google Scholar]
  109. Clarke TC, Thomas D, Petersen JS, Evans WH, Martin PE. 109.  2006. The antiarrhythmic peptide rotigaptide (ZP123) increases gap junction intercellular communication in cardiac myocytes and HeLa cells expressing connexin 43. Br. J. Pharmacol. 147:486–95 [Google Scholar]
  110. Wu F, Wilson JX, Tyml K. 110.  2003. Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R50–56 [Google Scholar]
  111. Armour J, Tyml K, Lidington D, Wilson JX. 111.  2001. Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat. J. Appl. Physiol. 90:795–803 [Google Scholar]
  112. Doyle MP, Duling BR. 112.  1997. Acetylcholine induces conducted vasodilation by nitric oxide-dependent and -independent mechanisms. Am. J. Physiol. Heart Circ. Physiol. 272:H1364–71 [Google Scholar]
  113. Welsh DG, Segal SS. 113.  2000. Role of EDHF in conduction of vasodilation along hamster cheek pouch arterioles in vivo. Am. J. Physiol. Heart Circ. Physiol. 278:H1832–39 [Google Scholar]
  114. Budel S, Bartlett IS, Segal SS. 114.  2003. Homocellular conduction along endothelium and smooth muscle of arterioles in hamster cheek pouch: unmasking an NO wave. Circ. Res. 93:61–68 [Google Scholar]
  115. Dora KA, Xia J, Duling BR. 115.  2003. Endothelial cell signaling during conducted vasomotor responses. Am. J. Physiol. Heart Circ. Physiol. 285:H119–26 [Google Scholar]
  116. Lin Y, Duling BR. 116.  1994. Vulnerability of conducted vasomotor response to ischemia. Am. J. Physiol. Heart Circ. Physiol. 267:H2363–70 [Google Scholar]
  117. Segal SS. 117.  1991. Microvascular recruitment in hamster striated muscle: role for conducted vasodilation. Am. J. Physiol. Heart Circ. Physiol. 261:H181–89 [Google Scholar]
  118. Kurjiaka DT. 118.  2004. The conduction of dilation along an arteriole is diminished in the cremaster muscle of hypertensive hamsters. J. Vasc. Res. 41:517–24 [Google Scholar]
  119. Segal SS, Jacobs TL. 119.  2001. Role for endothelial cell conduction in ascending vasodilatation and exercise hyperaemia in hamster skeletal muscle. J. Physiol. 536:937–46 [Google Scholar]
  120. Looft-Wilson RC, Haug SJ, Neufer PD, Segal SS. 120.  2004. Independence of connexin expression and vasomotor conduction from sympathetic innervation in hamster feed arteries. Microcirculation 11:397–408 [Google Scholar]
  121. de With MC, Haug SJ, Brigitte van der Heijden EP, Segal SS. 121.  2005. Ischemia-reperfusion impairs ascending vasodilation in feed arteries of hamster skeletal muscle. Microcirculation 12:551–61 [Google Scholar]
  122. Hungerford JE, Sessa WC, Segal SS. 122.  2000. Vasomotor control in arterioles of the mouse cremaster muscle. FASEB J 14:197–207 [Google Scholar]
  123. Looft-Wilson RC, Payne GW, Segal SS. 123.  2004. Connexin expression and conducted vasodilation along arteriolar endothelium in mouse skeletal muscle. J. Appl. Physiol. 97:1152–58 [Google Scholar]
  124. Wölfle SE, de Wit C. 124.  2005. Intact endothelium-dependent dilation and conducted responses in resistance vessels of hypercholesterolemic mice in vivo. J. Vasc. Res. 42:475–82 [Google Scholar]
  125. Rodenwaldt B, Pohl U, de Wit C. 125.  2007. Endogenous and exogenous NO attenuates conduction of vasoconstrictions along arterioles in the microcirculation. Am. J. Physiol. Heart Circ. Physiol. 292:H2341–48 [Google Scholar]
  126. Wölfle SE, Schmidt VJ, Hoepfl B, Gebert A, Alcolea S. 126.  et al. 2007. Connexin45 cannot replace the function of connexin40 in conducting endothelium-dependent dilations along arterioles. Circ. Res. 101:1292–99 [Google Scholar]
  127. Figueroa XF, Duling BR. 127.  2008. Dissection of two Cx37-independent conducted vasodilator mechanisms by deletion of Cx40: electrotonic versus regenerative conduction. Am. J. Physiol. Heart Circ. Physiol. 295:H2001–7 [Google Scholar]
  128. Wölfle SE, Schmidt VJ, Hoyer J, Köhler R, de Wit C. 128.  2009. Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo. Cardiovasc. Res. 82:476–83 [Google Scholar]
  129. Jobs A, Schmidt K, Schmidt VJ, Lübkemeier I, van Veen TAB. 129.  et al. 2012. Defective Cx40 maintains Cx37 expression but intact Cx40 is crucial for conducted dilations irrespective of hypertension. Hypertension 60:1422–29 [Google Scholar]
  130. Dora KA. 130.  2017. Conducted dilatation to ATP and K+ in rat skeletal muscle arterioles. Acta Physiol 219:202–18 [Google Scholar]
  131. Crane GJ, Neild TO, Segal SS. 131.  2004. Contribution of active membrane processes to conducted hyperpolarization in arterioles of hamster cheek pouch. Microcirculation 11:425–33 [Google Scholar]
  132. Howitt L, Chaston DJ, Sandow SL, Matthaei KI, Edwards FR, Hill CE. 132.  2013. Spreading vasodilatation in the murine microcirculation: attenuation by oxidative stress-induced change in electromechanical coupling. J. Physiol. 591:2157–73 [Google Scholar]
  133. Siegl D, Koeppen M, Wölfle SE, Pohl U, de Wit C. 133.  2005. Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo. Circ. Res. 97:781–88 [Google Scholar]
  134. Wölfle SE, Chaston DJ, Goto K, Sandow SL, Edwards FR, Hill CE. 134.  2011. Non-linear relationship between hyperpolarisation and relaxation enables long distance propagation of vasodilatation. J. Physiol. 589:2607–23 [Google Scholar]
  135. Behringer EJ, Segal SS. 135.  2012. Tuning electrical conduction along endothelial tubes of resistance arteries through Ca2+-activated K+ channels. Circ. Res. 110:1311–21 [Google Scholar]
  136. Hakim CH, Jackson WF, Segal SS. 136.  2008. Connexin isoform expression in smooth muscle cells and endothelial cells of hamster cheek pouch arterioles and retractor feed arteries. Microcirculation 15:503–14 [Google Scholar]
  137. Chadha PS, Liu L, Rikard-Bell M, Senadheera S, Howitt L. 137.  et al. 2011. Endothelium-dependent vasodilation in human mesenteric artery is primarily mediated by myoendothelial gap junctions intermediate conductance calcium-activated K+ channel and nitric oxide. J. Pharmacol. Exp. Ther. 336:701–8 [Google Scholar]
  138. Isakson BE, Best AK, Duling BR. 138.  2008. Incidence of protein on actin bridges between endothelium and smooth muscle in arterioles demonstrates heterogeneous connexin expression and phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 294:H2898–904 [Google Scholar]
  139. Schmidt VJ, Jobs A, von Maltzahn J, Wörsdörfer P, Willecke K, de Wit C. 139.  2012. Connexin45 is expressed in vascular smooth muscle but its function remains elusive. PLOS ONE 7:e42287 [Google Scholar]
  140. Hong T, Hill CE. 140.  1998. Restricted expression of the gap junctional protein connexin 43 in the arterial system of the rat. J. Anat. 192:583–93 [Google Scholar]
  141. Sandow SL, Neylon CB, Chen MX, Garland CJ. 141.  2006. Spatial separation of endothelial small- and intermediate-conductance calcium-activated potassium channels (KCa) and connexins: possible relationship to vasodilator function?. J. Anat. 209:689–98 [Google Scholar]
  142. Gustafsson F, Mikkelsen HB, Arensbak B, Thuneberg L, Neve S. 142.  et al. 2003. Expression of connexin 37, 40 and 43 in rat mesenteric arterioles and resistance arteries. Histochem. Cell Biol. 119:139–48 [Google Scholar]
  143. Mather S, Dora KA, Sandow SL, Winter P, Garland CJ. 143.  2005. Rapid endothelial cell-selective loading of connexin 40 antibody blocks endothelium-derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ. Res. 97:399–407 [Google Scholar]
  144. Matchkov VV, Rahman A, Bakker LM, Griffith TM, Nilsson H, Aalkjaer C. 144.  2006. Analysis of effects of connexin-mimetic peptides in rat mesenteric small arteries. Am. J. Physiol. Heart Circ. Physiol. 291:H357–67 [Google Scholar]
  145. Ellis A, Goto K, Chaston DJ, Brackenbury TD, Meaney KR. 145.  et al. 2009. Enalapril treatment alters the contribution of epoxyeicosatrienoic acids but not gap junctions to endothelium-derived hyperpolarizing factor activity in mesenteric arteries of spontaneously hypertensive rats. J. Pharmacol. Exp. Ther. 330:413–22 [Google Scholar]
  146. Li X, Simard JM. 146.  2001. Connexin45 gap junction channels in rat cerebral vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 281:H1890–98 [Google Scholar]
  147. Haddock RE, Grayson TH, Brackenbury TD, Meaney KR, Neylon CB. 147.  et al. 2006. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am. J. Physiol. Heart Circ. Physiol. 291:H2047–56 [Google Scholar]
  148. van Kempen MJ, Jongsma HJ. 148.  1999. Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem. Cell Biol. 112:479–86 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010617-052623
Loading
/content/journals/10.1146/annurev-pharmtox-010617-052623
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error